All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
The disclosure herein relates generally to storage and retention devices for corneal implants. During storage, or just prior to use, some corneal implants need to remain hydrated, and yet must be easily removed from storage without being damaged. Some corneal implants can be very light in mass and tacky, or sticky. When preparing the implants for use, there may be one or more components of a storage and/or shipping assembly that are removed relative to the implant delivery device to allow access to the implant. This removal step can prematurely dislodge the implant from its position before it is intended to be moved. Additionally, some implants are stored in a storage solution, such that removal of the storage component can cause the implant to be prematurely drawn out of the delivery device due to cohesive forces between fluid molecules and due to adhesion forces between the fluid and the implant.
One aspect of the disclosure is a cornea implant insertion system, comprising: a corneal implant insertion device comprising a corneal implant holding area adapted to receive a corneal implant; and a cap adapted to be disposed over at least a portion of a distal region of the insertion device, the cap and the insertion device defining a fluid space in which a fluid is maintained, wherein the cap comprises an opening in fluid communication with the fluid space.
In some embodiments the cap includes a fluid channel extending therethrough in fluid communication with the opening and the fluid space.
In some embodiments the opening is disposed at a distal end of the cap. The cap can have a distal flat face wherein the opening is disposed in the distal flat face. The cap can further include a channel extending from the opening to the fluid space.
In some embodiments the cap has a generally cylindrical configuration. The distal region of the insertion device can have a generally flat configuration.
In some embodiments the cap includes a channel extending from the opening to the fluid space. The cap can include an inner surface adapted to prevent the corneal implant from escaping the holding area. The channel can extend from the opening to the inner surface.
In some embodiments the cap completely surrounds the distal region of the insertion device.
In some embodiments the holding area is defined by a first surface and a second surface of the insertion device. The first and second surfaces can be generally flat surfaces.
In some embodiments the system further comprises a corneal implant disposed within the holding area. The system can also include a second fluid disposed within the holding area and adapted to retain the corneal implant within the holding area by capillary forces. The fluid and the second fluid can be the same type of fluid, such as saline.
In some embodiments the cap comprises an inner surface adapted to engage the distal end of the insertion device and prevent the corneal implant from escaping the holding area.
One aspect of the disclosure is a method of removing fluid from a corneal implant insertion device prior to implanting the corneal implant, comprising: providing a corneal implant insertion device and a cap disposed over at least a portion of a distal region of the insertion device, a first portion of the cap and a first portion of the distal region of the insertion device defining a fluid space in which a fluid is maintained; removing at least a portion of the fluid from the fluid space through an opening in the cap; and removing the cap from the distal region of the insertion device to provide access to a cornea implant retained by the insertion device.
In some embodiments the removing step comprises positioning an absorbent material adjacent the opening to withdraw fluid through the opening.
In some embodiments the removing step comprises aspirating the fluid from the fluid space through the opening with an aspiration device.
In some embodiments the removing step comprises removing at least a portion of the fluid from the fluid space without removing all of a fluid disposed within the insertion device.
In some embodiments the removing step comprises removing at least a portion of the fluid from the fluid space through a channel in the cap. The removing step can comprise inserting an aspiration device within the channel and aspirating the fluid from the space with the aspiration device.
In some embodiments the method further comprises removing the corneal implant from the insertion device and depositing the corneal implant onto corneal tissue.
The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
The disclosure relates generally to storage and retention devices for corneal implants. The devices can be used for long term storage of a corneal implant, or can be used for short term storage, such as just prior to an implantation procedure of the corneal implant. “Corneal implants” used herein refers to any medical device positioned on or in a cornea, and includes, without limitation, corneal inlays, corneal onlays, and contact lenses.
The inserter 310 additionally includes a holding space 301 adapted to hold a corneal implant 320 to be delivered by the inserter. A fluid such as saline, BSS, or other solution (not shown) is disposed in the holding space 301 to hold implant 320 therein due to surface tension of the fluid. The fluid stays in the holding space 301 due to capillary forces, thereby keeping the implant hydrated. The inserter also includes top inserter slot 302 and a bottom inserter slot (not shown). In addition, the top inserter slot 302 allows the surgeon to hold down the implant 320 in the holding space 301 at a desired position while the surgeon retracts the inserter 310 to release the implant 320. The surgeon may hold down the implant 320 with a surgical tool, such as a cannula, Sinskey hook or other tool that is adapted to fit through top inserter slot 302. Top inserter slot 302 extends to leading edge 311 of inserter 310 so that the tool can hold down implant 320 as the inserter 310 is retracted. Leading edge 311 of the inserter is preferably rounded to prevent damage to the cornea. Exemplary dimensions and additional exemplary features of the inserter shown in this exemplary embodiment can be found in U.S. application Ser. No. 11/692,835, now U.S. Pat. No. 8,162,953. The geometry of holding space 301 and the surface tension of the fluid in holding space 301 keep implant 320 substantially centered in inserter 310. The height of holding space 301 may be several times larger than the center thickness of implant 320 to ensure that enough saline is in holding space 301 to keep the implant sufficiently hydrated.
The inserter system additionally includes cap 300 that is adapted to be disposed over at least a portion of the distal portion of the inserter.
In some embodiments, inserter cap 300 has a generally cylindrical shape and is adapted to be fitted snugly on the distal end of inserter 310 such that it engages the sides of inserter 310 as shown in
In some embodiments, implant 320 is preloaded in inserter 310 and packaged for later use. In one embodiment, implant 320 is preloaded into holding space 301 of inserter 310 with the top surface of implant 320 orientated to face the top surface of inserter 310. Implant 320 may be preloaded by submerging both implant 320 and holding space 301 of inserter 310 in a solution, e.g., saline, and inserting implant 320 into holding space 301 while they are both submerged. After implant 320 is loaded in inserter 310, cap 300 is placed on the distal end of inserter 310. Cap 300 may be placed on inserter 310 while holding space 301 is still submerged in the solution. The preloaded inserter 310 assembled with cap 300 can then be positioned into a vial or other storage container filled with saline or other suitable solution. Cap 300 prevents implant 320 from moving out of inserter 310 when placed in the storage container filled with fluid. The storage container can then be capped and placed in an outer package, which can then be sterilized to store the insertion system until use. The assembled cap and inserter need not, however, be stored in any kind of storage container.
A full exemplary implantation procedure can be found in U.S. application Ser. No. 11/692,835, now U.S. Pat. No. 8,162,953, which is incorporated by reference herein. As a part of that procedure, the preloaded inserter 310 is first removed from a storage container filled with a storage solution. There will be a certain volume of fluid within the space between cap 300 and inserter 310 after it is removed from the storage container. The fluid within the space between cap 300 and inserter 310 is then removed by placing a sterile surgical sponge (not shown) or other absorbent material on the open distal end of cap 300. The absorbent material draws out the saline from the interior of cap 300 by capillary action in the space between the inner surface of cap 300 and inserter 310. In embodiments in which cap 300 has a generally cylindrical shape, the space is defined by inner surface of cap 300 and the flat top and bottom surfaces of inserter 310. The saline is removed from the space between cap 300 and inserter 310 while cap 300 is still on inserter 310. If the cap is removed from inserter before the fluid is removed, cap 300 may pull implant 320 out of the holding space by capillary action when cap 300 is removed from inserter 310. After the fluid is removed, cap 300 is then pulled off of inserter 310. At this point in the process, a small amount of fluid (e.g., saline or BSS) may be applied to holding space 301 of inserter 310 to keep implant 320 hydrated. The fluid stays in holding space 301 due to capillary forces, thereby keeping implant 320 hydrated during the procedure. Further, the surface tension of the fluid holds implant 320 in holding space 301 of inserter 310 so that implant 320 does not fall out of inserter 310 during the procedure. The surface tension and the geometry of holding space 301 keep implant 320 centered in inserter 310. Additionally exemplary features of inserter 310, other exemplary insertion devices, and their methods of use can be found in U.S. application Ser. No. 11/692,835, now U.S. Pat. No. 8,162,953.
In this embodiment holding area 20 and implant 26 are sized and shaped such that implant 26 is disposed within holding area 20 in a non-deformed, or non-stressed, configuration, and is retained therein due to capillary forces. The non-deformed configuration is substantially the same configuration that the implant is in after it is positioned in or on the subject's corneal. Any of the caps described herein can be used with the insertion device of
During storage, it is generally beneficial for an additional device to be positioned with respect to the delivery device (or other storage component) and inlay to retain the inlay within the holding space of the delivery device. Cap 300 from the embodiment in
Inner channel 82 within inner element 76 is small enough that the corneal implant is prevented from escaping from the holding space (due to the proximal surface of the inner element with the channel opening therethrough), yet allows fluid to be removed from the enclosure when needed.
It may be better to have as short an inner channel 82 as possible, to ease the fluid removal. In some embodiments the inner element 76, and therefore channel 82, are between about 0.05 inches and about 0.25 inches in length. In some embodiment the channel is about 0.15 inches in length. Inner and outer elements 76 and 78 can be made from Teflon and are press fit together. Alternatively, they can be a single-piece molded component.
When the implant is to be removed from holder 100, retaining element 90 is removed from holder 100. Any of the fluid removal techniques described herein can be used to remove fluid from between the cap/inserter tool before the cap is removed. For example, a sponge can be engaged with the C-shaped cap 96 to absorb excess fluid. In some embodiments the handle is about 1 inch or less in length. In some embodiments it is about 0.5 inches or less.
The retaining device could be further modified such that it is adapted to be rotated upwards or downwards relative to implant holder 100 for removal from holder 100. For example, C-shaped cap 96 can be adapted to rotate up and/or down with respect to end elements 98. Rotating the C-cap upward prevents inadvertent removal of the implant from the retaining device in the horizontal direction due to adhesion forces between the implant, fluid, and the C-cap.
Additionally, cap 96 need not be generally C-shaped with a single radius of curvature, but can have an aspherical and/or asymmetrical configuration.
A nest or well could alternatively be used instead of pins 130 to trap the implant.
The disclosure also includes retaining elements, or caps, that are removed in a proximal direction, or away from the distal end of the holding space and towards proximal end of the implant holder. This is generally the reverse direction to that shown in some of the embodiments above, such as in
In use, when the inlay is to be delivered into the eye, the sheath is removed from the inlay holder 152. First, as shown in
One of the advantages of the reverse-pull embodiments in
To store the inlay, retaining cap 450 is placed over the distal end of holder 452 after the inlay is positioned therein. The assembly is then placed in a storage container filled with a storage solution, such as container 42 in
Any other features described above with respect to the caps shown in the embodiments in
A retaining element with at least one opening therein can conceivably be used to retain any type of corneal implant in an insertion or delivery device, even if the insertion or delivery device is not described herein.
Any type of corneal implant that is adapted to be received within a holding space of any of the insertion devices described herein (or any other type of insertion or delivery device) can be retained by any of the retaining elements described herein.
Exemplary corneal implants that can be incorporated into the systems described herein can be found described in any the following applications, the disclosures of which are incorporated herein by reference: U.S. application Ser. No. 10/837,402, filed Apr. 30, 2004, now U.S. Pat. No. 7,776,086; U.S. application Ser. No. 11/106,983, filed Apr. 15, 2005; U.S. application Ser. No. 11/554,544, filed Oct. 30, 2006, now U.S. Pat. No. 8,057,541; U.S. application Ser. No. 11/738,349, filed Apr. 20, 2007; U.S. application Ser. No. 12/418,325, filed Apr. 3, 2009; and U.S. application Ser. No. 12/877,799, filed Sep. 8, 2010.
This application is a continuation-in-part of U.S. application Ser. No. 13/411,425, filed Mar. 2, 2012, which application is a continuation of U.S. application Ser. No. 11/692,835, filed Mar. 28, 2007, now U.S. Pat. No. 8,162,953, which is incorporated by reference herein. This application also claims the benefit of U.S. Provisional Application No. 61/535,819, filed Sep. 16, 2011, which is incorporated by reference herein. This application is also related to and incorporates by reference herein the following applications: U.S. Provisional Application No. 61/535,744, filed Sep. 16, 2011; U.S. Provisional Application No. 61/550,185, filed Oct. 21, 2011; and U.S. Provisional Application No. 61/606,674, filed Mar. 5, 2012.
Number | Name | Date | Kind |
---|---|---|---|
2714721 | Stone, Jr. | Aug 1955 | A |
3091328 | Leonardos | May 1963 | A |
3168100 | Rich | Feb 1965 | A |
3343657 | Speshyock | Sep 1967 | A |
3379200 | Pennell | Apr 1968 | A |
3482906 | Volk | Dec 1969 | A |
3743337 | Crary | Jul 1973 | A |
3770113 | Thomas | Nov 1973 | A |
3879076 | Barnett | Apr 1975 | A |
3950315 | Cleaver | Apr 1976 | A |
3996627 | Deeg et al. | Dec 1976 | A |
4030480 | Meyer | Jun 1977 | A |
4037604 | Newkirk | Jul 1977 | A |
4039827 | Zdrok et al. | Aug 1977 | A |
4065816 | Sawyer | Jan 1978 | A |
4071272 | Drdlik | Jan 1978 | A |
4093291 | Schurgin | Jun 1978 | A |
4136406 | Norris | Jan 1979 | A |
4157718 | Baehr | Jun 1979 | A |
4184491 | McGannon | Jan 1980 | A |
4194814 | Fischer et al. | Mar 1980 | A |
4238524 | LaLiberte et al. | Dec 1980 | A |
4257521 | Poler | Mar 1981 | A |
4268133 | Fischer et al. | May 1981 | A |
4326306 | Poler | Apr 1982 | A |
4357940 | Muller | Nov 1982 | A |
4392569 | Shoup | Jul 1983 | A |
4418991 | Breger | Dec 1983 | A |
4423809 | Mazzocco | Jan 1984 | A |
4428746 | Mendez | Jan 1984 | A |
4452235 | Reynolds | Jun 1984 | A |
4466705 | Michelson | Aug 1984 | A |
4490860 | Rainin | Jan 1985 | A |
4504982 | Burk | Mar 1985 | A |
4521210 | Wong | Jun 1985 | A |
4525044 | Bauman | Jun 1985 | A |
4545478 | Waldman | Oct 1985 | A |
4554115 | Neefe | Nov 1985 | A |
4554918 | White | Nov 1985 | A |
4565198 | Koeniger | Jan 1986 | A |
4573998 | Mazzocco | Mar 1986 | A |
4580882 | Nuchman et al. | Apr 1986 | A |
4586929 | Binder | May 1986 | A |
4604087 | Joseph | Aug 1986 | A |
4607617 | Choyce | Aug 1986 | A |
4616910 | Klein | Oct 1986 | A |
4618227 | Bayshore | Oct 1986 | A |
4619256 | Horn | Oct 1986 | A |
4624664 | Peluso et al. | Nov 1986 | A |
4624669 | Grendahl | Nov 1986 | A |
4640595 | Volk | Feb 1987 | A |
4646720 | Peyman et al. | Mar 1987 | A |
4655774 | Choyce | Apr 1987 | A |
4662370 | Hoffmann et al. | May 1987 | A |
4663358 | Hyon et al. | May 1987 | A |
4671276 | Reynolds | Jun 1987 | A |
4676792 | Praeger | Jun 1987 | A |
4697697 | Graham et al. | Oct 1987 | A |
4702244 | Mazzocco | Oct 1987 | A |
4709697 | Muller | Dec 1987 | A |
4721124 | Tuerkheimer et al. | Jan 1988 | A |
4726367 | Shoemaker | Feb 1988 | A |
4750901 | Molteno | Jun 1988 | A |
4762496 | Maloney et al. | Aug 1988 | A |
4766895 | Reynolds | Aug 1988 | A |
4769033 | Nordan | Sep 1988 | A |
4772283 | White | Sep 1988 | A |
4778462 | Grendahl | Oct 1988 | A |
4798609 | Grendahl | Jan 1989 | A |
4806382 | Goldberg et al. | Feb 1989 | A |
4836201 | Patton et al. | Jun 1989 | A |
4840175 | Peyman | Jun 1989 | A |
4842599 | Bronstein | Jun 1989 | A |
4844242 | Chen et al. | Jul 1989 | A |
4851003 | Lindstrom | Jul 1989 | A |
4860885 | Kaufman et al. | Aug 1989 | A |
4886488 | White | Dec 1989 | A |
4888016 | Langerman | Dec 1989 | A |
4897981 | Beck | Feb 1990 | A |
4911715 | Kelman | Mar 1990 | A |
4919130 | Stoy et al. | Apr 1990 | A |
4923467 | Thompson | May 1990 | A |
4934363 | Smith et al. | Jun 1990 | A |
4936825 | Ungerleider | Jun 1990 | A |
4946436 | Smith | Aug 1990 | A |
4955903 | Sulc et al. | Sep 1990 | A |
4968296 | Ritch et al. | Nov 1990 | A |
4971732 | Wichterle | Nov 1990 | A |
4976719 | Siepser | Dec 1990 | A |
5019084 | Aysta et al. | May 1991 | A |
5019098 | Mercier | May 1991 | A |
5022414 | Muller | Jun 1991 | A |
5030230 | White | Jul 1991 | A |
5041081 | Odrich | Aug 1991 | A |
5063942 | Kilmer et al. | Nov 1991 | A |
5071276 | Nielsen et al. | Dec 1991 | A |
5073163 | Lippman | Dec 1991 | A |
5092837 | Ritch et al. | Mar 1992 | A |
5098444 | Feaster | Mar 1992 | A |
5108428 | Capecchi et al. | Apr 1992 | A |
5112350 | Civerchia et al. | May 1992 | A |
5123905 | Kelman | Jun 1992 | A |
5123912 | Kaplan et al. | Jun 1992 | A |
5123921 | Werblin et al. | Jun 1992 | A |
5139518 | White | Aug 1992 | A |
5171213 | Price, Jr. | Dec 1992 | A |
5173723 | Volk | Dec 1992 | A |
5178604 | Baerveldt et al. | Jan 1993 | A |
5180362 | Worst et al. | Jan 1993 | A |
5181053 | Brown | Jan 1993 | A |
5188125 | Kilmer et al. | Feb 1993 | A |
5190552 | Kelman | Mar 1993 | A |
5192317 | Kalb | Mar 1993 | A |
5196026 | Barrett et al. | Mar 1993 | A |
5211660 | Grasso | May 1993 | A |
5225858 | Portney | Jul 1993 | A |
5229797 | Futhey et al. | Jul 1993 | A |
5244799 | Anderson | Sep 1993 | A |
5258042 | Mehta | Nov 1993 | A |
5270744 | Portney | Dec 1993 | A |
5273750 | Homiger et al. | Dec 1993 | A |
5282851 | Jacob-LaBarre | Feb 1994 | A |
5300020 | L'Esperance, Jr. | Apr 1994 | A |
5300116 | Chirila et al. | Apr 1994 | A |
5312413 | Eaton et al. | May 1994 | A |
5318044 | Kilmer et al. | Jun 1994 | A |
5318046 | Rozakis | Jun 1994 | A |
5318047 | Davenport et al. | Jun 1994 | A |
5336261 | Barrett et al. | Aug 1994 | A |
5338291 | Speckman et al. | Aug 1994 | A |
5344448 | Schneider et al. | Sep 1994 | A |
5346464 | Camras | Sep 1994 | A |
5370607 | Memmen | Dec 1994 | A |
5372577 | Ungerleider | Dec 1994 | A |
5385582 | Ommaya | Jan 1995 | A |
5391201 | Barrett et al. | Feb 1995 | A |
5397300 | Baerveldt et al. | Mar 1995 | A |
5405384 | Silvestrini | Apr 1995 | A |
5428412 | Stoyan | Jun 1995 | A |
5433701 | Rubinstein | Jul 1995 | A |
5454796 | Krupin | Oct 1995 | A |
5458819 | Chirila et al. | Oct 1995 | A |
5467149 | Morrison et al. | Nov 1995 | A |
5474562 | Orchowski et al. | Dec 1995 | A |
5476445 | Baerveldt et al. | Dec 1995 | A |
5487377 | Smith et al. | Jan 1996 | A |
5489301 | Barber | Feb 1996 | A |
5493350 | Seidner | Feb 1996 | A |
5502518 | Lieberman | Mar 1996 | A |
5512220 | Roffman et al. | Apr 1996 | A |
5520631 | Nordquist et al. | May 1996 | A |
5521656 | Portney | May 1996 | A |
5530491 | Baude et al. | Jun 1996 | A |
5533997 | Ruiz | Jul 1996 | A |
5570142 | Lieberman | Oct 1996 | A |
5591185 | Kilmer et al. | Jan 1997 | A |
5598234 | Blum et al. | Jan 1997 | A |
5616148 | Eagles et al. | Apr 1997 | A |
5620450 | Eagles et al. | Apr 1997 | A |
5628794 | Lindstrom | May 1997 | A |
5630810 | Machat | May 1997 | A |
5634943 | Villain et al. | Jun 1997 | A |
5643276 | Zaleski | Jul 1997 | A |
5657108 | Portney | Aug 1997 | A |
5682223 | Menezes et al. | Oct 1997 | A |
5684560 | Roffman et al. | Nov 1997 | A |
5715031 | Roffman et al. | Feb 1998 | A |
5716633 | Civerchia | Feb 1998 | A |
5722948 | Gross | Mar 1998 | A |
5722971 | Peyman | Mar 1998 | A |
5728155 | Anello et al. | Mar 1998 | A |
5732990 | Yavitz et al. | Mar 1998 | A |
5752928 | de Roulhac et al. | May 1998 | A |
5755785 | Rowsey et al. | May 1998 | A |
5766181 | Chambers et al. | Jun 1998 | A |
5772667 | Blake | Jun 1998 | A |
5779711 | Kritzinger et al. | Jul 1998 | A |
5785674 | Mateen | Jul 1998 | A |
5800442 | Wolf et al. | Sep 1998 | A |
5800529 | Brauker et al. | Sep 1998 | A |
5805260 | Roffman et al. | Sep 1998 | A |
5810833 | Brady et al. | Sep 1998 | A |
5817115 | Nigam | Oct 1998 | A |
5824086 | Silvestrini | Oct 1998 | A |
5847802 | Menezes et al. | Dec 1998 | A |
5855604 | Lee | Jan 1999 | A |
5860984 | Chambers et al. | Jan 1999 | A |
5872613 | Blum et al. | Feb 1999 | A |
5873889 | Chin | Feb 1999 | A |
5876439 | Lee | Mar 1999 | A |
5888243 | Silverstrini | Mar 1999 | A |
5913898 | Feingold | Jun 1999 | A |
5919185 | Peyman | Jul 1999 | A |
5928245 | Wolf et al. | Jul 1999 | A |
5929968 | Cotie et al. | Jul 1999 | A |
5929969 | Roffman | Jul 1999 | A |
5935140 | Buratto | Aug 1999 | A |
5941583 | Raimondi | Aug 1999 | A |
5944752 | Silvestrini | Aug 1999 | A |
5945498 | Hopken et al. | Aug 1999 | A |
5964748 | Peyman | Oct 1999 | A |
5964776 | Peyman | Oct 1999 | A |
5968065 | Chin | Oct 1999 | A |
5976150 | Copeland | Nov 1999 | A |
5976168 | Chin | Nov 1999 | A |
5980549 | Chin | Nov 1999 | A |
6007510 | Nigam | Dec 1999 | A |
6010510 | Brown et al. | Jan 2000 | A |
6024448 | Wu et al. | Feb 2000 | A |
6033395 | Peyman | Mar 2000 | A |
6036714 | Chin | Mar 2000 | A |
6050999 | Paraschac et al. | Apr 2000 | A |
6055990 | Thompson | May 2000 | A |
6066170 | Lee | May 2000 | A |
6068642 | Johnson et al. | May 2000 | A |
6079826 | Appleton et al. | Jun 2000 | A |
6083231 | Van Noy et al. | Jul 2000 | A |
6086202 | Chateau et al. | Jul 2000 | A |
6090141 | Lindstrom | Jul 2000 | A |
6102946 | Nigam | Aug 2000 | A |
6110166 | Juhasz et al. | Aug 2000 | A |
6120148 | Fiala et al. | Sep 2000 | A |
6125294 | Scholl et al. | Sep 2000 | A |
6129733 | Brady et al. | Oct 2000 | A |
6139560 | Kremer | Oct 2000 | A |
6142969 | Nigam | Nov 2000 | A |
6143001 | Brown et al. | Nov 2000 | A |
6159241 | Lee et al. | Dec 2000 | A |
6171324 | Cote et al. | Jan 2001 | B1 |
6175754 | Scholl et al. | Jan 2001 | B1 |
RE37071 | Gabrielian et al. | Feb 2001 | E |
6183513 | Guenthner et al. | Feb 2001 | B1 |
6197019 | Peyman | Mar 2001 | B1 |
6197057 | Peyman et al. | Mar 2001 | B1 |
6197058 | Portney | Mar 2001 | B1 |
6203538 | Peyman | Mar 2001 | B1 |
6203549 | Waldock | Mar 2001 | B1 |
6203557 | Chin | Mar 2001 | B1 |
6206919 | Lee | Mar 2001 | B1 |
6210005 | Portney | Apr 2001 | B1 |
6214015 | Reich et al. | Apr 2001 | B1 |
6214044 | Silverstrini | Apr 2001 | B1 |
6217571 | Peyman | Apr 2001 | B1 |
6221067 | Peyman | Apr 2001 | B1 |
6228113 | Kaufman | May 2001 | B1 |
6228114 | Lee | May 2001 | B1 |
6248111 | Glick et al. | Jun 2001 | B1 |
6250757 | Roffman et al. | Jun 2001 | B1 |
6251114 | Farmer et al. | Jun 2001 | B1 |
6264648 | Peyman | Jul 2001 | B1 |
6264670 | Chin | Jul 2001 | B1 |
6264692 | Woffinden et al. | Jul 2001 | B1 |
6267768 | Deacon et al. | Jul 2001 | B1 |
6271281 | Liao et al. | Aug 2001 | B1 |
6277137 | Chin | Aug 2001 | B1 |
6280449 | Blake | Aug 2001 | B1 |
6280470 | Peyman | Aug 2001 | B1 |
6283595 | Breger | Sep 2001 | B1 |
6302877 | Ruiz | Oct 2001 | B1 |
6325509 | Hodur et al. | Dec 2001 | B1 |
6325792 | Swinger et al. | Dec 2001 | B1 |
6350272 | Kawesch | Feb 2002 | B1 |
6361560 | Nigam | Mar 2002 | B1 |
6364483 | Grossinger et al. | Apr 2002 | B1 |
6371960 | Heyman et al. | Apr 2002 | B2 |
6391230 | Sarbadhikari | May 2002 | B1 |
6398277 | McDonald | Jun 2002 | B1 |
6398789 | Capetan | Jun 2002 | B1 |
6428572 | Nagai | Aug 2002 | B2 |
6435681 | Portney | Aug 2002 | B2 |
6436092 | Peyman | Aug 2002 | B1 |
6447519 | Brady et al. | Sep 2002 | B1 |
6447520 | Ott et al. | Sep 2002 | B1 |
6458141 | Peyman | Oct 2002 | B1 |
6461384 | Hoffmann et al. | Oct 2002 | B1 |
6471708 | Green | Oct 2002 | B2 |
6474814 | Griffin | Nov 2002 | B1 |
6506200 | Chin | Jan 2003 | B1 |
6511178 | Roffman et al. | Jan 2003 | B1 |
6527389 | Portney | Mar 2003 | B2 |
6537283 | Van Noy | Mar 2003 | B2 |
6543610 | Nigam | Apr 2003 | B1 |
6544286 | Perez | Apr 2003 | B1 |
6551307 | Peyman | Apr 2003 | B2 |
6554424 | Miller et al. | Apr 2003 | B1 |
6554425 | Roffman et al. | Apr 2003 | B1 |
6557998 | Portney | May 2003 | B2 |
6581993 | Nigam | Jun 2003 | B2 |
6582076 | Roffman et al. | Jun 2003 | B1 |
6589203 | Mitrev | Jul 2003 | B1 |
6589280 | Koziol | Jul 2003 | B1 |
6592591 | Polla et al. | Jul 2003 | B2 |
6596000 | Chan et al. | Jul 2003 | B2 |
6605093 | Blake | Aug 2003 | B1 |
6607537 | Binder | Aug 2003 | B1 |
6607556 | Nigam | Aug 2003 | B1 |
6623522 | Nigam | Sep 2003 | B2 |
6626941 | Nigam | Sep 2003 | B2 |
6629979 | Feingold et al. | Oct 2003 | B1 |
6632244 | Nigam | Oct 2003 | B1 |
6641577 | Bille | Nov 2003 | B2 |
6645246 | Weinschenk, III et al. | Nov 2003 | B1 |
6648877 | Juhasz et al. | Nov 2003 | B1 |
6657029 | Vanderbilt | Dec 2003 | B2 |
6666887 | Callahan et al. | Dec 2003 | B1 |
6673112 | Nigam | Jan 2004 | B2 |
6702807 | Peyman | Mar 2004 | B2 |
6709103 | Roffman et al. | Mar 2004 | B1 |
6712848 | Wolf et al. | Mar 2004 | B1 |
6723104 | Ott | Apr 2004 | B2 |
6733507 | McNicholas et al. | May 2004 | B2 |
6733526 | Paul et al. | May 2004 | B2 |
6808262 | Chapoy et al. | Oct 2004 | B2 |
6824178 | Nigam | Nov 2004 | B2 |
6849090 | Nigam | Feb 2005 | B2 |
6855163 | Peyman | Feb 2005 | B2 |
6875232 | Nigam | Apr 2005 | B2 |
6879402 | Küchel | Apr 2005 | B2 |
6881197 | Nigam | Apr 2005 | B1 |
6893461 | Nigam | May 2005 | B2 |
6949093 | Peyman | Sep 2005 | B1 |
6955432 | Graham | Oct 2005 | B2 |
7128351 | Nigam | Oct 2006 | B2 |
7585075 | Marmo | Sep 2009 | B2 |
7699837 | Cox et al. | Apr 2010 | B2 |
7776086 | Miller | Aug 2010 | B2 |
7976577 | Silvestrini | Jul 2011 | B2 |
7992906 | Nigam | Aug 2011 | B2 |
8057541 | Dishler et al. | Nov 2011 | B2 |
8162953 | Dishler et al. | Apr 2012 | B2 |
8685292 | Mandler et al. | Apr 2014 | B2 |
20010027314 | Peyman | Oct 2001 | A1 |
20010051826 | Bogaert et al. | Dec 2001 | A1 |
20020010510 | Silvestrini | Jan 2002 | A1 |
20020055753 | Silvestrini | May 2002 | A1 |
20020101563 | Miyamura et al. | Aug 2002 | A1 |
20020103538 | Hughes et al. | Aug 2002 | A1 |
20020138069 | Peyman | Sep 2002 | A1 |
20030014042 | Juhasz et al. | Jan 2003 | A1 |
20030033010 | Hicks et al. | Feb 2003 | A1 |
20030069637 | Lynch et al. | Apr 2003 | A1 |
20030078487 | Jeffries et al. | Apr 2003 | A1 |
20030208190 | Roberts et al. | Nov 2003 | A1 |
20030220653 | Perez | Nov 2003 | A1 |
20030229303 | Haffner et al. | Dec 2003 | A1 |
20040019379 | Glick et al. | Jan 2004 | A1 |
20040034413 | Christensen | Feb 2004 | A1 |
20040054408 | Glick et al. | Mar 2004 | A1 |
20040073303 | Schanzlin | Apr 2004 | A1 |
20050080484 | Marmo et al. | Apr 2005 | A1 |
20050080485 | Nigam | Apr 2005 | A1 |
20050113844 | Nigam | May 2005 | A1 |
20050119738 | Nigam | Jun 2005 | A1 |
20050143717 | Peyman | Jun 2005 | A1 |
20050178394 | Slade | Aug 2005 | A1 |
20050182350 | Nigam | Aug 2005 | A1 |
20050182488 | Peyman | Aug 2005 | A1 |
20050203494 | Holliday | Sep 2005 | A1 |
20050222679 | Peyman | Oct 2005 | A1 |
20050246016 | Miller et al. | Nov 2005 | A1 |
20060004381 | Feingold et al. | Jan 2006 | A1 |
20060020267 | Marmo | Jan 2006 | A1 |
20060116762 | Hong et al. | Jun 2006 | A1 |
20060134170 | Griffith et al. | Jun 2006 | A1 |
20060142780 | Pynson et al. | Jun 2006 | A1 |
20060142781 | Pynson et al. | Jun 2006 | A1 |
20060173539 | Shiuey | Aug 2006 | A1 |
20060235430 | Le et al. | Oct 2006 | A1 |
20070027538 | Aharoni et al. | Feb 2007 | A1 |
20070106318 | McDonald | May 2007 | A1 |
20070106376 | Roberts et al. | May 2007 | A1 |
20070129797 | Lang et al. | Jun 2007 | A1 |
20070182920 | Back et al. | Aug 2007 | A1 |
20070244559 | Shiuey | Oct 2007 | A1 |
20070255401 | Lang | Nov 2007 | A1 |
20070280994 | Cunanan | Dec 2007 | A1 |
20080262610 | Lang et al. | Oct 2008 | A1 |
20080269771 | Fulcher | Oct 2008 | A1 |
20080281304 | Campbell | Nov 2008 | A1 |
20090079940 | Dai et al. | Mar 2009 | A1 |
20090198325 | Holliday et al. | Aug 2009 | A1 |
20090216217 | Odrich et al. | Aug 2009 | A1 |
20090326650 | Zickler et al. | Dec 2009 | A1 |
20100241060 | Roizman et al. | Sep 2010 | A1 |
20110149241 | Dai | Jun 2011 | A1 |
20110208300 | de Juan et al. | Aug 2011 | A1 |
20110218623 | Dishler et al. | Sep 2011 | A1 |
20110256806 | Monnoyeur | Oct 2011 | A1 |
20110290681 | Nigam | Dec 2011 | A1 |
20120046680 | Dishler et al. | Feb 2012 | A1 |
20120165823 | Dishler et al. | Jun 2012 | A1 |
20120203238 | Nigam | Aug 2012 | A1 |
20120231416 | Drapeau et al. | Sep 2012 | A1 |
20120238806 | Mangiardi et al. | Sep 2012 | A1 |
20120245592 | Berner et al. | Sep 2012 | A1 |
20130060255 | Feingold et al. | Mar 2013 | A1 |
20130123916 | Nigam et al. | May 2013 | A1 |
20130211523 | Southard et al. | Aug 2013 | A1 |
20130253529 | Walter et al. | Sep 2013 | A1 |
20130281993 | Dishler et al. | Oct 2013 | A1 |
20130317605 | Ide et al. | Nov 2013 | A1 |
20130324983 | Liang | Dec 2013 | A1 |
20140257477 | Plambeck et al. | Sep 2014 | A1 |
20150250652 | Holliday et al. | Sep 2015 | A1 |
Number | Date | Country |
---|---|---|
3208729 | Sep 1983 | DE |
0308077 | Mar 1989 | EP |
0420549 | Apr 1991 | EP |
0729323 | Jul 1998 | EP |
0668061 | Sep 2000 | EP |
S5973622 | Apr 1984 | JP |
01-195853 | Aug 1989 | JP |
02-211119 | Aug 1990 | JP |
5502811 | May 1993 | JP |
H06510687 | Dec 1994 | JP |
08-501009 | Feb 1996 | JP |
9-504706 | May 1997 | JP |
2000506056 | May 2000 | JP |
2002537895 | Nov 2002 | JP |
03-508135 | Mar 2003 | JP |
2007500070 | Jan 2007 | JP |
WO9208423 | May 1992 | WO |
WO9305731 | Apr 1993 | WO |
WO 9626690 | Sep 1996 | WO |
WO 9808549 | Mar 1998 | WO |
WO 9848715 | Nov 1998 | WO |
WO 9917691 | Apr 1999 | WO |
WO 9921513 | May 1999 | WO |
WO 9930645 | Jun 1999 | WO |
WO 0038594 | Jul 2000 | WO |
WO 03041616 | May 2003 | WO |
WO 03061518 | Jul 2003 | WO |
WO 03101341 | Dec 2003 | WO |
WO 2005020792 | Mar 2005 | WO |
WO 2005107648 | Nov 2005 | WO |
WO 2006029316 | Apr 2006 | WO |
WO 2006060363 | Jun 2006 | WO |
WO 2007101016 | Sep 2007 | WO |
WO 2007132332 | Nov 2007 | WO |
Entry |
---|
Dymax; UV curable optical assembly; 2 pages; retrieved Mar. 4, 2015 from the internet (http:www.dymax.com/index.php/adhesives/optical). |
Schneider et al.; U.S. Appl. No. 13/619,955 entitled “Corneal Implant Inserters and Methods of Use,” filed Sep. 14, 2012. |
Jankov et al.; Laser intrastromal keratoplasty—case report; J. Refract.Surg.; 20(1); pp. 79-84; Jan.-Feb. 2004. |
Sharma et al.; U.S. Appl. No. 14/211,714 entitled “Pre-treatment haze reduction for corneal inlays,” filed Mar. 14, 2014. |
Long et al.; U.S. Appl. No. 14/217,056 entitled “Anterior corneal shapes and methods of providing the shapes,” filed Mar. 17, 2014. |
Dishler et al.; U.S. Appl. No. 13/854,588 entitled “Small Diameter Corneal Inlays,” filed Apr. 1, 2013. |
Alio, J. J., et al., “Intracorneal Inlay Complicated by Intrastomal Epithelial Opacification,” Arch Ophthalmol, Oct. 2004; vol. 122; 6 pages. |
Cheng, et al.; “Predicting subjective judgment of best focus with objective image quality metrics”; Journal of Vision; Apr. 23, 2004; vol. 4(4); pp. 310-321. |
Churms, P.W., “The Theory and Computation of Optical Modifications to the Cornea in Refractive Keratoplasty,” American Journal of Optometry & Physiological Optics, 56:2, pp. 67-74, Feb. 1979. |
Huang et al.; Mathematical Model of Corneal Surface Smoothing After Laser Refractive Surgery; American Journal of Ophthalmology; Mar. 2003; pp. 267-278. |
Lang, A.J. et al., “First order design of intracorneal inlays: dependence on keratometric flap and corneal properties,” ARVO Abstracts 2006, poster No. 3591, May 3, 2006. |
Liou, H. L. et al., “Anatomically accurate, finite model eye for optical modeling”, Journal of the Optical Society of America, vol. 14, No. 8, Aug. 1997. |
Marsack,et al.; “Metrics of optical quality derived from wave aberrations predict visual performance”; Journal of Vision; Apr. 23, 2004; vol. 4(4); pp. 322-328. |
Navarro et al.; Accommodation-dependent model of the human eye with aspherics; J. Opt. Soc Am. A; vol. 2; No. 8; Aug. 1985; pp. 1273-1281. |
Watsky, M.A. et al., “Predicting Refractive Alterations with Hydrogel Keratophakia,” Investigative Opthalmology & Visual Science, vol. 26, pp. 240-243, Feb. 1985. |
Patel et al.; Refractive index of human corneal epithelium and stroma; J. Refract. Surg.; 11(2); Abstract; Mar. 1995 (pubmed Abstract only). |
Esguerra et al.; U.S. Appl. No. 14/463,355 entitled “Corneal implant storage, packaging, and delivery devices,” filed Aug. 19, 2014. |
Holliday et al.; U.S. Appl. No. 14/547,931 entitled “Corneal inlay design and methods of correcting vision,” filed Nov. 19, 2014. |
Collins et al.; U.S. Appl. No. 14/575,833 entitled “Integrated part fixturing for lathing processes,” filed Dec. 18, 2014. |
Winn et al.; Factors affecting light-adapted pupil size in normal human subjects; Investigative Ophthalmology and Visual Science; 35(3); pp. 1132-1137; Mar. 1994. |
Nigam et al.; U.S. Appl. No. 14/160,438 entitled “Coreal Implant Applicators,” filed Jan. 21, 2014. |
Sharma; U.S. Appl. No. 14/427,510 entitled “Corneal implant edges and methods of use,” filed Mar. 11, 2015. |
Esguerra et al.; U.S. Appl. No. 14/688,226 entitled “Corneal implant delivery devices and methods of use,” filed Apr. 16, 2015. |
Number | Date | Country | |
---|---|---|---|
20130023892 A1 | Jan 2013 | US |
Number | Date | Country | |
---|---|---|---|
61535819 | Sep 2011 | US | |
61535744 | Sep 2011 | US | |
61550185 | Oct 2011 | US | |
61606674 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11692835 | Mar 2007 | US |
Child | 13411425 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13411425 | Mar 2012 | US |
Child | 13549007 | US |