Corneal implant inserters and methods of use

Information

  • Patent Grant
  • 9549848
  • Patent Number
    9,549,848
  • Date Filed
    Friday, September 14, 2012
    12 years ago
  • Date Issued
    Tuesday, January 24, 2017
    8 years ago
Abstract
Devices that are adapted to insert corneal implants onto corneal tissue. Methods of using the devices include inserting the corneal implant into a pocket created in the cornea. Methods of use also include inserting the corneal implant onto corneal tissue after a flap has been created in the cornea. The devices can be adapted to deliver fluid to an implant holding space to at least assist in the deployment of the implant from the holding space and onto corneal tissue.
Description
INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


BACKGROUND

Corneal implants can correct vision impairment by positioning them on corneal tissue by creating a change in curvature of the anterior surface of a cornea and/or creating multifocalities within the cornea due to intrinsic properties of the implant. Corneal implants include onlays and inlays, but as used herein can also refer to contact lenses, or even to corneal replacement devices. An onlay is an implant that is placed over the stromal part of the cornea such that the outer layer of the cornea, i.e., the epithelium, can grow over and encompass the implant. An inlay is an implant that is implanted within corneal tissue beneath a portion of the corneal tissue by, for example, cutting a flap in the cornea and inserting the inlay beneath the flap. Both inlays and onlays can alter the refractive power of the cornea by changing the shape of the anterior cornea, by having a different index of refraction than the cornea, or both.


There is a need for improved apparatuses, systems and methods for inserting a corneal implant onto corneal tissue, including inserting it within a pocket created in the corneal tissue.


SUMMARY OF THE DISCLOSURE

One aspect of the disclosure is a corneal implant inserter apparatus, comprising: a holding space at a distal end of an elongate body, wherein the holding space is adapted to house a corneal implant therein in a substantially unstressed configuration; a fluid disposed in the holding space such that the corneal implant is retained within the holding space due to the surface tension of the fluid; and a channel extending within the elongate body such that the channel is in fluid communication with the holding space.


In some embodiments the channel has a maximum width that is less than a maximum width of the holding space. The channel maximum width can be less than half of the maximum width of the holding space.


In some embodiments the holding space has a generally flat top and a generally flat bottom. The corneal implant can be a corneal inlay with an anterior surface that is substantially parallel to the generally flat top and a posterior surface that is substantially parallel to the generally flat bottom.


In some embodiments the channel extends from the holding space to a proximal end of the elongate body.


In some embodiments the holding space and the channel are together adapted to hold between about 0.5 and about 4.0 microliters therein.


One aspect of the disclosure is a corneal implant inserter apparatus, comprising: a holding space at a distal end of an elongate body, wherein the holding space is adapted to house a corneal implant therein; a channel with a maximum width less than a maximum width of the holding space, wherein the channel is in fluid communication with the holding space and extends from the holding space within the elongate body.


In some embodiments the channel maximum width is less than half of the holding space maximum width.


In some embodiments the channel extends from the holding space to a proximal end of the elongate body.


In some embodiments the corneal implant is retained within the holding space in a substantially unstressed configuration. The holding space can have a generally flat top and a generally flat bottom, and wherein the corneal implant can be a corneal inlay with an anterior surface that is substantially parallel to the generally flat top and a posterior surface that is substantially parallel to the generally flat bottom.


In some embodiment the apparatus further comprises a fluid disposed in the holding space such that the corneal implant is retained within the holding space due to the surface tension of the fluid.


In some embodiment the holding space has a generally flat top and a generally flat bottom.


In some embodiments the holding space and the channel are together adapted to hold between about 0.5 and about 4.0 microliters therein.


One aspect of the disclosure is a corneal implant inserter apparatus, comprising: an elongate body comprising a distal holding space in fluid communication with a channel extending through the elongate body, wherein the holding space has a generally flat top and a generally flat bottom; and a corneal implant retained in the holding space between the generally flat top and the generally flat bottom.


In some embodiments the apparatus further comprises a fluid disposed in the holding space such that the corneal implant is retained within the holding space due to the surface tension of the fluid. The corneal implant can be retained in the holding space in a substantially unstressed configuration. The corneal implant can have an anterior surface that is substantially parallel to the generally flat top and a posterior surface that is substantially parallel to the generally flat bottom.


In some embodiments the channel has a maximum width that is less than a maximum width of the holding space.


In some embodiments the channel extends from the holding space to a proximal end of the elongate body.


In some embodiments the holding space and the channel are together adapted to hold between about 0.5 and about 4.0 microliters therein.


One aspect of the disclosure is a corneal implant inserter system, comprising: a corneal implant inserter comprising a channel fluidly connecting a holding space in a distal portion of the inserter and a proximal end of the corneal implant inserter; a fluid disposed in the holding space such that a corneal implant is retained in the holding space due to the surface tension of the fluid; and a fluid delivery device adapted to be positioned relative to the corneal implant inserter such that it is in fluid communication with the corneal implant inserter channel such that fluid can be delivered from the fluid delivery device into the channel to deploy the corneal implant from the holding space.


In some embodiments the system further comprises a hub that is adapted to receive a proximal end of the corneal implant inserter therein, and wherein the hub is adapted to engage the fluid delivery device such that the fluid delivery device, the hub, the channel, and the holding space are in fluid communication.


One aspect of the disclosure a method of deploying a corneal implant onto corneal tissue, comprising: providing a corneal implant inserter with a corneal implant retained in a holding space in a substantially unstressed configuration in a distal region of the inserter; and delivering fluid from a delivery device into a channel extending through the corneal implant inserter, wherein the channel is in fluid communication with the holding space, and wherein delivering the fluid deploys the corneal implant from the holding space and onto corneal tissue.


In some embodiments the method further comprises creating a corneal flap and lifting the flap to expose the corneal tissue prior to the delivering step.


In some embodiments the method further comprises applying a force on the corneal implant with a tool to assist in deploying the corneal implant from the holding space.


In some embodiments applying a force on the implant with a second tool comprises positioning the tool in a slot formed in a top portion of the holding space.


In some embodiments the method further comprises, prior to the delivering step: creating a corneal pocket within the cornea; creating an access channel to the pocket; and advancing the holding space into the access channel and towards the pocket.


In some embodiments the method further comprises: creating a second access channel to the pocket; positioning a tool in the second access channel; and applying a force on the corneal implant with the tool to assist in deploying the corneal implant from the holding space.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1-5D illustrate an exemplary corneal implant insertion system.



FIG. 6 illustrates an exemplary storage container with an insertion system therein.



FIGS. 7A-7E illustrate an exemplary corneal implant insertion system.



FIGS. 8A-8C illustrate an exemplary corneal implant insertion system.



FIG. 9 illustrates an exemplary inserter that includes a channel extending from the proximal end of the inserter to the holding space.



FIG. 10 illustrates a syringe connected to a proximal end of an inserter.



FIGS. 11 and 12 illustrate a distal portion of exemplary inserter with a channel extending therethrough.



FIG. 13 shows an exemplary inserter, which includes a clearance bend and an elongated portion with an optional luer lock at the proximal end for connecting to a fluid delivering device.



FIG. 14 illustrates an exemplary inserter system.



FIG. 15 illustrates the system from FIG. 14 without the fluid delivery device.



FIGS. 16A-16E illustrate an exemplary inserter.



FIGS. 17A-17B illustrate an exemplary inserter.



FIGS. 18A-18D illustrate views of an exemplary hub secured to an exemplary inserter.



FIGS. 19A-19D illustrate views of the hub from FIGS. 18A-18D.



FIGS. 20A-20F show side views illustrating an exemplary method of inserting a corneal inlay into a corneal pocket created within the cornea from within an exemplary inserter.





DETAILED DESCRIPTION

The disclosure herein generally describes devices that are adapted to insert corneal implants onto corneal tissue, and their methods of use. The methods of use include inserting the corneal implants into a pocket created in the cornea. The methods of use also include inserting the corneal implants onto corneal tissue after a flap has been created in the cornea. Some devices are adapted to deliver fluid to an implant holding space to at least assist in the deployment of the implant from the holding space and onto corneal tissue.



FIGS. 1-5 show an exemplary corneal implant insertion system. The disclosure herein focuses on devices that are adapted to deliver corneal inlays or onlays onto corneal tissue, but the devices herein can also be used to deliver other suitable ocular devices, such as contact lenses. The exemplary insertion system is also adapted for storing the corneal implant. The exemplary insertion system includes inserter 100 having an elongated body, which can be made of titanium, stainless steel, plastic, or any other suitable material. Inserter 100 comprises a distal portion having generally flat top and bottom surfaces. The distal portion of inserter 100 includes clearance bend 104 to provide clearance between the inserter and a patient's facial features (e.g., nose, cheeks, etc.) as explained further below. The distal portion of inserter 100 also includes additional curved portion 103 that is contoured to generally follow the shape of a patient's cornea as explained further below. Curved portion 103 is concave on the bottom.


The distal portion of inserter 100 further includes holding space 101 that is adapted to receive corneal implant 200 therein. Saline, BSS, or any other suitable solution (not shown in FIGS. 1-5) is positioned in holding space 101 with corneal implant 200, and the corneal implant 200 is maintained in holding space 101 due to the surface tension of the fluid. The fluid stays in holding space 101 due to capillary forces, which keeps the implant hydrated. The inserter also includes top and bottom inserter slots 102 and 110 on the top and bottom surfaces of the distal portion, as is shown in FIG. 4. As explained below, inserter slots 102 and 110 allow a physician or other user to view the patient's cornea through the slots for precise placement of implant 200. In addition, top inserter slot 102 allows the user to insert a device in top inserter slot 102 to apply a force onto implant 200 while it is in holding space 101. The user can then retract inserter 100 while applying the force on implant 200 to maintain the position of implant 200 relative to inserter 100, thereby removing implant 200 from holding space 101. The user may hold down implant 200 with a surgical tool, such as a cannula, Sinskey hook, or other tool that fits through top inserter slot 102. Top inserter slot 102 extends to leading edge 111 of inserter 100 so that the tool can hold down implant 200 as inserter 100 is retracted. Leading edge 111 of the inserter can be rounded (as shown) to prevent damage to the cornea.


As can be seen in FIG. 4, the width “w” dimension of holding space 101 is slightly greater than the diameter of corneal inlay 200 in a substantially unstressed configuration. In a merely exemplary embodiment, inlay 200 has a diameter of about 1.5 mm and the width “w” of holding space 101 is between about 1.6 and about 1.7 mm. The rounded leading edge 111 of inserter 100 is adapted to follow the general curvature of the perimeter of implant 200. The center length “l” (see FIGS. 1 and 3) of the holding space 101 is slightly larger than the diameter of the implant 200. As shown in FIGS. 1 and 3, the center length “l” extends from the center of leading edge 111 to back wall 113 of holding space 101. The geometry of holding space 101 and the surface tension of the saline in holding space 101 keeps implant 200 substantially centered in holding space 101. The height of the holding space 101 in which the implant is disposed can be several times larger than the thickness of implant 200 to ensure that a sufficient amount of fluid (e.g., saline) can be maintained in holding space 101 to keep the implant sufficiently hydrated.


Exemplary corneal inlays that can be positioned onto corneal tissue using the inserter devices and methods of use herein can be found described in U.S. Pat. No. 8,057,541, filed Oct. 30, 2006; U.S. Pub. No. 2008/0262610, filed Apr. 20, 2007; U.S. Pub. No. 2009/0198325, filed Apr. 3, 2009; U.S. Pub. No. 2011/0218623, filed Sep. 8, 2010, all of which are incorporated by reference herein.


In some embodiments inserter 100 is manufactured from a rod that is cut and bent to form the configuration of inserter 100 shown in FIG. 1. In one particular embodiment, a cylindrical titanium rod is cut and bent to form the inserter. In this particular embodiment, the proximal portion of the inserter is generally cylindrical, with angled transition portions that are tapered down to the distal portion of the inserter. Exemplary tapers can be seen in FIGS. 1 and 2.


The exemplary inserter system in FIGS. 1-5 additionally includes inserter cap 300 shown in FIGS. 1 and 2. Cap 300 generally helps keep the implant within the holding space of the inserter. Cap 300 can be made of Teflon (“PTFE”) or other suitable material. In some embodiments, inserter cap 300 is generally cylindrical and can be fitted snugly on the distal end of inserter 100 by engaging the sides of inserter 100 as shown in FIG. 2. Additional details of exemplary caps that can be used can be found in U.S. application Ser. No. 13/549,007, filed Jul. 13, 2012, the complete disclosure of which is incorporated by reference.


In an exemplary method of use, the implant is preloaded into the holding space of the inserter and packaged for later use by the physician or other user during an implantation procedure. In this embodiment, the implant is preloaded into the holding space of the inserter with the top, or anterior, surface of the implant orientated to face the top surface of the inserter. The implant may be preloaded by submerging both the implant and the holding space of the inserter in a solution (e.g., saline) and inserting the implant into the holding space while they are both submerged. After the implant is preloaded in the inserter, the inserter cap is positioned on the distal end of the inserter. The cap may be placed on the inserter while the holding space is still submerged in the solution. The preloaded inserter assembled with the inserter cap is placed into vial 400 or other storage container filled with saline 410 or other suitable solution as shown in FIG. 6. The inserter cap prevents the implant from moving out of the inserter when placed in vial 400 filled with saline 410. Vial 400 is capped and placed in outer package 420, which is sterilized to store the insertion system until use.


An exemplary implantation procedure using the exemplary insertion system shown in FIGS. 1-6 and described above will now be described. In this embodiment, inserter 100 preloaded with a corneal implant is removed from outer package 420 and vial 400 that is filled with saline 410. The saline disposed within the space between cap 300 and inserter 101 is removed by placing a sponge (not shown) or other absorbent material on the open end on inserter cap 300. The sponge draws out the saline from the interior of cap 300 by capillary action through the opening between cap 300 and inserter 101. In embodiments in which cap 300 has a generally cylindrical shape, the opening is formed between the cylindrical cap 300 and the generally flat top and bottom surfaces of inserter 100. The saline is removed from the space between cap 300 and inserter 100 while cap 300 is still on inserter 100. This is done to prevent cap 300 from pulling implant 200 out of inserter 100 because of capillary action when cap 300 is removed from inserter 100. After the saline is removed, cap 300 is removed from inserter 100. At this point, a small amount of saline or BSS may be applied to holding space 101 of inserter 100 to keep implant 200 hydrated. The saline stays in holding space 101 due to capillary forces, thereby keeping implant 200 hydrated during the procedure. Further, the surface tension of the saline keeps implant 200 in holding space 101 of inserter 100 so that implant 200 does not fall out of inserter 100 during the procedure. This surface tension and the geometry of holding space 101 keep implant 200 substantially centered in inserter 100.


To enable a user to better hold inserter 100, handle 500 may be attached to the proximal end of inserter 100 as shown in FIG. 5A. The handle may be similar to handles that attach to disposable blades.


Additionally, the user may determine the proper orientation of the implant based on features of inserter 100. For example, when the top of inserter 100, and hence implant 200, are facing upward, the concave bottom surface of curved portion 103 is facing downward.


In embodiments in which an inlay is being implanted, after the cap has been removed, the user may then implant the corneal implant in or on the patient's cornea. In some embodiments the corneal implant is positioned under a flap created in the cornea. Techniques to create corneal flaps are known, such as by mechanical methods or using a laser. Once created, the flap is then lifted to expose the cornea's interior, e.g., stroma bed of the cornea. An example of this is shown in FIG. 5C, in which flap 1120 is cut into cornea 600 and pulled backed to expose stroma bed 1100 of the cornea. Flap 1120 is attached to the cornea 600 by flap hinge 1110. Flap 1120 can be made using a laser, e.g., femtosecond laser, a mechanical keratome or manually. Several methods for forming flaps in corneal tissue, and other related information, are described in further detail in co-pending U.S. patent application Ser. No. 10/924,152, filed Aug. 23, 2004, entitled “Method for Keratophakia Surgery,” which is fully incorporated by reference herein. Once the interior cornea is exposed, the user positions inserter 100 so that implant 200 is at the desired location on the cornea 600, e.g., the patient's pupil or visual axis as shown in FIG. 5A. Prior to positioning inserter 100, the user may use a sponge or other absorbent material to remove excess fluid on the outer surface of inserter 100 being careful not to remove the saline from holding space 101. Clearance bend 104 allows the inserter to clear the patient's facial features (e.g., nose) as the surgeon manipulates inserter 100. When implant 200 is at the desired location, the user holds down the implant 200 on cornea 600 using a surgical cannula, Sinskey Hook or other tool 610 such that implant 200 gently touches the stroma bed of cornea 600 through bottom slot 110. Tool 610 holds down implant 200 through top inserter slot 102 as shown in FIG. 5B. The user then retracts inserter 100 from cornea 600 to release implant 200 from inserter 100 and deposit implant 200 at the desired location. If implant 200 is not precisely at the desired location, then the user can gently move implant 200 into position using a surgical sponge, rounded-tip tool, or other tool. In the example shown in FIG. 5C, implant 200 is centered on pupil 1130. After implant 200 is correctly positioned, the user places flap 1120 back over implant 200.


Implant 200 may be implanted concurrent with a LASIK procedure or post-LASIK. Since a flap is cut into the cornea during a LASIK procedure, the same flap may be used to implant the corneal implant. If the implant is implanted post-LASIK, then the LASIK flap may be re-opened or the inserter may be advanced between the flap and the underlying corneal tissue to the desired position. In this example, the LASIK procedure may be used to correct distance vision while the implant is used to provide near vision. Additional details can be found, for example, in U.S. patent application Ser. No. 11/554,544, entitled “Small Diameter Inlays,” filed on Oct. 30, 2006, now U.S. Pat. No. 8,057,541, the specification of which is incorporated herein by reference.


The implants can be positioned under a newly created and opened flap, a previously created and re-opened flap, a newly created but unopened flap (e.g., a femtosecond laser makes a flap but it is not lifted and perhaps all of the corneal tags are not broken), a previously created and unopened flap, or an actual purpose-made pocket/channel.


In embodiments in which the implant is positioned under a flap that is not opened (whether newly created or previously created) the distal portion of the inserter may be inserted between the flap and the underlying corneal tissue and advanced between the flap and underlying corneal tissue to the desired position in the cornea. The distal portion of the inserter preferably has a thin cross-section so that the inserter does not induce corneal stretching. The curved portion of the inserter follows the curvature of the cornea allowing the inserter to more easily move between the flap and underlying corneal tissue while minimizing stress on the cornea. Further, the top surface of the inserter preferably has a downward sloping portion 115 that slopes downward to the leading edge of the inserter as shown in FIG. 3. In these embodiments, a surgical cannula or other tool may also be inserted between the flap and the underlying corneal tissue to hold down the implant at the desired location and release the implant from the inserter.


The devices and systems described herein can also be used in the delivery of corneal implants using different methods to access the interior of the cornea. For example, the interior of the cornea may be accessed through a lamellar pocket, channel, or pathway cut into the cornea. A “pocket” is generally referred to as a recess formed within the corneal tissue for receiving the corneal implant, and which may be accessed via a channel formed in the cornea. Methods of creating pockets are known, such as may be found described in United States Patent Application Publication No. 2003/0014042, published Jan. 16, 2003, entitled “Method of Creating Stromal Pockets for Corneal Implants,” which is also fully incorporated by reference herein. Additional exemplary methods and devices for creating corneal pockets, or corneal channels, can be found in U.S. Pub. No. 2012/0046680, filed Aug. 23, 2010, the disclosure of which is fully incorporated by reference herein.


In an exemplary method of use, the inserter may be inserted into a channel or pocket cut into the cornea and advanced through the channel to position the implant at the desired location in the corneal pocket. A second channel may also be cut into the cornea to provide access for a surgical cannula or other tool used to hold down the implant at the desired location. FIG. 5D shows an example of inserter 100 placing implant (not shown) within pocket 700 formed in cornea 600 through an opening 710.



FIGS. 7A-7E illustrate an additionally exemplary embodiment of a corneal implant inserter, or delivery, device. Delivery device 220 includes distal portion 226, intermediate portion 224, and proximal portion 222. Distal portion 226 includes holding region 246 (see FIG. 7C), in which implant 236 is disposed. A fluid is disposed within holding region 246 such that implant 236 is retained within holding area 246 by capillary forces. Holding region 246 is defined by upper surface 232, lower surface 234, and proximal surface 242, as shown in FIGS. 7C (side view) and 7D (top view). Upper surface 232 and lower surface 234 are generally flat, while proximal surface 242 is curved and connects upper surface 232 and lower surface 234. While proximal surface 242 is shown in FIG. 7D as curved across the width of distal portion 226, proximal surface 242 could be substantially flat across the width of distal region 226.


Distal portion 226 has a generally flat configuration. Upper surface 238 is substantially flat, with surface 244 tapering slightly downward towards the distal end of distal portion 226. Bottom surface 240 is substantially flat and extends from the bend in intermediate region 224 to the distal end of distal portion 226.


In this embodiment holding area 246 and implant 236 are sized and shaped such that implant 236 is disposed within holding area 246 in a substantially non-deformed, or non-stressed, configuration. The substantially non-deformed configuration is substantially the same configuration that the implant is in after it is positioned in or on the subject's cornea. This can be beneficial since the implant might be retained in the holding space for an extended period of time, such as during shipping and storage prior to use. Keeping the implant in a substantially non-stressed, or non-deformed configuration, can reduce the likelihood of damage and increase the shelf-life of the implant. In some embodiments the implant is a corneal inlay that is adapted to be implanted within the cornea to treat presbyopia. The inlay has a diameter between about 1 mm about 3.5 mm. The relatively small diameter size allows for the width of the holding space to be relatively small and still be adapted to house the inlay therein in a non-deformed and substantially non-stressed configuration. The relatively small width of the inserter also reduces the likelihood of damage to corneal tissue when the inlay is positioned into a pocket via an access channel.


The dimensions and tolerances provided in FIGS. 7A-7E and throughout this disclosure are in inches and are merely illustrative and are not meant to be limiting. The dimensions of the inserters herein can be modified as desired.


Distal portion 226 also includes removal slot 228 that extends through the top and bottom surfaces of the distal portion. A removal tool can be positioned within the slot as described above to apply a gentle force to the implant while the inserter 220 is retracted, thereby removing the implant from the inserter and onto the corneal bed, as is described in more detail in U.S. Pat. No. 8,162,953, filed Mar. 28, 2007, the disclosure of which is incorporated by reference herein.


Device 220 shown in FIGS. 7A-7E can be used to deliver a corneal implant under a flap or within a pocket, both of which are described herein.


The inserter in FIGS. 7A-7E has a generally flat distal portion, while the inserter in the embodiment shown in FIG. 1 has a second bend 103. The flat bottom can improve the line of sight when positioning the inserter over the patient's pupil. Additionally, when used to deliver the implant, the inserter is intended to be angled approximately about 15 to about 20 degrees relative to the stroma bed. When a delivery device has a curved bottom, as opposed to a flat bottom, the user may have a natural tendency to place the device flat on the stroma bed such that the curve of the device matches the curve of stromal bed. In this situation the angle of the device relative to the stromal bed is substantially zero. Because this can be a suboptimal position for the inserter, a flat bottom can eliminate that tendency and provide a better positioning angle.



FIG. 7E illustrates device 220 prior to forming the bend in intermediate section 224 and includes additional exemplary dimensions. In some embodiments the device is formed of titanium, but any other suitable material can be used.



FIGS. 8A-8C illustrate an additional exemplary corneal implant delivery device 250. Device 250 includes a proximal section 252 and intermediate section 254 with a clearance bend, similar to the embodiment in FIGS. 7A-7E. Device 250 also includes a distal section 256, which has a general tear-drop configuration. Distal section 256 includes side surfaces 262 and 264, which taper towards the longitudinal axis of distal section 256, then extend parallel to it, before tapering outwards away from the longitudinal axis. The side surfaces form general indentations 258 and 260 in distal section 256.


Due to the indentations, device 250 has less material in the distal section 256 that the device in FIGS. 7A-7E. Less material provides better visualization of the eye, which in use is positioned below the inserter, relative to the user's field of view. The configuration of distal end 256 makes it easier for the user to position the delivery device in the correct position, which makes it easier to position the corneal implant in the correct position, such as when positioning a corneal inlay on the stromal bed within the pupil.


While device 250 has a tear-drop configuration, any distal portion configuration that does not have completely flat sides in a top view of the device can be used to help provide better visualization of the eye. Additionally, the device in FIGS. 8A-8C can optionally have a curved bottom surface as is shown in the embodiment in FIG. 1.



FIGS. 9-19D illustrate embodiments in which the inserter is adapted to allow for the delivery of fluid to the holding space to deploy, or at least assist in the deployment of, the corneal implant from the holding space and onto corneal tissue.



FIG. 9 illustrates inserter 270 that includes a channel extending from the proximal end of the inserter 270 to the holding space. The channel is in fluid communication with the holding space. The proximal end of inserter 270 can be connected to a syringe such that fluid can be delivered through the channel and into the holding space to gently push the implant out of the holding space and onto corneal tissue. The channel also allows fluid to be delivered via the channel to the holding space to hydrate the implant. For example, when the inserter is positioned such that the implant (which is still retained within the inserter) is at the desired location on the cornea, the user delivers fluid through the channel to help release the implant from the holding space. The fluid delivery to deploy the implant can be performed instead of, or in conjunction with, using a tool positioned in the top slot to hold down the implant while the inserter is retracted, as is described above. Thus, the implants can be deployed solely with fluid delivered through the channel, or with a combination of fluid delivery and mechanical forces with a second tool. FIG. 9 shows exemplary inserter 270 comprising luer lock 810 at the proximal end of inserter 270 that is configured to mate with a corresponding luer lock of a syringe or other fluid delivering device (not shown). Once the syringe is mated with inserter 270, fluid can be delivered from the syringe, through channel, and into the holding space to deploy the implant. FIG. 10 illustrates syringe 276 connected to luer lock 272 such that the syringe and the holding space are in fluid communication.



FIGS. 11 and 12 illustrate a distal portion of exemplary inserter 280. In this embodiment the inserter includes cannula or tube 280 configured to house the implant 282 therein. Cannula 280 preferably has a width slightly larger than the width of implant 282. Cannula 280 also preferably has a height that is slightly larger than the thickness of implant 282. The distal end 284 of cannula 280 is preferably shaped to hold implant 282 in a substantially unstressed or non-deformed configuration. Cannula 280 may or may not be slightly curved along its width and/or length to follow the curvature of the cornea. Fluid, e.g., saline or BSS, may be delivered to implant 282 through the channel in the inserter to ensure that implant 282 is hydrated prior to use and/or to release implant 282 from the inserter.


The inserter 280 also includes a top inserter slot 286 through which a surgical cannula, Sinskey Hook, or other tool can be used to hold down implant 282 at the desired location in the cornea as described above. Cannula 280 also includes a bottom opening 288 shown in FIG. 12 through which implant 282 can contact the cornea when the implant is held down as shown in FIG. 13. Preferably, the edges and corners at the tip of cannula 280 are smooth and rounded to avoid damaging the cornea or implant. A handle may be attached to the proximal end of the inserter for easier handling by the user. FIG. 13 shows the entire inserter, which includes a clearance bend 292 and an elongated portion 290 with optional luer lock 294 at the proximal end for connecting a fluid delivering device to the inserter. The fluid delivering device may be coupled to inserter 282 for delivering fluid to the implant through the channel in inserter 282, as is described in more detail herein.


Implant 282 can be implanted in the cornea using any of the procedures described above. In one embodiment a flap is cut into the cornea and lifted to expose a stroma bed of the cornea. The user then positions implant 282 at the desired location using the inserter. When implant 282 is at the desired position, the user can use a surgical cannula or other tool to hold implant 282 through the top inserter slot 286. The user can hold down implant 282 such that the bottom surface of implant 282 contacts the cornea through bottom opening 288. While implant 282 is held down at the desired location, the user retracts the inserter to deposit implant 282 on the cornea. The surgeon can alternatively, or in addition to, deliver fluid to implant 282 through the channel in the inserter to release implant 282 from the holding space. After implant 282 is correctly positioned, the user places the flap back down over implant 282. FIG. 13 shows an example of an inserter positioned over the desired location of the cornea for depositing implant 282 at the desired location.


In some embodiments implant 282 is implanted into a corneal pocket. Cannula 280 is moved to the desired position through the channel that leads to the pocket. The thin cross section of cannula 280 minimizes stress on the cornea as cannula 280 is advanced through the channel to the pocket. When the implant is in position, fluid is delivered from the fluid delivery device, through the cannula, and into the holding space to thereby deploy the inlay out of the holding space and onto the corneal tissue. In alternative embodiments a second channel can also be cut into the cornea to provide access for a surgical tool that can be used to hold down implant 282 to further assist removing the implant from the holding space, as is described in more detail above.



FIG. 14 illustrates an exemplary inserter system including inserter 312 secured to hub 314, which is secured to syringe 316 (or any other suitable fluid delivery device). The syringe 316, hub 314, and inserter 312 are all in fluid communication. FIG. 15 illustrates the system without the syringe, showing hub 314 and inserter 312. The proximal end of the hub has a luer lock adapted to securingly couple with a luer lock on the distal end of the syringe. The distal region of inserter 312 has holding space 318 adapted to house the corneal implant therein, which is retained in the holding space by capillary forces, as described above. Inserter 312 has a fluid channel 320 therein extending along the length of the inserter. The proximal region of inserter 312 is adapted to be positioned within hub 314, which is adapted to be coupled to syringe 316 (shown in FIG. 14). Hub 314 is configured to position the distal end of the syringe adjacent to the proximal end of inserter 52 and therefore the proximal end of fluid channel 320 within inserter 312. When the syringe is actuated by advancing plunger 321 with respect to outer tube 322, fluid is advanced from the plunger and into fluid channel 320. In this manner fluid in channel 320 gently pushes the corneal implant positioned in the holding space out of the holding space and into the target delivery zone, such as onto corneal tissue.


In some embodiments system 310 is used to deliver the implant after a flap has been created. In some embodiments system 310 is used to deliver the implant into a pocket formed within the cornea. In some methods of use the implant is deployed from the holding space and onto corneal tissue solely by advancing fluid through channel 320 from the syringe. In some embodiments a separate stripping tool can also be used to assist in the removal of the implant from the holding space, as is described above.



FIGS. 16A-16E illustrate inserter 312 in a flat configuration prior to any bends being made in the inserter. FIG. 16A shows a top view of inserter 312. Fluid channel 320 is shown in phantom within inserter 312 and extends from proximal end 364 to the holding space in the distal region. The proximal end of the inserter is therefore in fluid communication with the holding space.


The distal end of device 312 could have a different configuration than shown, such as a tear-drop configuration shown above. Proximal region 368 of inserter 312 has a slightly smaller width than the region distal to it, as shown in FIG. 16A. Additionally, inserter 312 includes a plurality of notches 370 formed in the side. While the notches are artifacts of the manufacturing process, the four notches at the proximal end improve the bonding strength between the female hub and the inserter body. To assemble the inserter and the hub, the assembly is glued and the notches are filled in with adhesive, which improves the bond strength. This would also be true if the hub was overlay/insert molded onto the cannula inserter body.



FIG. 16B illustrates a side view of device 312. FIG. 16C illustrates a perspective view of inserter 312. FIG. 16D illustrates a top view of distal section of inserter 312, showing implant 364 disposed in the holding space in a substantially non-deformed configuration. The device also includes top slot 366, but in this embodiment the inserter is not shown with a bottom slot. In alternative embodiments the inserter could have a bottom slot. FIG. 16E illustrates a perspective view of the distal region without the implant disposed in the holding area.


As can be seen, the channel has a width that is less than the maximum width of the holding area. In the distal region of the inserter the side walls that form the channel taper outward and form the larger width holding space. The width of the holding space is such that the implant can be housed therein in a substantially non-stressed configuration, while the smaller width of the channel requires less fluid to be advanced through the inserter to deploy the implant.



FIGS. 17A and 17B show inserter 312 after bend 370 and optional bend 372 have been formed therein. Of course, bend 72 need not be formed, as is the case in the device shown in FIG. 7A-7E. The device shown in FIGS. 7A-7E could therefore be modified to have a fluid channel therein to allow for a fluid to be delivered through the inserter and into holding space.


In some embodiments herein (such as FIGS. 16A-17B), the holding space maximum width is just slightly larger than the diameter of the corneal implant. For example, in a particular non-limiting embodiment the holding space width is about 2.2 mm, and the diameter of the inlay is about 2.0 mm. This exemplary 0.2 mm difference provides a little clearance for the implant, and the relatively small holding space width allows the outer surfaces of the inserter to be relatively small, which reduces the delivery profile of the inserter. This helps minimize damage to the cornea.


In some embodiments the width of the implant can be between about 1 mm and about 3 mm. By way of additional example, in some embodiments the implant diameter is about 1 mm and the holding space maximum width is about 1.2 mm. In alternative exemplary embodiments the implant diameter is about 3.0 mm and the holding space width is about 3.2 mm.


In some embodiments the height of the implant, which can also be considered the “thickness” of the implant is between about 10 microns and about 50 microns. The height of the holding space is just slightly larger than the height of the implant. For example, in some embodiments the implant height, or thickness, is between about 20 microns and about 40 microns, and the respective holding space height is between about 22 microns and about 50 microns. In some embodiments the implant height is about 30 microns and the holding space height is about 35 microns. Again, in these embodiments the relatively small height of the holding space (and the overall height of the distal portion of the inserter) reduces the delivery profile and minimizes damage to the cornea.


As shown in FIGS. 16A-16E, the maximum width of the inserter channel is less than the maximum width of the holding space. The can help allow for a very small volume of fluid to be advanced through the channel towards the holding space to deploy the implant from the holding space. Specifically, the maximum width of the inserter channel is shown as less than half of the maximum width of the holding space. In some embodiments the channel maximum width can be less than or equal to half the maximum width of the holding space.


In the embodiment shown in FIGS. 16A-17B, the channel extends all the way from the holding space to the proximal end of the inserter elongate body.



FIGS. 18A-18D illustrate views of hub 314 secured to inserter 312 (the syringe is not shown for clarity). The proximal end of inserter 314 is disposed within the distal end of hub 314. FIG. 18A illustrates a perspective view of the assembly. FIG. 18B illustrates an end view viewing the open end of hub 314. Fluid channel 320 in inserter 312 can be seen therein. The distal end 376 of inserter 312 can also be seen. FIG. 18C shows section A-A from FIG. 18B, a cross sectional side view showing a proximal region of inserter 312 positioned within an internal channel 380 of hub 314. Hub 314 also includes stop 382 which prevents inserter 312 from being advanced too far proximally within hub 314. Stop 382, however, has a bore therein to allow proximal chamber 384 of the hub to be in fluid communication with fluid channel 320 within inserter 312. FIG. 18D illustrates section B-B from FIG. 18B, showing inserter 312 disposed within channel 380 in hub 314.



FIGS. 19A-19D illustrate views of hub 314 not coupled to an inserter or to a fluid delivery device (such as a syringe). FIGS. 19A-19D correspond to the figures in FIGS. 18A-18D but without inserter 312. FIG. 19A shows the proximal end including proximal chamber 834 adapted to receive a syringe or other fluid delivery device therein. FIG. 19B shows an end view from the proximal end of hub 314. FIGS. 19C and 19D illustrate sectional views with channel 380 which is adapted to receive an implant inserter therein.


When delivering a corneal inlay onto corneal tissue using fluid (whether or not a separate tool is also used to assist in the delivery), the amount of fluid delivered onto the cornea can influence the procedure. For example, it is generally not beneficial to deliver a relatively large volume of fluid onto the cornea because it will take a longer period of time for a larger volume of fluid to evaporate (or dissipate if within the cornea), which increases the time it takes for the implant to adhere to the corneal bed. A relatively large volume of fluid can also make visualizing the implant more difficult and makes it difficult to control the position of the implant relative to the pupil. Conversely, providing too little fluid can cause the implant to stick to the stroma and surgical instruments and can therefore be difficult to move and reposition.


Additionally, it is generally desirable to minimize the pressure on the corneal tissue bed to prevent damage to the eye. It is therefore generally important to carefully control the amount of fluid that is pushed out of the inserter system to deliver the corneal implant. In some embodiments between about 0.5 to about 2.0 microliters of saline are advanced into the fluid channel within the delivery device. This range is not, however, intended to be strictly limiting. For example, about 5 microliters could be used as well. In some embodiments between about 0.5 and about 1.0 microliters of fluid are advanced. In some embodiments between about 1.0 and about 2.0 microliters are used. In some embodiments, however, more fluid can be delivered, and the excess fluid could simply be aspirated or removed. The inserter bodies described herein can hold approximately between about 0.5 and about 4.0 microliters, but in other embodiments the inserters can be modified to hold more or less fluid.



FIGS. 20A-20F show side views illustrating an exemplary method of inserting a corneal inlay into a corneal pocket created within the cornea from within inserter 312. FIG. 20A illustrates an exemplary cornea 420 into which the inlay is going to be positioned. Cornea 420 has an anterior surface 424 and posterior surface 422. FIG. 20B illustrates pocket 426 that has been created in cornea 420. The corneal pocket is created to be able to receive the corneal implant therein. The pocket is created to have substantially the same shape and dimensions of the corneal implant to be positioned in the pocket.


Pocket 426 can be created by known methods, such as by focusing a laser beam at corneal tissue, and moving the laser beam throughout the region of corneal tissue that is to be removed or separated to form the pocket. The laser beam disrupts the corneal tissue, forming a pocket with the desired shape and dimensions. As shown in FIG. 20C, channel 428 is then created to allow access to the created pocket 426 from outside the cornea. Channel 428 connects the space outside the cornea with pocket 426, thereby creating a path for inserter 312 to follow to access the pocket. Channel 428 can be made with a laser beam in the same or similar manner in which pocket 426 is created. A surgical knife can also be used to create access channel 428. Debris and gas bubbles created during the pocket and channel formation can then be aspirated if necessary.


As shown in FIG. 20D, inserter 312, with the inlay disposed therein in the holding space (not shown) is advanced into channel 428 and the distal end of inserter 440 is positioned adjacent pocket 426. The hub and fluid delivery device are not shown for clarity. Fluid is then advanced through the channel within the inserter 312 using the fluid delivery device (e.g., syringe), which gently pushes inlay 444 from the holding space and into the pocket, as shown in FIG. 20E. Inserter 312 is then removed from the cornea, leaving the inlay positioned within the cornea. Channel 428 will eventually heal over time. FIG. 20F also illustrates an exemplary change in curvature of the anterior surface of the cornea, from first shape 424 to second shape 424′. The increase in curvature is in the central region of the pupil, while a region in the periphery of the pupil remains unchanged. The central region is therefore created to create near vision, while the peripheral region allows for distance vision. The inlay in this embodiment is therefore adapted to correct presbyopia by creating near vision in the center of the pupil but allowing distance vision in a region peripheral to the central region.


In alternative embodiments, a secondary channel, in addition to channel 428, can also be created that creates a secondary access location to the pocket. The secondary channel accesses the pocket from a direction other than channel 428. The secondary channel can be created in the same way as channel 428. The secondary channel can be substantially on the opposite side of the cornea (i.e., substantially 180 degrees away from) relative to channel 428. The secondary channel allows a path for a tool to be advanced into the pocket and assist in the removal of the implant from the holding space. Using a tool in this manner is described in more detail above.

Claims
  • 1. A corneal implant inserter apparatus, comprising: a corneal implant;a holding space at a distal end of an elongate body, wherein the holding space is adapted to house the corneal implant therein in a substantially unstressed configuration, the elongate body comprising a distal port out of which the corneal implant passes when deployed from the holding space, the distal port having a width greater than a diameter of the corneal implant;a fluid disposed in the holding space such that the corneal implant is retained within the holding space due to a surface tension of the fluid; anda channel extending within the elongate body such that the channel is in fluid communication with the holding space.
  • 2. The apparatus of claim 1, wherein the holding space has a generally flat top and a generally flat bottom.
  • 3. The apparatus of claim 1, wherein the channel extends from the holding space to a proximal end of the elongate body.
  • 4. A corneal implant inserter apparatus, comprising: a corneal implant;an elongate body comprising a distal holding space in fluid communication with a channel extending through the elongate body, the elongate body comprising a distal port out of which the corneal implant passes when deployed from the holding space, the distal port having a width greater than a diameter of the corneal implant,wherein the holding space has a generally flat top and a generally flat bottom;a corneal implant retained in the holding space between the generally flat top and the generally flat bottom; anda fluid disposed in the holding space such that the corneal implant is retained within the holding space due to a surface tension of the fluid.
  • 5. The apparatus of claim 4, wherein the corneal implant is retained in the holding space in a substantially unstressed configuration.
  • 6. The apparatus of claim 4, wherein the channel extends from the holding space to a proximal end of the elongate body.
  • 7. A corneal implant inserter system, comprising: a corneal implant;a corneal implant inserter comprising a channel fluidly connecting a holding space in a distal portion of the inserter and a proximal end of the corneal implant inserter, the corneal implant inserter comprising a distal port out of which the corneal implant passes when deployed from the holding space, the distal port having a width greater than a diameter of the corneal implant;a fluid disposed in the holding space such that the corneal implant is retained in the holding space due to a surface tension of the fluid; anda fluid delivery device adapted to be positioned relative to the corneal implant inserter such that it is in fluid communication with the corneal implant inserter channel such that fluid can be delivered from the fluid delivery device into the channel to deploy the corneal implant from the holding space.
  • 8. A method of deploying a corneal implant onto corneal tissue, comprising: providing a corneal implant inserter with a corneal implant retained in a holding space in a substantially unstressed configuration in a distal region of the inserter, the corneal implant inserter comprising a distal port, the distal port having a width greater than a diameter of the corneal implant; anddelivering fluid from a delivery device into a channel extending through the corneal implant inserter, wherein the channel is in fluid communication with the holding space, and wherein delivering the fluid deploys the corneal implant from the holding space through the distal port, and onto corneal tissue.
  • 9. The method of claim 8, further comprising creating a corneal flap and lifting the flap to expose the corneal tissue prior to the delivering step.
  • 10. The method of claim 8, further comprising applying a force on the corneal implant with a tool to assist in deploying the corneal implant from the holding space.
  • 11. The method of claim 10, wherein applying a force on the corneal implant with a tool comprises positioning the tool in a slot formed in a top portion of the holding space.
  • 12. The method of claim 8, further comprising, prior to the delivering step: creating a corneal pocket within the cornea;creating an access channel to the pocket; andadvancing the holding space into the access channel and towards the pocket.
  • 13. The method of claim 8 further comprising: creating a second access channel to the pocket;positioning a tool in the second access channel; andapplying a force on the corneal implant with the tool to assist in deploying the corneal implant from the holding space.
  • 14. A corneal implant inserter apparatus, comprising: an elongate body with a distal region, and a corneal implant retained at the distal region in a substantially unstressed configuration due to surface tension of a fluid, the elongate body comprising a distal port out of which the corneal implant passes, the distal port having a width greater than a diameter of the corneal implant; anda fluid channel extending within the elongate body such that the channel is in fluid communication with the distal region.
  • 15. A method of deploying a corneal implant onto corneal tissue, comprising: providing an elongate body with a distal region, and a corneal implant retained at the distal region in a substantially unstressed configuration due to a surface tension of a fluid, the distal region comprising a distal port from which the corneal implant is deployed, the distal port having a width greater than a diameter of the corneal implant; anddelivering fluid through a fluid channel in the elongate body to deploy the corneal implant from the distal region and out of the distal port, and onto corneal tissue.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part application of U.S. application Ser. No. 13/411,425, filed Mar. 2, 2012, now U.S. Pat. No. 8,540,727, which is a continuation application of U.S. application Ser. No. 11/692,835, filed Mar. 28, 2007, now U.S. Pat. No. 8,162,953. This application also claims priority to U.S. Prov. App. No. 61/535,744, filed Sep. 16, 2011. This application incorporates by reference herein all of the aforementioned applications. This application is related to and incorporates by reference herein the disclosure of U.S. application Ser. No. 13/549,007, filed Jul. 13, 2012, the disclosure of which is incorporated by reference herein.

US Referenced Citations (420)
Number Name Date Kind
2714721 Stone, Jr. Aug 1955 A
3091328 Leonardos May 1963 A
3168100 Rich Feb 1965 A
3343657 Speshyock Sep 1967 A
3379200 Pennell Apr 1968 A
3482906 Volk Dec 1969 A
3743337 Crary Jul 1973 A
3770113 Thomas Nov 1973 A
3879076 Barnett Apr 1975 A
3950315 Cleaver Apr 1976 A
3996627 Deeg et al. Dec 1976 A
4030480 Meyer Jun 1977 A
4037604 Newkirk Jul 1977 A
4039827 Zdrok et al. Aug 1977 A
4065816 Sawyer Jan 1978 A
4071272 Drdlik Jan 1978 A
4093291 Schurgin Jun 1978 A
4136406 Norris Jan 1979 A
4157718 Baehr Jun 1979 A
4184491 McGannon Jan 1980 A
4194814 Fischer et al. Mar 1980 A
4238524 LaLiberte et al. Dec 1980 A
4257521 Poler Mar 1981 A
4268133 Fischer et al. May 1981 A
4326306 Poler Apr 1982 A
4357940 Muller Nov 1982 A
4392569 Shoup Jul 1983 A
4418991 Breger Dec 1983 A
4423809 Mazzocco Jan 1984 A
4428746 Mendez Jan 1984 A
4452235 Reynolds Jun 1984 A
4466705 Michelson Aug 1984 A
4490860 Rainin Jan 1985 A
4504982 Burk Mar 1985 A
4521210 Wong Jun 1985 A
4525044 Bauman Jun 1985 A
4545478 Waldman Oct 1985 A
4554115 Neefe Nov 1985 A
4554918 White Nov 1985 A
4565198 Koeniger Jan 1986 A
4573998 Mazzocco Mar 1986 A
4580882 Nuchman et al. Apr 1986 A
4586929 Binder May 1986 A
4604087 Joseph Aug 1986 A
4607617 Choyce Aug 1986 A
4616910 Klein Oct 1986 A
4618227 Bayshore Oct 1986 A
4619256 Horn Oct 1986 A
4624664 Peluso et al. Nov 1986 A
4624669 Grendahl Nov 1986 A
4640595 Volk Feb 1987 A
4646720 Peyman et al. Mar 1987 A
4655774 Choyce Apr 1987 A
4662370 Hoffmann et al. May 1987 A
4663358 Hyon et al. May 1987 A
4671276 Reynolds Jun 1987 A
4676792 Praeger Jun 1987 A
4697697 Graham et al. Oct 1987 A
4702244 Mazzocco Oct 1987 A
4709697 Muller Dec 1987 A
4721124 Tuerkheimer et al. Jan 1988 A
4726367 Shoemaker Feb 1988 A
4750901 Molteno Jun 1988 A
4762496 Maloney et al. Aug 1988 A
4766895 Reynolds Aug 1988 A
4769033 Nordan Sep 1988 A
4772283 White Sep 1988 A
4778462 Grendahl Oct 1988 A
4798609 Grendahl Jan 1989 A
4806382 Goldberg et al. Feb 1989 A
4836201 Patton et al. Jun 1989 A
4840175 Peyman Jun 1989 A
4842599 Bronstein Jun 1989 A
4844242 Chen et al. Jul 1989 A
4851003 Lindstrom Jul 1989 A
4860885 Kaufman et al. Aug 1989 A
4865552 Maloney et al. Sep 1989 A
4886488 White Dec 1989 A
4888016 Langerman Dec 1989 A
4897981 Beck Feb 1990 A
4911715 Kelman Mar 1990 A
4919130 Stoy et al. Apr 1990 A
4923467 Thompson May 1990 A
4934363 Smith et al. Jun 1990 A
4936825 Ungerleider Jun 1990 A
4946436 Smith Aug 1990 A
4955903 Sulc et al. Sep 1990 A
4968296 Ritch et al. Nov 1990 A
4971732 Wichterle Nov 1990 A
4976719 Siepser Dec 1990 A
5019084 Aysta et al. May 1991 A
5019098 Mercier May 1991 A
5022414 Muller Jun 1991 A
5030230 White Jul 1991 A
5041081 Odrich Aug 1991 A
5063942 Kilmer et al. Nov 1991 A
5071276 Nielsen et al. Dec 1991 A
5073163 Lippman Dec 1991 A
5092837 Ritch et al. Mar 1992 A
5098444 Feaster Mar 1992 A
5108428 Capecchi et al. Apr 1992 A
5112350 Civerchia et al. May 1992 A
5123905 Kelman Jun 1992 A
5123912 Kaplan et al. Jun 1992 A
5123921 Werblin et al. Jun 1992 A
5139518 White Aug 1992 A
5163934 Munnerlyn Nov 1992 A
5171213 Price, Jr. Dec 1992 A
5173723 Volk Dec 1992 A
5178604 Baerveldt et al. Jan 1993 A
5180362 Worst et al. Jan 1993 A
5181053 Brown Jan 1993 A
5188125 Kilmer et al. Feb 1993 A
5190552 Kelman Mar 1993 A
5192317 Kalb Mar 1993 A
5196026 Barrett et al. Mar 1993 A
5211660 Grasso May 1993 A
5225858 Portney Jul 1993 A
5229797 Futhey et al. Jul 1993 A
5244799 Anderson Sep 1993 A
5258042 Mehta Nov 1993 A
5270744 Portney Dec 1993 A
5273750 Homiger et al. Dec 1993 A
5282851 Jacob-LaBarre Feb 1994 A
5300020 L'Esperance, Jr. Apr 1994 A
5300116 Chirila et al. Apr 1994 A
5312413 Eaton et al. May 1994 A
5318044 Kilmer et al. Jun 1994 A
5318046 Rozakis Jun 1994 A
5318047 Davenport et al. Jun 1994 A
5336261 Barrett et al. Aug 1994 A
5338291 Speckman et al. Aug 1994 A
5344448 Schneider et al. Sep 1994 A
5346464 Camras Sep 1994 A
5370607 Memmen Dec 1994 A
5372577 Ungerleider Dec 1994 A
5385582 Ommaya Jan 1995 A
5391201 Barrett et al. Feb 1995 A
5397300 Baerveldt et al. Mar 1995 A
5405384 Silvestrini Apr 1995 A
5428412 Stoyan Jun 1995 A
5433701 Rubinstein Jul 1995 A
5454796 Krupin Oct 1995 A
5458819 Chirila et al. Oct 1995 A
5467149 Morrison et al. Nov 1995 A
5474562 Orchowski et al. Dec 1995 A
5476445 Baerveldt et al. Dec 1995 A
5487377 Smith et al. Jan 1996 A
5489301 Barber Feb 1996 A
5493350 Seidner Feb 1996 A
5502518 Lieberman Mar 1996 A
5512220 Roffman et al. Apr 1996 A
5520631 Nordquist et al. May 1996 A
5521656 Portney May 1996 A
5530491 Baude et al. Jun 1996 A
5533997 Ruiz Jul 1996 A
5570142 Lieberman Oct 1996 A
5591185 Kilmer et al. Jan 1997 A
5598234 Blum et al. Jan 1997 A
5616148 Eagles et al. Apr 1997 A
5620450 Eagles et al. Apr 1997 A
5628794 Lindstrom May 1997 A
5630810 Machat May 1997 A
5634943 Villain et al. Jun 1997 A
5643276 Zaleski Jul 1997 A
5657108 Portney Aug 1997 A
5682223 Menezes et al. Oct 1997 A
5684560 Roffman et al. Nov 1997 A
5715031 Roffman et al. Feb 1998 A
5716633 Civerchia Feb 1998 A
5722948 Gross Mar 1998 A
5722971 Peyman Mar 1998 A
5728155 Anello et al. Mar 1998 A
5732990 Yavitz et al. Mar 1998 A
5752928 de Roulhac et al. May 1998 A
5755785 Rowsey et al. May 1998 A
5766181 Chambers et al. Jun 1998 A
5772667 Blake Jun 1998 A
5779711 Kritzinger et al. Jul 1998 A
5785674 Mateen Jul 1998 A
5800442 Wolf et al. Sep 1998 A
5800529 Brauker et al. Sep 1998 A
5805260 Roffman et al. Sep 1998 A
5810833 Brady et al. Sep 1998 A
5817115 Nigam Oct 1998 A
5824086 Silvestrini Oct 1998 A
5847802 Menezes et al. Dec 1998 A
5855604 Lee Jan 1999 A
5860984 Chambers et al. Jan 1999 A
5872613 Blum et al. Feb 1999 A
5873889 Chin Feb 1999 A
5876439 Lee Mar 1999 A
5888243 Silverstrini Mar 1999 A
5893719 Radow Apr 1999 A
5913898 Feingold Jun 1999 A
5919185 Peyman Jul 1999 A
5928245 Wolf et al. Jul 1999 A
5929968 Cotie et al. Jul 1999 A
5929969 Roffman Jul 1999 A
5935140 Buratto Aug 1999 A
5941583 Raimondi Aug 1999 A
5944752 Silvestrini Aug 1999 A
5945498 Hopken et al. Aug 1999 A
5964748 Peyman Oct 1999 A
5964776 Peyman Oct 1999 A
5968065 Chin Oct 1999 A
5976150 Copeland Nov 1999 A
5976168 Chin Nov 1999 A
5980549 Chin Nov 1999 A
6007510 Nigam Dec 1999 A
6010510 Brown et al. Jan 2000 A
6024448 Wu et al. Feb 2000 A
6033395 Peyman Mar 2000 A
6036714 Chin Mar 2000 A
6050999 Paraschac et al. Apr 2000 A
6055990 Thompson May 2000 A
6066170 Lee May 2000 A
6068642 Johnson et al. May 2000 A
6079826 Appleton et al. Jun 2000 A
6083231 Van Noy et al. Jul 2000 A
6086202 Chateau et al. Jul 2000 A
6090141 Lindstrom Jul 2000 A
6102946 Nigam Aug 2000 A
6110166 Juhasz et al. Aug 2000 A
6120148 Fiala et al. Sep 2000 A
6125294 Scholl et al. Sep 2000 A
6129733 Brady et al. Oct 2000 A
6139560 Kremer Oct 2000 A
6142969 Nigam Nov 2000 A
6143001 Brown et al. Nov 2000 A
6159241 Lee et al. Dec 2000 A
6171324 Cote et al. Jan 2001 B1
6175754 Scholl et al. Jan 2001 B1
RE37071 Gabrielian et al. Feb 2001 E
6183513 Guenthner et al. Feb 2001 B1
6197019 Peyman Mar 2001 B1
6197057 Peyman et al. Mar 2001 B1
6197058 Portney Mar 2001 B1
6203538 Peyman Mar 2001 B1
6203549 Waldock Mar 2001 B1
6203557 Chin Mar 2001 B1
6206919 Lee Mar 2001 B1
6210005 Portney Apr 2001 B1
6214015 Reich et al. Apr 2001 B1
6214044 Silverstrini Apr 2001 B1
6217571 Peyman Apr 2001 B1
6221067 Peyman Apr 2001 B1
6228113 Kaufman May 2001 B1
6228114 Lee May 2001 B1
6248111 Glick et al. Jun 2001 B1
6250757 Roffman et al. Jun 2001 B1
6251114 Farmer et al. Jun 2001 B1
6264648 Peyman Jul 2001 B1
6264670 Chin Jul 2001 B1
6264692 Woffinden et al. Jul 2001 B1
6267768 Deacon et al. Jul 2001 B1
6271281 Liao et al. Aug 2001 B1
6277137 Chin Aug 2001 B1
6280449 Blake Aug 2001 B1
6280470 Peyman Aug 2001 B1
6283595 Breger Sep 2001 B1
6302877 Ruiz Oct 2001 B1
6325509 Hodur et al. Dec 2001 B1
6325792 Swinger et al. Dec 2001 B1
6350272 Kawesch Feb 2002 B1
6361560 Nigam Mar 2002 B1
6364483 Grossinger et al. Apr 2002 B1
6371960 Heyman et al. Apr 2002 B2
6391230 Sarbadhikari May 2002 B1
6398277 McDonald Jun 2002 B1
6398789 Capetan Jun 2002 B1
6428572 Nagai Aug 2002 B2
6435681 Portney Aug 2002 B2
6436092 Peyman Aug 2002 B1
6447519 Brady et al. Sep 2002 B1
6447520 Ott et al. Sep 2002 B1
6458141 Peyman Oct 2002 B1
6461384 Hoffmann et al. Oct 2002 B1
6471708 Green Oct 2002 B2
6474814 Griffin Nov 2002 B1
6506200 Chin Jan 2003 B1
6511178 Roffman et al. Jan 2003 B1
6527389 Portney Mar 2003 B2
6537283 Van Noy Mar 2003 B2
6543610 Nigam Apr 2003 B1
6544286 Perez Apr 2003 B1
6551307 Peyman Apr 2003 B2
6554424 Miller et al. Apr 2003 B1
6554425 Roffman et al. Apr 2003 B1
6557998 Portney May 2003 B2
6581993 Nigam Jun 2003 B2
6582076 Roffman et al. Jun 2003 B1
6589057 Keenan et al. Jul 2003 B1
6589203 Mitrev Jul 2003 B1
6589280 Koziol Jul 2003 B1
6592591 Polla et al. Jul 2003 B2
6596000 Chan et al. Jul 2003 B2
6605093 Blake Aug 2003 B1
6607537 Binder Aug 2003 B1
6607556 Nigam Aug 2003 B1
6623522 Nigam Sep 2003 B2
6626941 Nigam Sep 2003 B2
6629979 Feingold et al. Oct 2003 B1
6632244 Nigam Oct 2003 B1
6641577 Bille Nov 2003 B2
6645246 Weinschenk, III et al. Nov 2003 B1
6648877 Juhasz et al. Nov 2003 B1
6657029 Vanderbilt Dec 2003 B2
6666887 Callahan et al. Dec 2003 B1
6673112 Nigam Jan 2004 B2
6702807 Peyman Mar 2004 B2
6709103 Roffman et al. Mar 2004 B1
6712848 Wolf et al. Mar 2004 B1
6723104 Ott Apr 2004 B2
6733507 McNicholas et al. May 2004 B2
6733526 Paul et al. May 2004 B2
6808262 Chapoy et al. Oct 2004 B2
6824178 Nigam Nov 2004 B2
6849090 Nigam Feb 2005 B2
6855163 Peyman Feb 2005 B2
6875232 Nigam Apr 2005 B2
6879402 Küchel Apr 2005 B2
6881197 Nigam Apr 2005 B1
6893461 Nigam May 2005 B2
6949093 Peyman Sep 2005 B1
6955432 Graham Oct 2005 B2
7128351 Nigam Oct 2006 B2
7585075 Marmo Sep 2009 B2
7699837 Cox et al. Apr 2010 B2
7776086 Miller Aug 2010 B2
7976577 Silvestrini Jul 2011 B2
7992906 Nigam Aug 2011 B2
8057541 Dishler et al. Nov 2011 B2
8162953 Dishler et al. Apr 2012 B2
8685292 Mandler et al. Apr 2014 B2
20010027314 Peyman Oct 2001 A1
20010051826 Bogaert et al. Dec 2001 A1
20020010510 Silvestrini Jan 2002 A1
20020055753 Silvestrini May 2002 A1
20020101563 Miyamura et al. Aug 2002 A1
20020103538 Hughes et al. Aug 2002 A1
20020138069 Peyman Sep 2002 A1
20030014042 Juhasz et al. Jan 2003 A1
20030033010 Hicks et al. Feb 2003 A1
20030069637 Lynch et al. Apr 2003 A1
20030078487 Jeffries et al. Apr 2003 A1
20030176855 Gross et al. Sep 2003 A1
20030208190 Roberts et al. Nov 2003 A1
20030220653 Perez Nov 2003 A1
20030229303 Haffner et al. Dec 2003 A1
20040019379 Glick et al. Jan 2004 A1
20040034413 Christensen Feb 2004 A1
20040054408 Glick et al. Mar 2004 A1
20040073303 Schanzlin Apr 2004 A1
20050080484 Marmo et al. Apr 2005 A1
20050080485 Nigam Apr 2005 A1
20050113844 Nigam May 2005 A1
20050119738 Nigam Jun 2005 A1
20050143717 Peyman Jun 2005 A1
20050178394 Slade Aug 2005 A1
20050182350 Nigam Aug 2005 A1
20050182488 Peyman Aug 2005 A1
20050203494 Holliday Sep 2005 A1
20050222679 Peyman Oct 2005 A1
20050246016 Miller et al. Nov 2005 A1
20060004381 Feingold et al. Jan 2006 A1
20060020267 Marmo Jan 2006 A1
20060105309 Stoll et al. May 2006 A1
20060116762 Hong et al. Jun 2006 A1
20060134170 Griffith et al. Jun 2006 A1
20060142780 Pynson et al. Jun 2006 A1
20060142781 Pynson et al. Jun 2006 A1
20060173539 Shiuey Aug 2006 A1
20060235430 Le et al. Oct 2006 A1
20070027538 Aharoni et al. Feb 2007 A1
20070106318 McDonald May 2007 A1
20070106376 Roberts et al. May 2007 A1
20070129797 Lang et al. Jun 2007 A1
20070182920 Back et al. Aug 2007 A1
20070244559 Shiuey Oct 2007 A1
20070255401 Lang Nov 2007 A1
20070280994 Cunanan Dec 2007 A1
20080243138 Dishler Oct 2008 A1
20080262610 Lang et al. Oct 2008 A1
20080269771 Fulcher Oct 2008 A1
20080275433 Russmann et al. Nov 2008 A1
20080281304 Campbell Nov 2008 A1
20090079940 Dai et al. Mar 2009 A1
20090198325 Holliday et al. Aug 2009 A1
20090216217 Odrich et al. Aug 2009 A1
20090326650 Zickler et al. Dec 2009 A1
20100210996 Peyman Aug 2010 A1
20100241060 Roizman et al. Sep 2010 A1
20100331831 Bischoff et al. Dec 2010 A1
20110029073 Liang Feb 2011 A1
20110149241 Dai Jun 2011 A1
20110208300 de Juan et al. Aug 2011 A1
20110218623 Dishler et al. Sep 2011 A1
20110256806 Monnoyeur Oct 2011 A1
20110290681 Nigam Dec 2011 A1
20110319876 Feingold Dec 2011 A1
20120046680 Dishler et al. Feb 2012 A1
20120165823 Dishler et al. Jun 2012 A1
20120203238 Nigam Aug 2012 A1
20120231416 Drapeau et al. Sep 2012 A1
20120238806 Mangiardi et al. Sep 2012 A1
20120245592 Berner et al. Sep 2012 A1
20130060255 Feingold et al. Mar 2013 A1
20130123916 Nigam et al. May 2013 A1
20130211523 Southard et al. Aug 2013 A1
20130253529 Walter et al. Sep 2013 A1
20130281993 Dishler et al. Oct 2013 A1
20130317605 Ide et al. Nov 2013 A1
20130324983 Liang Dec 2013 A1
20130331935 Krause et al. Dec 2013 A1
20140257477 Plambeck et al. Sep 2014 A1
20140288540 Bischoff et al. Sep 2014 A1
20150080865 Holliday et al. Mar 2015 A1
20150297340 Esguerra et al. Oct 2015 A1
20160184085 Schneider et al. Jun 2016 A1
Foreign Referenced Citations (37)
Number Date Country
WO 2011069907 Jun 2011 CH
3208729 Sep 1983 DE
0308077 Mar 1989 EP
0420549 Apr 1991 EP
0729323 Jul 1998 EP
0668061 Sep 2000 EP
S5973622 Apr 1984 JP
01-195853 Aug 1989 JP
02-211119 Aug 1990 JP
5502811 May 1993 JP
H06510687 Dec 1994 JP
08-501009 Feb 1996 JP
9-504706 May 1997 JP
2000506056 May 2000 JP
2002537895 Nov 2002 JP
03-508135 Mar 2003 JP
2007500070 Jan 2007 JP
2001-0013218 Feb 2001 KR
WO9208423 May 1992 WO
WO9305731 Apr 1993 WO
WO 9626690 Sep 1996 WO
WO 9808549 Mar 1998 WO
WO 9848715 Nov 1998 WO
WO 9917691 Apr 1999 WO
WO 9921513 May 1999 WO
WO 9930645 Jun 1999 WO
WO 0038594 Jul 2000 WO
WO 03041616 May 2003 WO
WO 03061518 Jul 2003 WO
WO 03101341 Dec 2003 WO
WO 2005020792 Mar 2005 WO
WO 2005107648 Nov 2005 WO
WO 2006029316 Apr 2006 WO
WO 2006060363 Jun 2006 WO
WO 2007101016 Sep 2007 WO
WO 2007132332 Nov 2007 WO
WO2010084595 Jul 2010 WO
Non-Patent Literature Citations (24)
Entry
Dishler et al.; U.S. Appl. No. 13/854,588 entitled “Small Diameter Corneal Inlays,” filed Apr. 1, 2013.
Nigam et al.; U.S. Appl. No. 14/160,438 entitled “Coreal Implant Applicators,” filed Jan. 21, 2014.
Sharma et al.; U.S. Appl. No. 14/211,714 entitled “Pre-treatment haze reduction for corneal inlays,”, filed Mar. 14, 2014.
Long et al.; U.S. Appl. No. 14/217,056 entitled “Anterior corneal shapes and methods of providing the shapes,”, filed Mar. 17, 2014.
Patel et al.; Refractive index of human corneal epithelium and stroma; J. Refract. Surg.; 11(2); Abstract; Mar. 1995 (pubmed Abstract only).
Esguerra et al.; U.S. Appl. No. 14/463,355 entitled “Corneal implant storage, packaging, and delivery devices,”, filed Aug. 19, 2014.
Alio, J. J., et al., “Intracorneal Inlay Complicated by Intrastomal Epithelial Opacification,” Arch Ophthalmol, Oct. 2004; vol. 122; 6 pages.
Cheng, et al.; “Predicting subjective judgment of best focus with objective image quality metrics”; Journal of Vision; Apr. 23, 2004; vol. 4(4); pp. 310-321.
Churms, P.W., “The Theory and Computation of Optical Modifications to the Cornea in Refractive Keratoplasty,” American Journal of Optometry & Physiological Optics, 56:2, pp. 67-74, Feb. 1979.
Huang et al.; Mathematical Model of Corneal Surface Smoothing After Laser Refractive Surgery; American Journal of Ophthalmology; Mar. 2003; pp. 267-278.
Lang, A.J. et al., “First order design of intracorneal inlays: dependence on keratometric flap and corneal properties,” ARVO Abstracts 2006, poster No. 3591, May 3, 2006.
Liou, H. L. et al., “Anatomically accurate, finite model eye for optical modeling”, Journal of the Optical Society of America, vol. 14, No. 8, Aug. 1997.
Marsack,et al.; “Metrics of optical quality derived from wave aberrations predict visual performance”; Journal of Vision; Apr. 23, 2004; vol. 4(4); pp. 322-328.
Navarro et al.; Accommodation-dependent model of the human eye with aspherics; J. Opt. Soc Am. A; vol. 2; No. 8; Aug. 1985; pp. 1273-1281.
Watsky, M.A. et al., “Predicting Refractive Alterations with Hydrogel Keratophakia,” Investigative Opthalmology & Visual Science, vol. 26, pp. 240-243, Feb. 1985.
Schneider et al.; U.S. Appl. No. 13/549,007 entitled “Corneal Implant Retaining Devices and Methods of Use,”, filed Jul. 13, 2012.
Schneider et al.; U.S. Appl. No. 13/619,955 entitled “Corneal Implant Inserters and Methods of Use,”, filed Sep. 14, 2012.
Collins et al.; U.S. Appl. No. 14/575,833 entitled “Integrated part fixturing for lathing processes,”, filed Dec. 18, 2014.
Sharma; U.S. Appl. No. 14/427,510 entitled “Corneal implant edges and methods of use,”, filed Mar. 11, 2015.
Holliday et al.; U.S. Appl. No. 14/656,621 entitled “Methods of correcting vision,”, filed Mar. 12, 2015.
Dymax; UV curable optical assembly; 2 pages; retrieved Mar. 4, 2015 from the internet (http:www.dymax.com/index.php/adhesives/optical).
Jankov et al.; Laser intrastromal keratoplasty—case report; J. Refract.Surg.; 20(1); pp. 79-84; Jan.-Feb. 2004.
Winn et al.; Factors affecting light-adapted pupil size in normal human subjects; Investigative Ophthalmology and Visual Science; 35(3); pp. 1132-1137; Mar. 1994.
Plambeck et al.; U.S. Appl. No. 15/163,610 entitled “Corneal implant storage and delivery devices,”, filed May 24, 2016.
Related Publications (1)
Number Date Country
20130253527 A1 Sep 2013 US
Provisional Applications (1)
Number Date Country
61535744 Sep 2011 US
Continuations (1)
Number Date Country
Parent 11692835 Mar 2007 US
Child 13411425 US
Continuation in Parts (1)
Number Date Country
Parent 13411425 Mar 2012 US
Child 13619955 US