1. Field of the Invention
This invention relates generally to a corona igniter for emitting a non-thermal plasma, and more specifically to isolation of an ignition coil of the corona igniter.
2. Related Art
An example of a corona discharge ignition system is disclosed in U.S. Pat. No. 6,883,507 to Freen. The corona discharge ignition system includes an igniter with an electrode charged to a high radio frequency voltage potential. An ignition coil housed in the igniter receives energy from a power source at a first voltage and transmits the energy to the electrode at a second voltage, typically 15 to 50 times higher than the first voltage. The electrode then creates a strong radio frequency electric field causing a portion of a mixture of fuel and air in the combustion chamber to ionize and begin dielectric breakdown, facilitating combustion of the fuel-air mixture. The electric field is preferably controlled so that the fuel-air mixture maintains dielectric properties and corona discharge occurs, also referred to as a non-thermal plasma. The ionized portion of the fuel-air mixture forms a flame front which then becomes self-sustaining and combusts the remaining portion of the fuel-air mixture. Preferably, the electric field is also controlled so that the fuel-air mixture does not lose all dielectric properties, which would create a thermal plasma and an electric arc between the electrode and another portion of the igniter, or the grounded cylinder walls or piston.
The high frequency and high voltage used in the corona ignition system is difficult to contain, and leakage of energy through the housing of the ignition coil is a problem. Several techniques have been used to isolate the energy being transmitted through the ignition coil. Conventional isolation techniques, for example encapsulation with resin, such as epoxy resin, add significantly to the capacitance of the system and cause a parasitic energy loss. Thus, the output voltage and powder are reduced, while at the same time increasing the power required for operation.
The Freen patent discloses an electrical isolation method for corona igniters, which comprises filling the entire coil housing with an insulating pressurized gas. The pressurized gas maintains low parasitic energy loss but is difficult to execute with reliable stability and provides no mechanical support. Another isolation scheme used in corona ignition systems is filling the entire housing with a resin that penetrates the entire interior of the housing to provide mechanical support and thermal management. However, the completely resin filled housing leads to high parasitic energy loss and parasitic capacitance due to the high permittivity of the resin.
One aspect of the invention provides a corona igniter for providing a radio frequency electric field to ionize a portion of a fuel-air mixture and provide a corona discharge in a combustion chamber. The corona igniter comprises a housing including a plurality of walls presenting a total housing volume therebetween. A coil is disposed in the housing for receiving energy at a first voltage and transmitting the energy at a second voltage higher than the first voltage. An electrode is electrically coupled to the coil for receiving the energy and providing the radio frequency electric field. A coil filler formed of a resin material is disposed on the coil and a capacitance reducing component having a relative permittivity of less than 6 is disposed in the housing. The coil filler has a filler volume being a portion of the total housing volume, and the capacitance reducing component has a component volume being a portion of the total housing volume. The component volume is greater than the filler volume.
Another aspect of the invention provides a method of forming a corona igniter. The method comprises the step of providing a coil filler attached to a coil, wherein the coil filler includes a resin and has a filler volume and the coil has an inductance of at least 500 micro henries. The method next includes disposing the coil and the attached coil filler in a housing. The method also includes filling the housing with a capacitance reducing component having a relative permittivity of less than 6 and having a component volume being greater than the filler volume.
The coil filler and the capacitance reducing component electrically isolates the coil in the housing and thus creates less parasitic loss of energy from the coil during operation of the internal combustion engine compared to the corona igniters of the prior art with housings filled completely with a resin. The igniter requires less input power and outputs energy at a higher voltage and power due to less leakage of the energy through the housing. The improved insulation scheme provides improved energy efficiency with typically 30 to 50% less energy required compared to isolation schemes of the prior art corona igniters.
Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
One aspect of the invention provides a corona ignition system including an igniter 20, as shown in
The housing 34 of the coil 26 includes a plurality of walls 40, 42, 44 surrounding the coil 26. The housing 34 includes spaced and parallel interior side walls 40 also extending parallel to the coil 26. An interior inlet wall 42 is disposed between the interior side walls 40 adjacent the coil low voltage end 28 and an interior outlet wall 44 is disposed between the interior side walls 40 adjacent the coil high voltage end 30. The interior walls 40, 42, 44 present a total housing volume therebetween. The total housing volume is the volume of the empty space between the walls 40, 42, 44 of the housing 34 before any components are disposed in the housing 34. In one embodiment, the total housing volume is between 11 cm3 and 330 cm3.
The walls 40, 42, 44 of the housing 34 are spaced from the coil 26 and the other components to provide a gap region therebetween. The gap region preferably extends continuously and circumferentially around the coil 26 and along the interior side walls 40 of the housing 34 and is filled with the capacitance reducing component 38. The housing 34 includes a low voltage inlet 46 extending through interior inlet wall 42 for allowing energy to travel from the energy supply to the coil 26. The housing 34 also includes a high voltage outlet 48 extending through interior outlet wall 44 opposite the low voltage inlet 46.
The coil 26 of the igniter 20 is disposed in the housing 34 between the low voltage inlet 46 and the high voltage outlet 48. The coil 26 receives the energy at the first voltage and transforms the energy to the second voltage higher than the first voltage before transmitting the energy at the second voltage to the electrode. The second voltage is typically at least 15 times higher than the first voltage. As shown in
The coil 26 includes a base formed of a conductive metal material, such as copper. In one embodiment, the coil 26 has an inductance of 500 micro henries to 2 milli henries. The coil 26 includes a plurality of windings 54 extending circumferentially around the coil center axis ac, as shown in
The coil 26 can include a single layer of windings 54, as shown in
The coil 26 can be electrically coupled to the electrode according to a variety of methods. The igniter 20 can include a high voltage connector 60 received in the high voltage outlet 48 of the housing 34 and partially disposed in the housing 34 for assisting in the connection between the coil 26 and the electrode. In one embodiment, the high voltage connector 60 is a rubber boot. The high voltage connector 60 includes a recess 32 for receiving either an end of an igniter electrode firing end directly (not shown) or an extension (not shown) which carries the high voltage to the electrode firing end. A terminating connection 58 is typically disposed between the coil high voltage end 30 and the high voltage connection 60 for electrically coupling the coil 26 to the electrode and transmitting the energy from the coil 26 to the electrode.
The windings 54 of the coil 26 are typically maintained at the winding diameter d by a coil former 62 disposed between the coil center axis ac and the coil 26. The coil former 62 spaces the coil 26 from the coil center axis ac. The coil former 62 includes an outside surface 64 having the winding diameter d and engaging the coil 26. The coil former 62 also includes an inside surface 66 extending circumferentially around the coil center axis ac and presenting a center cavity 68 along the coil center axis ac. In one embodiment, the inside surface 66 of the coil former 62 is profiled. The coil former 62 extends longitudinally along the coil center axis ac from a former low voltage end 70 adjacent the coil low voltage end 28 to a former high voltage end 72 adjacent the coil high voltage end 30. The thickness of the coil former 62 can vary depending on ease of manufacture and the relative values of relative permittivity of the materials used.
In addition to maintaining the windings 54 in position, the coil former 62 provides electrical insulation to the coil 26 because the coil former 62 is formed of a non-magnetic, electrically insulating material. The coil former 62 preferably has a dielectric strength of at least 10 kV/mm, a relative permittivity of less than 8, and a thermal conductivity of at least 0.25 W/m.K. In one embodiment, the material of the coil former 62 includes at least one of nylon, Teflon, and PTFE. The coil former 62 also has a thickness t extending between the inside surface 66 and the outside surface 64 capable of providing electrical insulation. In one embodiment, the thickness t of the coil former 62 is from 1 mm to 14 mm.
The igniter 20 may also include a magnetic core 74 disposed in the center cavity 68 of the coil former 62 contributing to the inductance of the system. The magnetic core 74 is formed of an magnetic material, such as ferrite or powdered iron. In one embodiment, the magnetic core 74 has a relative permeability of at least 400. Alternately, the center cavity 68 may be filled with non-magnetic materials.
The igniter 20 also includes a tubular sleeve 76 having properties similar to the coil former 62. The tubular sleeve 76 is disposed in the housing 34 between the coil 26 and the interior side walls 40 of the housing 34 to position the coil 26. The tubular sleeve 76 extends circumferentially around the coil 26 and maintains the windings 54 of the coil 26 at the first diameter. The tubular sleeve 76 also spaces the windings 54 from the interior side walls 40 of the housing 34. The tubular sleeve 76 extends longitudinally from a tubular low voltage end 78 adjacent the coil low voltage end 28 to a tubular high voltage end 80. The tubular high voltage end 80 extends past the coil high voltage end 30 and is disposed between the coil high voltage end 30 and the high voltage outlet 48 of the housing 34. The thickness of the tubular sleeve 76 can vary depending on ease of manufacture and the relative values of relative permittivity of the materials used.
The coil filler 36 formed of the resin material is disposed on and coupled to the coil 26 adjacent the capacitance reducing component 38 to provide thermal stability and electrical isolation and prevent overheating and electrical loss due to the high voltage energy traveling through the coil 26. The coil filler 36 also provides mechanical support and maintains the coil 26 in position relative to the housing 34. As shown in
As shown in
The coil filler 36 is spaced from the walls 40, 42, 44 of the housing 34 and disposed adjacent the capacitance reducing component 38. The coil filler 36 has a filler volume occupying a portion of the total housing volume. In one embodiment, the filler volume is at least 10% of the total housing volume, or less than 70% of the total housing volume, or 10 to 7% of the total housing volume, and preferably less than 40% of the total housing volume. The filler volume is the volume of the coil filler 36 after curing the resin and can be measured before or after disposing the coil filler 36 in the housing 34.
In one embodiment, the coil filler 36 has a dielectric strength of at least 10 kV/mm, a thermal conductivity of at least 0.5 W/m.K, and a relative permittivity of less than 6. Examples of the coil filler 36 include silicone resin and epoxy resin. The resin is disposed on the coil 26 and then cured to provide the coil filler 36. In one embodiment, the tubular sleeve 76 is removed after curing the resin to reduce the diameter of the components in the housing 34. The coil filler 36 remains coupled to the coil 26 and the other components adjacent the capacitance reducing component 38.
The igniter 20 includes the capacitance reducing component 38 surrounding the coil 26 and filling the housing 34. As shown in
The capacitance reducing component 38 has a component volume consuming a portion of the total housing volume. The component volume is separate from the filler volume and is greater than the filler volume. In one embodiment, the component volume is at least 2 times greater than the filler volume. The component volume is the volume of the capacitance reducing component 38, which can be measured before or after the capacitance reducing component 38 is disposed in the housing 34. In one embodiment, the component volume is at least 20% of the total housing volume, and preferably more than 50% of the total housing volume, or 20 to 90% of the total housing volume.
In one embodiment, the housing 34 is filled with the capacitance reducing component 38 after all the other components are disposed in the housing 34. The capacitance reducing component 38 typically extends continuously around the coil 26 and along the length l of the coil 26. In one embodiment, the capacitance reducing component 38 extends along at least 50% of the length l and preferably 100 to 150% of the length l of the coil 26. The capacitance reducing component 38 also typically extends continuously around the circumference of the windings 54 and continuously from the windings 54 to the interior side walls 40 of the housing 34. As shown in
The capacitance reducing component 38 has a low relative permittivity to minimize unwanted capacitance in the housing 34. The relative permittivity of the capacitance reducing component 38 is less than the relative permittivity of the coil filler 36. In one embodiment, the capacitance reducing component 38 has a relative permittivity of not more than 6 and preferably 1 to 4. The capacitance reducing component 38 also has a thermal conductivity of more than 0.125 W/m.K. In one embodiment, capacitance reducing component 38 has a dielectric strength of at least 3 kV/mm and preferably more than 10 kV/mm.
In one embodiment, the housing volume that remains after all the components, besides the capacitance reducing component 38, are disposed in the housing 34 remains unfilled. In this embodiment, the capacitance reducing component 38 is simply ambient air. The capacitance reducing component 38 filling the housing 34 can alternatively comprise another low permittivity material, such as a gas at atmospheric pressure or an elevated pressure. In one embodiment, the capacitance reducing component 38 is a gas having a pressure not greater than 10 bar. The gas can have a dielectric strength of at least 3 kV/mm and a relative permittivity of less than 2.
In another embodiment, the capacitance reducing component 38 is a liquid, such as an insulating oil, for example ester oil. The oil can have a dielectric strength of at least 10 kV/mm, a thermal conductivity of more than 0.125 W/m.K, and a relative permittivity of less than 4. In yet another embodiment, the capacitance reducing component 38 is a low permittivity solid, for example Boron Nitride or PTFE or polyethylene. The solid can have a dielectric strength of at least 10 kV/mm, a thermal conductivity of more than 0.125 W/m.K, and a relative permittivity of less than 4. In an alternate embodiment, the capacitance reducing component 38 includes a combination of gases, or a combination of elements, for example the ambient air and the low permittivity solid.
As shown in
One of the retainers 84 of
The potting material may be the same material as coil filler 36. Alternately, the potting material may have a composition different from the coil filler 36. The potting material may be a solid or a gel, such as a thermoset plastic or a silica gel. In one embodiment, the potting material has a dielectric strength of at least 10 kV/mm, a thermal conductivity of at least 0.15 W/m.K, and a relative permittivity of less than 6.
The igniter 20 is typically disposed in a cylinder head 86 of an internal combustion engine of an automotive vehicle, as shown in
The igniter 20 including the coil filler 36 and the capacitance reducing component 38 in the housing 34 electrically isolates the coil 26 and thus creates less parasitic loss of energy from the coil 26 during operation of the internal combustion engine than corona igniters of the prior art with housings filled completely with a resin or other electrically isolating filler material. The igniter 20 requires less input power and outputs energy at a higher voltage and power due to less leakage of the energy through the housing 34. The improved insulation scheme of the present invention provides improved energy efficiency and typically 30 to 50% less energy required compared to isolation schemes of prior art corona igniters.
Another aspect of the invention provides a method of forming the corona igniter 20. The method includes providing the coil filler 36 attached to the coil 26. The attaching step preferably includes disposing the uncured resin along the coil high voltage end 30 of the coil 26 and curing the resin to provide the coil filler 36 having the filler volume. The method next includes disposing the coil 26 and the attached coil filler 36 in the housing 34. The other components are also disposed in the housing 34 and the coil is eclectically coupled to the electrode.
The method further includes filling the housing 34 with the capacitance reducing component 38 having the relative permittivity of less than 6 and having the component volume being greater than the filler volume. The housing 34 is typically filled with the capacitance reducing component 38 after the other components are disposed in the housing 34. In one embodiment, the capacitance reducing component 38 is ambient air, so the step of filing the housing 34 includes allowing the ambient air to enter the housing 34, which typically occurs naturally during the assembly process. In another embodiment, the pressured gas is pumped into the housing 34. The method includes filling at least 20% of the total housing volume and preferably more than 50% of the total housing volume with the capacitance reducing component 38.
Obviously, many modifications and variations of the present invention are possible in light of the above teachings and may be practiced otherwise than as specifically described while within the scope of the appended claims. In addition, the reference numerals in the claims are merely for convenience and are not to be read in any way as limiting.
This application claims the benefit of U.S. provisional application Ser. No. 61/423,306, filed Dec. 15, 2010.
Number | Date | Country | |
---|---|---|---|
61423306 | Dec 2010 | US |