This application claims priority to DE 10 2013 112 039.3, filed Oct. 31, 2013, which is hereby incorporated herein by reference in its entirety.
The invention relates to a corona ignition system and to a method for controlling a corona ignition system.
US 2011/0114071 A1 discloses a corona ignition system with which a fuel/air mixture in a combustion chamber of an internal combustion engine can be ignited by a corona discharge produced in the combustion chamber. This corona ignition system has an ignition electrode, which protrudes from an insulator. The ignition electrode, the insulator and a sleeve surrounding the insulator form an electrical capacitor. This capacitor is part of an electrical oscillating circuit of the corona ignition device. The oscillating circuit is excited with a high-frequency AC voltage for example from 30 kHz to 50 MHz causing a voltage excess at the ignition electrode so that a corona discharge forms at the ignition electrode.
The high-frequency AC voltage is produced by a high-frequency generator. The input voltage of the high-frequency generator is produced by a converter from the on-board supply voltage of the vehicle. The input voltage of the high-frequency generator generally lies in the range from 100 V to 400 V in the case of known corona ignition systems.
A corona discharge forms ions and radicals in a fuel/air mixture in the combustion chamber of an engine. When a critical concentration of ions and radicals is reached, the fuel/air mixture ignites. The rate at which ions and radicals are produced is dependent on the size of the corona discharge and the electrical power thereof. The size and power of a corona discharge can only increase up to a critical limit. If this limit is exceeded, the corona discharge transitions into an arc discharge or spark discharge.
For this reason corona ignition systems are controlled such that the corona discharge is as large as possible, but a breakdown of the corona discharge into an arc or spark discharge is avoided. The fuel/air mixture can then be ignited as quickly as possible and the ignition moment can thus be predefined as precisely as possible.
This disclosure teaches a way for improving control of a corona ignition system.
These teachings make it possible to predefine the power introduced into the combustion chamber by a corona discharge with a greater precision. This is achieved by controlling the output voltage of the converter to a target value using a controller and by communicating an imminent load change of the converter to the controller, before the load change occurs as a result of activation or deactivation of the high-frequency generator. The activation of the high-frequency generator, due to the associated rapid change in load, leads specifically to a temporary voltage drop. This voltage drop can be reduced by increasing the target value of the output voltage in expectation of the voltage drop. The deactivation of the high-frequency generator leads to a temporary voltage excess, which can be reduced by reducing the target value of the output voltage in expectation of the voltage excess.
Voltage fluctuations of the input voltage of the high-frequency generator lead to corresponding fluctuations of the output voltage thereof and therefore also to fluctuations in the power of the oscillating circuit and therefore of the corona discharge. If the output voltage of the converter and therefore the input voltage of the high-frequency generator is stabilized, the power of the corona discharge and of the ignition moment can therefore be controlled with higher precision.
The target value may always be changed by a constant, load-independent magnitude whenever there is an imminent load change. A control of this type can be implemented with little effort and can already significantly compensate for load-induced voltage fluctuations, in particular if the expected load changes are always of substantially the same size. However, in the case of an imminent load change, the target value can also be changed by a magnitude that is defined individually by the control unit of the corona ignition system, in each case in dependence of the size of the expected load change.
An imminent load change can be communicated to the controller of the converter for example 2 to 200 microseconds prior to the activation or deactivation of the high-frequency generator.
In accordance with an advantageous refinement of this disclosure, the voltage controller responds to a communication of a control unit concerning an imminent load change by changing a target value specification in steps. A greater change to the target value can thus be broken down into a number of small, successive changes. The individual steps may be so small that the target value specification is changed in a ramp-like manner, for example. Transient effects can be mitigated by a change to the target value in steps.
When the target value is changed, one embodiment may, for example, provide that at least one step is performed prior to the ignition of the corona discharge and at least one step after the ignition of the corona discharge. For example, the corona discharge can be ignited whilst the target value is changed in a ramp-like manner. In this way, a large energy can be applied from the start of a corona discharge and still a small overshoot achieved.
It is possible to respond symmetrically to an anticipated load increase and to an anticipated load decrease of identical size, in other words the momentary target value can be increased or reduced by the same magnitude. However, it is also possible to respond to load increases with a stronger or weaker change of the target value compared with load decreases.
The above-mentioned aspects of exemplary embodiments will become more apparent and will be better understood by reference to the following description of the embodiments taken in conjunction with the accompanying drawings, wherein:
The embodiments described below are not intended to be exhaustive or to limit the invention to the precise forms disclosed in the following detailed description. Rather, the embodiments are chosen and described so that others skilled in the art may appreciate and understand the principles and practices of this disclosure.
The corona ignition system illustrated schematically in
The central unit 1 comprises a converter 3, a plurality of high-frequency generators 4, which are connected to the converter 3 and which are each connected to one of the individual igniters 5, a control unit 2 and a voltage controller 3a. The converter 3, for example a DC/DC converter, converts an on-board supply voltage of the vehicle into an input voltage for the high-frequency generators 4. The voltage produced by the converter 3 is regulated by a voltage controller 3a to a target value. The voltage controller 3a can be integrated in the converter 3.
The input voltage of the high-frequency generator 4 is usually greater than the on-board supply voltage. The converter 3 thus generates a higher output voltage from an input voltage. The converter 3 may comprise a number of steps. Here, it is possible for all steps to be formed as step-up converters, that is to say to produce a higher output voltage from an input voltage. It is also possible for one or more steps, for example the last step of the converter, to be formed as step-down converters.
The high-frequency generators 4 are controlled by a control unit 2. The control unit 2 activates the high-frequency generators 4 when a corona discharge is to be produced in the relevant combustion chamber of the motor. Load changes of the converter 3 are produced by the activation and deactivation (which alternate in the engine cycle) of the high-frequency generators 4. The course of the loading of the converter 3 is illustrated schematically in
This loading is known beforehand to the control unit 2, since the high-frequency generators 4 are activated and deactivated at predefined times in the engine cycle. The control unit 2 communicates an imminent load change of the converter 3 to the voltage controller 3a, before the load change occurs as a result of activation or deactivation of the high-frequency generator 4. This is illustrated in
The voltage controller 3a responds to the load signal shown in
A sudden load change, as occurs with the activation and deactivation of a high-frequency generator 4, leads specifically to a temporary voltage drop or a voltage excess. This can be compensated for by a prior change to the target value. An increase of the load leads specifically to an increased amperage, which leads to a charging of inductors. The power necessary to charge the inductors is not available to the load, that is to say the high-frequency generator. Since the target value of the voltage is increased before the high-frequency generator 4 is activated, the inductors can be charged at least partially before this loads the converter 3.
Similarly, a load decrease leads to a discharging of inductors, which may result in a voltage increase. Since the target value of the voltage is reduced prior to a deactivation of a high-frequency generator 4, a voltage excess can be reduced.
A corona discharge is ignited in the illustrated embodiment during a ramp-like change of the target value. In other words, some steps of the change to the target value are performed prior to the ignition of the corona discharge and some steps of the change to the target value are performed after the ignition of the corona discharge.
While exemplary embodiments have been disclosed hereinabove, the present invention is not limited to the disclosed embodiments. Instead, this application is intended to cover any variations, uses, or adaptations of this disclosure using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2013 112 039 | Oct 2013 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
2968296 | Kaehni | Jan 1961 | A |
3934566 | Ward | Jan 1976 | A |
4333125 | Hensley | Jun 1982 | A |
4398526 | Hamai | Aug 1983 | A |
4402036 | Hensley | Aug 1983 | A |
4996967 | Rosswurm | Mar 1991 | A |
5655210 | Gregoire | Aug 1997 | A |
6883306 | Kim | Apr 2005 | B2 |
6883507 | Freen | Apr 2005 | B2 |
7900613 | Heuermann | Mar 2011 | B2 |
8550059 | Makarov | Oct 2013 | B2 |
20040129241 | Freen | Jul 2004 | A1 |
20040263412 | Pribyl | Dec 2004 | A1 |
20080286496 | Ramm | Nov 2008 | A1 |
20100026186 | Forrest | Feb 2010 | A1 |
20100206277 | Kajita | Aug 2010 | A1 |
20100282198 | Hampton | Nov 2010 | A1 |
20110114071 | Freen | May 2011 | A1 |
20110175691 | Smith | Jul 2011 | A1 |
20110253114 | Schremmer | Oct 2011 | A1 |
20120055430 | Braeuchle | Mar 2012 | A1 |
20120260898 | Schremmer | Oct 2012 | A1 |
20130073180 | Murase | Mar 2013 | A1 |
20150114371 | Kernwein | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
20 2010 045 168 | Mar 2012 | DE |
Number | Date | Country | |
---|---|---|---|
20150114371 A1 | Apr 2015 | US |