BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
Like reference numerals are used to designate like parts throughout the several views of the drawing, and:
For background purposes, FIG. 1 shows a prior art arrangement of prior art studs at a corner formed by intersecting framing walls, such view showing corner studs in cross section, lower track components in plan and inside and outside wallboard members in section.
FIG. 2 is a view at the same corner as FIG. 1, but showing an side corner stud constructing according to present invention and its arrangement with a conventional stud at the outside corner;
FIG. 3 shows upper and lower corner components for the upper and lower tracks spaced from each other and confronting each other; and
FIG. 4 is a view like FIG. 3, but showing a fragmentary portion of the inside corner stud and the outside corner stud in the same arrangement as FIG. 2, and where two walls meet.
FIG. 5 is a view showing a screw connection between two sheet metal members;
FIG. 6 is an end view of an inside corner stud for a corner formed by two walls that intersect at a diagonal;
FIG. 7 is a view like FIG. 6, but showing an outside corner stud for the same wall;
FIG. 8 is a view like FIG. 2, but of a diagonal corner and showing the use of the studs that are shown by FIGS. 6 and 7; and
FIG. 9 is a view like FIG. 8, but showing an intersection of walls between two corners, showing the use at the intersection of two inside corner studs such as shown by FIGS. 2 and 4.
DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENT
In FIG. 1, three conventional studs 10, 12, 14 are shown at a corner. The lower ends of the studs 10, 12, 14 are inside a lower track at its corner. Stud 10 has a web 16 that is substantially co-planar with track flange 18. Stud 12 has a web 20 that is substantially co-planar with web flange 22. Stud 14 has a web 24 that is situated inside adjacent track flange 26. Studs 10, 14 have flanges 28, 30 that are inside adjacent track flange 32. Stud 10 has a flange 34 that is inside adjacent track flange 22. Stud 12 has a flange 36 that is adjacent track flange 26 and a flange 38 that is adjacent track flange 18. Stud 14 has a flange 38 that is adjacent stud web 20. Stud web 24 and stud flange 36 are substantially co-planar and are both inside adjacent track flange 26. At the inside of the corner, wallboard panels 40, 42 are backed up by stud flanges 34, 38 respectively. At the outside corner, wallboard panel 40 is backed by stud flanges 28, 30 and wallboard panel 46 is backed up by stud web 24 and stud flange 36. As will be appreciated, the upper ends of the studs 10, 12, 14 fit into the upper track corner in essentially the same way as illustrated in FIG. 1.
FIGS. 2 and 4 show an inside corner stud 50 having a first wall 52 that backs up wallboard panel 40 and a second wall 54 that backs up wallboard panel 42. First wall 52 has a first edge 56 and a second edge 58. Second wall 54 has a first edge 60 and a second edge 62. The second edge 58 of first wall 52 is connected to the first edge 60 of second wall 54. A third wall 64 has a first edge 66 and a second edge 68. Edge 68 of wall 64 is connected to edge 56 of wall 52. A fourth wall 70 has a first edge 72 and a second edge 74. Edge 62 of wall 54 is connected to edge 72 of wall 70. A first flange 76 is connected to the first edge of third wall 64. A second flange 78 is connected to the second edge 74 of fourth wall 70. Flange 76 and walls 52, 70 are parallel to each other and perpendicular to walls 54, 64 and flange 78.
The upper and lower ends of inside corner stud 50 are received in the inside corner portions of upper and lower track corner components.
Inside corner stud 50 may be used by itself as shown by FIGS. 2 and 4, or it may be used together with a conventional stud 80 that is at the outside corner, positioned with its web backing up one of the wallboard panels 44, 46 and a flange backing up the other. In FIGS. 2 and 4, the stud web 82 is shown to be adjacent the track flange 32 and the stud flange 84 is shown to be adjacent the track flange 26. Alternatively, the stud 80 may be turned 90° so that its web 82 contacts track flange 26 and its flange 88 contacts track flange 32.
FIG. 4 shows that the upper ends of the studs 50, 84 fit upwardly into the upper corner track component just like the lower end portions fit within the lower corner track component.
The inside corner stud 50 is strong and provides a wide and solid backup for the wallboard panels 40, 42 where they meet at the inside corner. The upper and lower flanges 90, 92 and 22, 18 can be easily and quickly connected to the stud walls 52, 54 by screw fasteners. When screw fasteners are used to secure the intersecting end portions of the wallboard panels 40, 42 to the stud walls 52, 54, a solid connection is provided at the inside corner for the corner track components, the inside corner stud and the wallboard panels 40, 42.
The outside corner stud 80 can also be easily and quickly installed. Its upper and lower ends are fitted into the outside corner portions of the two corner track components. Screw fasteners are inserted through the track flanges 94, 96 and are screwed into the outside corner stud flange 102. In similar fashion, screw fasteners are inserted through flanges 98, 100 of the corner track components and are screwed into the stud web 104. Thus, the ends of the outside corner stud 80 are firmly connected to the track flanges 94, 98 and 96, 100 and then the wallboard panels 44, 46 are firmly attached to the corner stud web 104 and the corner stud flange 102.
FIG. 5 shows a sheet metal screw extending through a track flange and either a stud flange or web. This screw may be a conventional sheet metal screw or it may be a sheet metal screw having a flatter head than conventional sheet metal screws. The FIG. 5 showing of a screw connection is typical of a screw connection that can be used at each location where a track flange is connected to a stud flange or web, or a wallboard panel is connected to a sheet metal member.
FIG. 6 shows an inside corner stud 200 for a diagonal corner and FIG. 7 shows an outside corner stud 202 for the same corner. FIG. 8 shows the studs 200, 202 installed at the intersection of two wall sections of a diagonal wall. Specifically, the corner studs 200, 202 are shown with their lower ends inside of a channel shape lower track 204 having a web 206 and flanges 208, 210 that intersect at the corner. The top track (not shown) is a mirror image of the lower track 206. The upper ends of the corner studs 200, 202 extend into the upper track in essentially the same manner as shown in FIG. 8. The corner stud 200 includes a web 212 that is bent about a longitudinal axis 214 into two web parts 216, 218. Web parts 216, 218 lie against the flange 210 on the inside of the track. In similar fashion, outside corner stud 200 is bent along a longitudinal axis 220 into first and second web parts 222, 224. As shown by FIG. 8, the end portions of the corner stud 202 fit within the corner with the web parts 222, 224 against the track flange 208. For reinforcement purposes, corner stud 200 includes sidewalls 226, 228 which extend perpendicular to the web parts 216, 218. Sidewalls 226, 228 include flanges 230, 232 that extend perpendicular to the sidewalls 226, 228. Corner stud 206 has a similar construction. Sidewalls 234, 236 extend perpendicular from the web parts 222, 224. Flanges 238, 240 extend at a perpendicular from the sidewalls 234.
FIG. 9 shows the use of two inside corner studs 50 where a perpendicular wall intersection a mid portion of a long straight wall.
Corner studs 50, 200, 202 are similar to common studs, the difference being the dimensions of the studs and the size of the angle a between the web parts 52, 54, web parts 216, 218 and web parts 222, 224. The angle between the channel side faces of the web parts 52, 54 of stud 50 is ninety degrees (90°). For corner stud 200, the angle a is two hundred and ten degrees (210°). For corner stud 202, the angle a is one hundred and fifty degrees (150°). As can be seen, the angle a will vary in accordance with the intersection angle of the two walls of the corner. The designed of the building establishes at what angle the two walls will meet and that angle is used to compute the value of angle a for each of the corner studs 200, 202.
Preferably, the web, sidewall and flange portions of the studs 50, 200, 202 are manufactured by use of a standard roll forming process. This process results in the rolled stud having a flat web, sidewalls extending perpendicular to the edges of the web, and flanges extending perpendicular to the edges of the sidewalls. According to a method aspect of the invention, the rolled stud is then bent around a longitudinal center line until the two web parts are separated from each other by the desired angle a. This bending may be done by a common process known as “breaking.” One half of the web is held by a member that includes a longitudinal outside edge. The second half is then bent around the outside edge.
The illustrated embodiments are only examples of the present invention and, therefore, are non-limitive. It is to be understood that many changes in the particular structure, materials and features of the invention may be made without departing from the spirit and scope of the invention. Therefore, it is my intention that my patent rights not be limited by the particular embodiments that are illustrated and described herein, but rather are to be determined by the following claims, interpreted according to accepted doctrines of patent claim interpretation, including use of the doctrine of equivalents.