BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is an outside elevational view of a corner portion of a framework of a canopy shelter, illustrating the corner brace according to the invention.
FIG. 2 is an inside elevational view of the corner portion of a framework of a canopy shelter of FIG. 1.
FIG. 3 is a top plan view of the corner portion of the corner portion of a framework of a canopy shelter of FIG. 1.
FIG. 4 is a side elevational view of the corner portion of a framework of a canopy shelter of FIG. 1.
FIG. 5 is an enlarged top outside perspective view of the corner portion of a framework of a canopy shelter of FIG. 1.
FIG. 6 is an enlarged bottom inside perspective view of the corner portion of a framework of a canopy shelter of FIG. 1.
FIG. 7 is an enlarged perspective view of the swivel bracket of the support truss tube member of the corner brace of FIG. 1.
FIG. 8 is an enlarged perspective view of the support truss end fitting of the support truss tube member of the corner brace of FIG. 1.
FIG. 9 is an enlarged bottom perspective view of the support truss end fitting of the support truss tube member of the corner brace of FIG. 1.
FIG. 10 is an enlarged perspective elevational view of the over-center spacer of the peak beam member of the canopy framework support assembly of the framework of a canopy shelter of FIG. 1.
FIG. 11 is an enlarged side elevational view of the corner portion shown in FIG. 4.
FIG. 12 is an enlarged top perspective view of the central peak hub assembly of the framework of a canopy shelter of FIG. 1.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
While lightweight canopy shelters have been developed with raised roof structures and large spans suitable for holding gatherings in inclement weather, there remains a significant problem of instability due to heavy loading from strong winds for such canopy shelters that have a wide span across a middle portion of the perimeter truss assembly that is not directly connected to and supported by a leg.
As is illustrated in the drawings, the present invention accordingly provides for a corner brace assembly 20 for a framework 22, only a portion of which is shown, of a quickly erectable canopy shelter, typically including a perimeter truss framework and a central truss framework, which is connected to legs of the canopy shelter to stabilize and support the collapsible shelter, as is described in U.S. Pat. No. 5,490,533, which is incorporated by reference herein. Referring to FIGS. 1-4, the corner brace assembly is typically provided at a portion of the perimeter framework connected to a leg 24 having upper end 25 and lower end 26. The framework of the canopy shelter preferably has four legs, but can also have three, five, or more legs. A slider member 28 is typically slidably mounted to the leg, such as at an upper section of the leg. The extendible perimeter assembly 30 of link members connecting legs of the framework together typically includes X-shaped outer trusses 32 formed of pairs of link members 34 that are pivotally connected together at pivot point 36. The pairs of link members include first link member 38 and second link member 40. The first link member has an outer end 42 pivotally connected to the upper end of a leg, and the second link member having an outer end 44 pivotally connected to the slider member. The first and second link members are thus connected together in a scissors configuration so as to be extendable from a first collapsed position extending horizontally between pairs of legs to a second extended position extending horizontally between the pairs of legs, as is described in U.S. Pat. No. 5,490,533.
Referring to FIGS. 1-4, on at least one side 46 of the framework of the canopy shelter such an X-shaped outer truss may connected to another X-shaped outer truss at their inner ends 48, or may be connected to an adjacent leg, and on another side 50 of the framework of the canopy shelter forming a wide, clear span across the middle of the framework, the extendible perimeter assembly of link members may also include one or more X-shaped middle trusses 52 not directly connected to the legs, and only supported by the outer trusses. The middle truss is similarly formed by a pair of link members 54 pivotally connected together at pivot point 56, and includes a first link member 58 and a second link member 60. The first link member of the middle truss has a first end 62 pivotally connected to the inner end of the second link member of the adjacent outer truss, and the second link member of the middle truss has a first end 64 pivotally connected to the inner end of the first link member of the adjacent outer truss. The middle truss is thus similarly formed in a scissors configuration so as to be extendable from a first collapsed position extending horizontally between pairs of legs to a second extended position extending horizontally between the pairs of legs, as is described in U.S. Pat. No. 5,490,533. The middle truss may be connected to another middle truss at their inner ends 66, or may be connected to another outer truss.
As is illustrated in FIGS. 1-4, In order to provide additional support and reinforcement for side of the framework forming the wide, clear span 69 across the middle of the framework, the corner brace assembly of the present invention includes a support truss tube member 70 having a first end 72 and a second end 74. Referring to FIGS. 5-9, the first end of the support truss tube member is pivotally connected to a support truss swivel bracket or universal joint 76 that is in turn rotatably connected to an outer section 78 of the first link member of a first outer truss 80 on one side 82 of the leg for rotational movement with respect to the first link member, so that the support truss tube member is capable of pivoting, reciprocal movement and rotational movement with respect to the first link member of the first outer truss 80. The second end of the support truss tube member includes a support truss end fitting 84 that is removably connected to an outer section 86 of the first link member of a second outer truss 88 on the other side 90 of the leg. As is illustrated in FIGS. 7 and 8, the support truss end fitting includes a slot 92, such as a T-shaped slot, for receiving a pin or bolt 94 with a correspondingly similar configuration, mounted to and extending from the first link member of the second outer truss, and typically having an enlarged head 96 spaced apart from the second outer truss, allowing the support truss tube member to be rotated to slide the slot of the support truss end fitting over the extending pin on the first link member of the second outer truss, to removably connect the adjacent outer trusses at the leg together when the framework is in the extended configuration as shown. As is shown in FIGS. 3 and 5-6, the support truss tube member of the corner brace assembly may optionally include a support truss clip 98 adapted to snap fit to one of the link members of the framework when the support truss end fitting is disconnected from the first link member of the second outer truss and the framework of the canopy shelter is to be folded and collapsed, such as for transporting or storing the canopy shelter.
In another presently preferred aspect, as is illustrated in FIGS. 1-4 and 10-12, the canopy shelter framework includes a canopy framework support assembly 100 including a peak beam member 102 having an outer end 104 pivotally mounted to the leg to extend across the shelter and movable between a lowered position (not shown) and a raised, upwardly extending position. Referring to FIGS. 3 and 4, each of the pole members typically comprises an inner peak beam tube section 106 and an outer peak beam tube section 108 that are pivotally joined together through an over-center spacer 110. The over-center spacer advantageously includes a locking flange 112 allowing the inner peak beam tube section to rotate about the over-center spacer from a collapsed position folded against the outer peak beam tube section to an unfolded, extended position shown in FIG. 10 and braced against the locking flange.
With reference to FIGS. 3-7 and 11, the canopy framework support assembly may also include a support strut member 114 with an outer end 116 pivotally mounted to the leg below the peak beam member. In a presently preferred aspect, the support strut member is pivotally mounted to the slider member. The support strut member has an inner end 118 with a support bracket 120 pivotally connected to the outer peak beam member to support the peak beam member in a raised, upwardly extending position as shown. As is illustrated in FIGS. 1-4 and 12, the inner end 122 of the peak beam member is pivotally connected to a central peak hub assembly 124, which is adapted to be connected to a plurality of other peak beam members of the framework of the canopy shelter. A canopy cover (not shown) may be placed over the canopy framework support assembly secured to the tops of the legs of the canopy shelter.
It will be apparent from the foregoing that while particular forms of the invention have been illustrated and described, various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited, except as by the appended claims.