The present invention relates generally to digital printing, and particularly to methods and systems for compensating for distortions in digitally printed images.
Various methods and systems for correcting distortions in digitally printed images are known in the art.
For example, U.S. Pat. No. 6,966,712 describes a method and system including printing a test pattern on a print medium and generating a digital image of the printed test pattern using an imaging device. The method and system include analyzing an interference pattern to measure for distortion of the print medium and calibrating the printing device based upon the measured distortion.
U.S. Patent Application Publication 2017/0104887 describes an image processing apparatus that includes an image processing unit configured to execute, in forming an image on both surfaces of a sheet, image processing. The image processing includes skew correction to deform the image in advance to offset distortion to be caused in the image to be formed on the sheet.
U.S. Pat. No. 8,891,128 describes a defective recording element detecting apparatus. The apparatus includes a read image data acquiring device, a reference area setting device, a comparison area setting device, a correlation operation device, a distortion correction value determining device, an image distortion correcting device, and a defective recording element determining device.
An embodiment of the present invention that is described herein provides a method for correcting distortion in image printing, the method including receiving a digital image acquired from a printed image. Based on the digital image, a geometric distortion is estimated in the printed image. One or more pixel locations are calculated, such that, when one or more dummy pixels are implanted therein, compensate for the estimated geometric distortion. The geometric distortion is corrected in a subsequent digital image to be printed, by implanting the one or more dummy pixels at the one or more calculated pixel locations in the subsequent digital image. The subsequent digital image, having the corrected geometric distortion, is printed.
In some embodiments, implanting the one or more dummy pixels at a calculated pixel location includes shifting one or more existing pixels at a given pixel location by an amount of the implanted one or more dummy pixels. In other embodiments, at least one of the pixel locations includes a bar of pixels along a section of a column or row of the digital image, and correcting the geometrical distortion includes implanting the dummy pixels in the bar. In yet other embodiments, at least another of the pixel locations includes an additional bar of pixels located along an additional section of the row or column, and correcting the geometrical distortion includes implanting the dummy pixels in the additional bar.
In an embodiment, implanting the dummy pixels includes shifting the additional section relative to the section. In another embodiment, the digital image includes at least first and second colors, and correcting the geometric distortion includes correcting a difference between printed first and second widths of the first and second colors, respectively. In yet another embodiment, correcting the geometric distortion includes compensating for a trapeze shape of a print of the digital image.
In some embodiments, estimating the geometric distortion includes comparing at least part of the printed image with a reference image. In other embodiments, the method includes, based on the digital image, qualifying or disqualifying at least one of the printed image and a print of the subsequent digital image. In yet other embodiments, the method includes, based on the digital image, estimating at least an additional geometric distortion of the printed image relative to a source image used for printing the printed image.
In an embodiment, the additional geometric distortion includes a tilt of the printed image relative to the source image, and the method includes, correcting the tilt by applying, to the source image, a pre-compensation for the tilt. In another embodiment, the additional geometric distortion includes a color to color position difference between first and second colors of the printed image, and the method includes correcting the color to color position difference by shifting, in the subsequent digital image, at least one of the first and second colors. In yet another embodiment, the digital image includes at least first and second color images, and the method includes aligning an edge of the first and second color images to one another by shifting the edge of the second color image to align with the edge of the first color image.
In some embodiments, the digital image includes multiple color images, and implanting the one or more dummy pixels includes, for a given dummy pixel at a given pixel location in a given color image, setting a waveform that determines a size of the given dummy pixel based on one or more selected pixels adjacent to the given pixel location, and printing the subsequent digital image includes printing the given dummy pixel in accordance with the waveform. In other embodiments, the digital image includes multiple registration marks, and estimating the geometric distortion includes analyzing the geometric distortion between the registration marks.
In an embodiment, the digital image includes registration marks in at least one of: (i) a margin of the digital image and (ii) an interior of the digital image. In another embodiment, at least two of the registration marks include a bar of the registration marks arranged along a section of a column of the digital image.
There is additionally provided, in accordance with an embodiment of the present invention, an apparatus for correcting distortion in image printing, the apparatus includes an interface and a processor. The interface is configured to receive a digital image acquired from a printed image. The processor is configured to: (a) estimate, based on the digital image, a geometric distortion in the printed image, (b) calculate one or more pixel locations that, when one or more dummy pixels are implanted therein, compensate for the estimated geometric distortion, and (c) correct the geometric distortion in a subsequent digital image to be printed, by implanting the one or more dummy pixels at the one or more calculated pixel locations in the subsequent digital image.
There is additionally provided, in accordance with an embodiment of the present invention, a system including a processor and a printing subsystem. The processor is configured to: (a) receive a digital image acquired from a printed image, (b) estimate, based on the digital image, a geometric distortion in the printed image, (c) calculate one or more pixel locations that, when one or more dummy pixels are implanted therein, compensate for the estimated geometric distortion, and (d) correct the geometric distortion in a subsequent digital image to be printed, by implanting the one or more dummy pixels at the one or more calculated pixel locations in the subsequent digital image. The printing subsystem is configured to print the subsequent digital image having the corrected geometric distortion.
There is further provided, in accordance with an embodiment of the present invention, a computer software product, the product including a tangible non-transitory computer-readable medium, in which program instructions are stored, which instructions, when read by a processor, cause the processor to: (a) receive a digital image acquired from a printed image, (b) estimate, based on the digital image, a geometric distortion in the printed image, (c) calculate one or more pixel locations that, when one or more dummy pixels are implanted therein, compensate for the estimated geometric distortion, and (d) correct the geometric distortion in a subsequent digital image to be printed, by implanting the one or more dummy pixels at the one or more calculated pixel locations in the subsequent digital image.
There is additionally provided, in accordance with an embodiment of the present invention, a printing system including a printing subsystem and a processor. The printing subsystem includes an intermediate transfer member (ITM) configured to receive ink droplets from an image forming station to form an ink image thereon, and to form a printed image by transferring the ink image to a target substrate. The processor is configured to: (a) receive a digital image acquired from the printed image, (b) estimate, based on the digital image, a geometric distortion in the printed image, (c) calculate one or more pixel locations that, when one or more dummy pixels are implanted therein, compensate for the estimated geometric distortion, and (d) correct the geometric distortion in a subsequent digital image to be printed, by implanting the one or more dummy pixels at the one or more calculated pixel locations in the subsequent digital image. The printing subsystem is configured to print the subsequent digital image having the corrected geometric distortion.
There is further provided, in accordance with an embodiment of the present invention, a method for correcting distortion in image printing, the method including printing a printed image by applying, to an intermediate transfer member (ITM), ink droplets from an image forming station to form an ink image thereon, and transferring the ink image from the ITM to a target substrate. A digital image that is acquired from the printed image, is received. Based on the digital image, a geometric distortion is estimated in the printed image. One or more pixel locations are calculated, such that, when one or more dummy pixels are implanted therein, compensate for the estimated geometric distortion. The geometric distortion is corrected in a subsequent digital image to be printed, by implanting the one or more dummy pixels at the one or more calculated pixel locations in the subsequent digital image. The subsequent digital image having the corrected geometric distortion, is printed.
There is additionally provided, in accordance with an embodiment of the present invention, a method for correcting distortion in image printing, the method including receiving a digital image acquired from a printed image. Based on the digital image, a geometric distortion is estimated in the printed image. One or more pixel locations are calculated, such that, when one or more given pixels are removed from the digital image, compensate for the estimated geometric distortion. The geometric distortion is corrected in a subsequent digital image to be printed, by removing the one or more given pixels at the one or more calculated pixel locations in the subsequent digital image. The subsequent digital image having the corrected geometric distortion, is printed.
There is additionally provided, in accordance with an embodiment of the present invention, a system including a processor and a printing subsystem. The processor is configured to: (a) receive a digital image acquired from a printed image, (b) estimate, based on the digital image, a geometric distortion in the printed image, (c) calculate one or more pixel locations that, when one or more given pixels are removed from the digital image, compensate for the estimated geometric distortion, and (d) correct the geometric distortion in a subsequent digital image to be printed, by removing the one or more given pixels at the one or more calculated pixel locations in the subsequent digital image. The printing subsystem is configured to print the subsequent digital image having the corrected geometric distortion.
The present invention will be more fully understood from the following detailed description of the embodiments thereof, taken together with the drawings in which:
Embodiments of the present invention that are described hereinbelow provide methods and apparatus for correcting distortions in printing of a digital image. In some embodiments, a digital printing system comprises a flexible intermediate transfer member (ITM) configured to receive an ink image and to move along an axis, referred to herein as an X axis, to an impression station so as to transfer the ink image to a target substrate, such as a paper sheet.
The printed image may have geometric distortions along the X axis that change with the position on a Y axis (orthogonal to the X axis), referred to herein as wave X(Y), and/or distortions along the Y axis that change with the position on the X axis, referred to herein as wave Y(X).
The wave Y(X) distortion may be caused by multiple sources, such as bending and stretching of the ITM, deviation from the specified velocity at the impression station, misalignment between color images, also referred to herein as “bar to bar position delta,” and different widths of similar features among the different color images referred to herein as “bar to bar width delta” or as “color to color width difference.” The digital image may have additional distortions, such as trapeze shape, tilt, skew, and displacement of the digital image relative to the substrate, for example in Y axis, also referred to herein as “image to substrate Y” (Im2SubY).
In some embodiments, the digital printing system comprises a processor configured to receive a digital image acquired from a printed image. The printed image was printed by the digital printing system as a composition of multiple color images such as cyan, magenta, yellow and black. The processor is configured to estimate, based on the digital image, one or more types of the geometric distortions described above, to apply, to the distorted digital image, shifting of pixels and implanting of synthetic pixels, also referred to herein as “dummy pixels” so as to compensate for the distortions, and to produce a subsequent digital image that corrects the geometric distortion. In some embodiments, the subsequent digital image is printed and an additional digital image is acquired so as to check whether the distortions have indeed been corrected.
In some embodiments, the digital image comprises registration marks located at first (e.g., left) and second (e.g., right) opposite edges along the Y axis of the digital image. The registration marks are indicative of at least some of the distortions described above. In some embodiments, the processor is configured to identify, based on the distorted registration marks, at least some of the distortions in the digital image and to apply, to one or more of the color images, a linear offset and/or non-linear shifting so as to compensate for various distortions, such as, tilt, skew, Im2SubY and other wavy articles.
In some embodiments, the processor is further configured to identify, based on the distorted registration marks at the first end, bar to bar position delta distortions between the different color images, and to shift at least one of the color images so as to align the first end of all the color images.
Subsequently, the processor identifies, based on the registration marks at the second end, distortions of the bar to bar width delta between the color images, and calculates, at one or more of the color images, pixel locations and the amount of dummy pixels implanted therein so as to compensate for the bar to bar width delta between the color images (which may also vary along X axis, per color).
The disclosed techniques improve the quality of printed digital images by compensating for a large variety of distortions. Moreover, the disclosed techniques reduce waste of substrate and ink by improving the yield of the printed substrates.
In an operative mode, image forming station 60 is configured to form a mirror ink image, also referred to herein as “an ink image” (not shown), of a digital image 42 on an upper run of a surface of blanket 44. Subsequently the ink image is transferred to a target substrate, (e.g., a paper, a folding carton, or any suitable flexible package in a form of sheets or continuous web) located under a lower run of blanket 44.
In the context of the present invention, the term “run” refers to a length or segment of blanket 44 between any two given rollers over which blanket 44 is guided.
In some embodiments, during installation blanket 44 may be adhered edge to edge to form a continuous blanket loop (not shown). An example of a method and a system for the installation of the seam is described in detail in U.S. Provisional Application 62/532,400, whose disclosure is incorporated herein by reference.
In some embodiments, image forming station 60 typically comprises multiple print bars 62, each mounted (e.g., using a slider) on a frame (not shown) positioned at a fixed height above the surface of the upper run of blanket 44. In some embodiments, each print bar 62 comprises a strip of print heads as wide as the printing area on blanket 44 and comprises individually controllable print nozzles.
In some embodiments, image forming station 60 may comprise any suitable number of bars 62, each bar 62 may contain a printing fluid, such as an aqueous ink of a different color. The ink typically has visible colors, such as but not limited to cyan, magenta, red, green, blue, yellow, black and white. In the example of
In some embodiments, the print heads are configured to jet ink droplets of the different colors onto the surface of blanket 44 so as to form the ink image (not shown) on the surface of blanket 44.
In some embodiments, different print bars 62 are spaced from one another along the movement axis of blanket 44, represented by an arrow 94. In this configuration, accurate spacing between bars 62, and synchronization between directing the droplets of the ink of each bar 62 and moving blanket 44 are essential for enabling correct placement of the image pattern.
In the context of the present disclosure and in the claims, the terms “inter-color pattern placement,” “pattern placement accuracy,” color-to-color registration,” “C2C registration” “bar to bar registration.” and “color registration” are used interchangeably and refer to any placement accuracy of two or more colors relative to one another.
In some embodiments, system 10 comprises heaters, such as hot gas or air blowers 66, which are positioned in between print bars 62, and are configured to partially dry the ink droplets deposited on the surface of blanket 44. This hot air flow between the print bars may assist, for example, in reducing condensation at the surface of the print heads and/or in handling satellites (e.g., residues or small droplets distributed around the main ink droplet), and/or in preventing blockage of the inkjet nozzles of the print heads, and/or in preventing the droplets of different color inks on blanket 44 from undesirably merging into one another. In some embodiments, system 10 comprises a drying station 64, configured to blow hot air (or another gas) onto the surface of blanket 44. In some embodiments, drying station comprises air blowers 68 or any other suitable drying apparatus.
In drying station 64, the ink image formed on blanket 44 is exposed to radiation and/or to hot air in order to dry the ink more thoroughly, evaporating most or all of the liquid carrier and leaving behind only a layer of resin and coloring agent which is heated to the point of being rendered tacky ink film.
In some embodiments, system 10 comprises a blanket module 70 comprising a rolling ITM, such as a blanket 44. In some embodiments, blanket module 70 comprises one or more rollers 78, wherein at least one of rollers 78 comprises an encoder (not shown), which is configured to record the position of blanket 44, so as to control the position of a section of blanket 44 relative to a respective print bar 62. In some embodiments, the encoder of roller 78 typically comprises a rotary encoder configured to produce rotary-based position signals indicative of an angular displacement of the respective roller.
Additionally or alternatively, blanket 44 may comprise an integrated encoder (not shown) for controlling the operation of various modules of system 10. The integrated encoder is described in detail, for example, in U.S. Provisional Application 62/689,852, whose disclosure is incorporated herein by reference.
In some embodiments, blanket 44 is guided over rollers 76 and 78 and a powered tensioning roller, also referred to herein as a dancer 74. Dancer 74 is configured to control the length of slack in blanket 44 and its movement is schematically represented by a double sided arrow. Furthermore, any stretching of blanket 44 with aging would not affect the ink image placement performance of system 10 and would merely require the taking up of more slack by tensioning dancer 74.
In some embodiments, dancer 74 may be motorized. The configuration and operation of rollers 76 and 78, and dancer 74 are described in further detail, for example, in U.S. Patent Application Publication 2017/0008272 and in the above-mentioned PCT International Publication WO 2013/132424, whose disclosures are all incorporated herein by reference.
In impression station 84, blanket 44 passes between an impression cylinder 82 and a pressure cylinder 90, which is configured to carry a compressible blanket.
In some embodiments, system 10 comprises a control console 12, which is configured to control multiple modules of system 10, such as blanket module 70, image forming station 60 located above blanket module 70, and a substrate transport module 80 located below blanket module 70.
In some embodiments, console 12 comprises a processor 20, typically a general-purpose computer, with suitable front end and interface circuits for interfacing with a controller 54, via a cable 57, and for receiving signals therefrom. In some embodiments, controller 54, which is schematically shown as a single device, may comprise one or more electronic modules mounted on system 10 at predefined locations. At least one of the electronic modules of controller 54 may comprise an electronic device, such as control circuitry or a processor (not shown), which is configured to control various modules and stations of system 10. In some embodiments, processor 20 and the control circuitry may be programmed in software to carry out the functions that are used by the printing system, and store data for the software in a memory 22. The software may be downloaded to processor 20 and to the control circuitry in electronic form, over a network, for example, or it may be provided on non-transitory tangible media, such as optical, magnetic or electronic memory media.
In some embodiments, console 12 comprises a display 34, which is configured to display data and images received from processor 20, or inputs inserted by a user (not shown) using input devices 40. In some embodiments, console 12 may have any other suitable configuration, for example, an alternative configuration of console 12 and display 34 is described in detail in U.S. Pat. No. 9,229,664, whose disclosure is incorporated herein by reference.
In some embodiments, processor 20 is configured to display on display 34, a digital image 42 comprising one or more segments (not shown) of image 42 and various types of test patterns (described in detail below) stored in memory 22.
In some embodiments, blanket treatment station 52, also referred to herein as a cooling station, is configured to treat the blanket by, for example, cooling it and/or applying a treatment fluid to the outer surface of blanket 44, and/or cleaning the outer surface of blanket 44. At blanket treatment station 52 the temperature of blanket 44 can be reduced to a desired value before blanket 44 enters image forming station 60. The treatment may be carried out by passing blanket 44 over one or more rollers or blades configured for applying cooling and/or cleaning and/or treatment fluid on the outer surface of the blanket. In some embodiments, processor 20 is configured to receive, e.g., from temperature sensors (not shown), signals indicative of the surface temperature of blanket 44, so as to monitor the temperature of blanket 44 and to control the operation of blanket treatment station 52. Examples of such treatment stations are described, for example, in PCT International Publications WO 2013/132424 and WO 2017/208152, whose disclosures are all incorporated herein by reference.
Additionally or alternatively, treatment fluid may be applied by jetting, prior to the ink jetting at the image forming station.
In the example of
In the example of
In some embodiments, the lower run of blanket 44 selectively interacts at impression station 84 with impression cylinder 82 to impress the image pattern onto the target flexible substrate compressed between blanket 44 and impression cylinder 82 by the action of pressure of pressure cylinder 90. In the case of a simplex printer (i.e., printing on one side of sheet 50) shown in
In other embodiments, module 80 may comprise two impression cylinders so as to permit duplex printing. This configuration also enables conducting single sided prints at twice the speed of printing double sided prints. In addition, mixed lots of single and double sided prints can also be printed. In alternative embodiments, a different configuration of module 80 may be used for printing on a continuous web substrate. Detailed descriptions and various configurations of duplex printing systems and of systems for printing on continuous web substrates are provided, for example, in U.S. Pat. Nos. 9,914,316 and 9,186,884, in PCT International Publication WO 2013/132424, in U.S. Patent Application Publication 2015/0054865, and in U.S. Provisional Application 62/596,926, whose disclosures are all incorporated herein by reference.
As briefly described above, sheets 50 or continuous web substrate (not shown) are carried by module 80 from input stack 86 and pass through the nip (not shown) located between impression cylinder 82 and pressure cylinder 90. Within the nip, the surface of blanket 44 carrying the ink image is pressed firmly, e.g., by compressible blanket (not shown), of pressure cylinder 90 against sheet 50 (or other suitable substrate) so that the ink image is impressed onto the surface of sheet 50 and separated neatly from the surface of blanket 44. Subsequently, sheet 50 is transported to output stack 88.
In the example of
In some embodiments, impression cylinder 82 is periodically engaged to and disengaged from blanket 44 to transfer the ink images from moving blanket 44 to the target substrate passing between blanket 44 and impression cylinder 82. In some embodiments, system 10 is configured to apply torque to blanket 44 using the aforementioned rollers and dancers, so as to maintain the upper run taut and to substantially isolate the upper run of blanket 44 from being affected by any mechanical vibrations occurred in the lower run.
In some embodiments, system 10 comprises an image quality control station 55, also referred to herein as an automatic quality management (AQM) system, which serves as a closed loop inspection system integrated in system 10. In some embodiments, station 55 may be positioned adjacent to impression cylinder 82, as shown in
In some embodiments, station 55 comprises a camera (not shown), which is configured to acquire one or more digital images of the aforementioned ink image printed on sheet 50. In some embodiments, the camera may comprises any suitable image sensor, such as a Contact Image Sensor (CIS) or a Complementary metal oxide semiconductor (CMOS) image sensor, and a scanner comprising a slit having a width of about one meter or any other suitable width.
In some embodiments, station 55 may comprise a spectrophotometer (not shown) configured to monitor the quality of the ink printed on sheet 50.
In some embodiments, the digital images acquired by station 55 are transmitted to a processor, such as processor 20 or any other processor of station 55, which is configured to assess the quality of the respective printed images. Based on the assessment and signals received from controller 54, processor 20 is configured to control the operation of the modules and stations of system 10. In the context of the present invention and in the claims, the term “processor” refers to any processing unit, such as processor 20 or any other processor connected to or integrated with station 55, which is configured to process signals received from the camera and/or the spectrophotometer of station 55. Note that the signal processing operations, control-related instructions, and other computational operations described herein may be carried out by a single processor, or shared between multiple processors of one or more respective computers.
In some embodiments, station 55 is configured to inspect the quality of the printed images and test pattern so as to monitor various attributes, such as but not limited to full image registration with sheet 50, color-to-color registration, printed geometry, image uniformity, profile and linearity of colors, and functionality of the print nozzles. In some embodiments, processor 20 is configured to automatically detect geometrical distortions or other errors in one or more of the aforementioned attributes. For example, processor 20 is configured to compare between a design version (also referred to herein as a source image) of a given digital image and a digital image of the printed version of the given image, which is acquired by the camera.
In other embodiments, processor 20 may apply any suitable type image processing software, e.g., to a test pattern, for detecting distortions indicative of the aforementioned errors. In some embodiments, processor 20 is configured to analyze the detected distortion in order to apply a corrective action to the malfunctioning module, and/or to feed instructions to another module or station of system 10, so as to compensate for the detected distortion.
In some embodiments, by acquiring images of the testing marks printed at the bevels of sheet 50, station 55 is configured to measure various types of distortions, such as C2C registration, image-to-substrate registration, different width between colors referred to herein as “bar to bar width delta” or as “color to color width difference”, various types of local distortions, and front-to-back registration errors (in duplex printing). In some embodiments, processor 20 is configured to: (i) sort out, e.g., to a rejection tray (not shown), sheets 50 having a distortion above a first predefined set of thresholds, (ii) initiate corrective actions for sheets 50 having a distortion above a second, lower, predefined set of threshold, and (iii) output sheets 50 having minor distortions, e.g., below the second set of thresholds, to output stack 88.
In some embodiments, processor 20 is further configured to detect, e.g., by analyzing a pattern of the printed inspection marks, additional geometric distortion such as scaling up or down, skew, or a wave distortion formed in at least one of an axis parallel to and an axis orthogonal to the movement axis of blanket 44 as will be described in detail in
In some embodiments, processor 20 is configured to analyze the signals acquired by station 55 so as to monitor the nozzles of image forming station 60. By printing a test pattern of each color of station 60, processor 20 is configured to identify various types of defects indicative of malfunctions in the operation of the respective nozzles.
For example, absence of ink in a designated location in the test pattern is indicative of a missing or blocked nozzle. A shift of a printed pattern (relative to the original design, also referred to herein as a source image) is indicative of inaccurate positioning of a respective print bar 62 or of one or more nozzles of the respective print bar. Non-uniform thickness of a printed feature of the test pattern is indicative of width differences between respective print bars 62, referred to above as bar to bar width delta.
In some embodiments, processor 20 is configured to detect, based on signals received from the spectrophotometer of station 55, deviations in the profile and linearity of the printed colors.
In some embodiments, processor 20 is configured to detect, based on the signals acquired by station 55, various types of defects: (i) in the substrate (e.g., blanket 44 and/or sheet 50), such as a scratch, a pin hole, and a broken edge, and (ii) printing-related defects, such as irregular color spots, satellites, and splashes.
In some embodiments, processor 20 is configured to detect these defects by comparing between a section of the printed and a respective reference section of the original design, also referred to herein as a master or a source image. Processor 20 is further configured to classify the defects, and, based on the classification and predefined criteria, to reject sheets 50 having defects that are not within the specified predefined criteria.
In some embodiments, the processor of station 55 is configured to decide whether to stop the operation of system 10, for example, in case the defect density is above a specified threshold. The processor of station 55 is further configured to initiate a corrective action in one or more of the modules and stations of system 10, as described above. The corrective action may be carried out on-the-fly (while system 10 continue the printing process), or offline, by stopping the printing operation and fixing the problem in a respective modules and/or station of system 10. In other embodiments, any other processor or controller of system 10 (e.g., processor 20 or controller 54) is configured to start a corrective action or to stop the operation of system 10 in case the defect density is above a specified threshold.
Additionally or alternatively, processor 20 is configured to receive, e.g., from station 55, signals indicative of additional types of defects and problems in the printing process of system 10. Based on these signals processor 20 is configured to automatically estimate the level of pattern placement accuracy and additional types of defects not mentioned above. In other embodiments, any other suitable method for examining the pattern printed on sheets 50 (or on any other substrate described above), can also be used, for example, using an external (e.g., offline) inspection system, or any type of measurements jig and/or scanner. In these embodiments, based on information received from the external inspection system, processor 20 is configured to initiate any suitable corrective action and/or to stop the operation of system 10.
The configuration of system 10 is simplified and provided purely by way of example for the sake of clarifying the present invention. The components, modules and stations described in printing system 10 hereinabove and additional components and configurations are described in detail, for example, in U.S. Pat. Nos. 9,327,496 and 9,186,884, in PCT International Publications WO 2013/132438, WO 2013/132424 and WO 2017/208152, in U.S. Patent Application Publications 2015/0118503 and 2017/0008272, whose disclosures are all incorporated herein by reference.
The particular configurations of system 10 is shown by way of example, in order to illustrate certain problems that are addressed by embodiments of the present invention and to demonstrate the application of these embodiments in enhancing the performance of such systems. Embodiments of the present invention, however, are by no means limited to this specific sort of example systems, and the principles described herein may similarly be applied to any other sorts of printing systems.
Note that the description of
The phenomena of wave distortion is caused by various errors, such as but not limited to (i) erroneous positioning of one or more print bars 62 in image forming station 60 (ii) deviation from the specified motion profile of blanket 44, and (iii) deviation from the specified relative velocity between blanket 44 and sheet 50 at impression station 84. As described above, print bars 62 are positioned at a predefined distance from one another along the movement axis of blanket 44, which is represented by arrow 94 and also referred to herein as X axis. Each print bar 62 is mounted on the frame on an axis orthogonal to arrow 94, referred to herein as Y axis.
The distortions described above, and additional errors, may result in a wavy pattern of the printed features. Note that typically the wavy pattern has two components: (i) a common wave of all colors. e.g., due to the aforementioned deviation at impression station 84, and (ii) different waves formed in each color image are caused, for example, by the erroneous positioning of one or more print bars 62 and/or due to temporary variation in the velocity of blanket 44, for example, when the upper run passes between the black and the cyan print bars.
Additional types of distortions may cause deviation of the printed width between bars, also referred to as bar to bar width delta, and/or shift (e.g., in Y axis) of the position of the droplets jetted by at least one bar, also referred to herein as “bar to bar Y position delta” or as “color to color position difference.” Based on the above, the wave distortion has two components, distortion along X axis that changes with the position on Y axis, referred to herein as wave X(Y), and distortion along Y axis that changes with the position on X axis, referred to herein as wave Y(X). Further details about the distortion and correction of waves X(Y) and Y(X) are depicted in
The process sequence for correcting the wave distortion begins with a schematic illustration of digital image 200. As described in
In the example distortion shown in image 200, images 202 and 204 have, relative to one another, bar to bar position delta in Y axis, and bar to bar width delta. In addition, at least one of images 202 and 204 has one or more additional distortions, such as (a) a trapeze-shape, (b) tilt, (c) a displacement in Y axis relative to the substrate (e.g., sheet 50), also referred to herein as Im2SubY, and (d) a displacement of a given color in X axis relative to any suitable reference, e.g., another color, also referred to herein as bar to bar Y position delta.
In some embodiments, at a step 1 processor 20 applies, to at least one of images 202 and 204, a linear offset and/or a non-linear shifting so as to compensate for part of the wave Y(X) distortion caused, for example, by bending and stretching of the flexible ITM and from deviation from the specified velocity at impression station 84.
In some embodiments, processor 20 is configured to estimate, based on image 200 and relative to the source image mentioned in
In an embodiment, at a step 2 processor 20 corrects the bar to bar Y position delta between the respective magenta and cyan print bars. In this embodiment, processor 20 shifts images 202 and 204 relative to one another, as shown by arrows 220 having similar length, thereby aligning respective ends 208 and 210 with one another. In some embodiments, processor 20 may select, among all color images, a reference image as the image mostly shifted along Y axis. In the example of step 1, end 208 serves as a reference so that end 210 is shifted in the direction of arrow 94, also referred to herein as the right direction.
In some embodiments, processor 20 is configured to carry out steps 1 and 2 simultaneously. In other embodiments, steps 1 and 2 may be carried out sequentially, in the order described above, or in a reversed order in which step 2 is carried out before step 1. After concluding steps 1 and 2, magenta image 202 and cyan image 204 are aligned at respective ends 208 and 210, yet, other ends, such as respective ends 222 and 224 are not aligned due to a geometric distortion, such as bar to bar width delta between cyan image 204 and magenta image 202. The bar to bar width delta may also appear as a trapeze shape or as a trapeze additionally distorted by other types of linear and/or non-linear distortions, or as a distortion having any other type of linear or non-linear shape, of at least one of images 202 and 204 as shown at step 2.
In some embodiments, at a step 3 processor 20 identifies, based on image 200, which color image among images 202 and 204 has the largest print bar width. In other words, the processor identifies which print bar 62 is jetting droplets that eventually print the broadest pixels or pixel bars.
As shown at step 2, the dashed line of magenta image 202 has the largest width among all colors images. Note that in the example of
In some embodiments, processor 20 is configured to calculate, at image 204, one or more pixel locations 228, such that when one or more dummy pixels are implanted in the cyan image at locations 228, the implanted dummy pixels compensate for the estimated geometric distortion of cyan image 204 relative to magenta image 202. As shown at step 3, the dummy pixels are implanted at pixel locations 228 so as to compensate for the geometric distortion of cyan image 202. As a result of the dummy pixel implantation, end 224 of cyan image 204 is moved towards end 222 of magenta image 202, and eventually is aligned therewith.
After implanting the dummy pixels at locations 228, images 202 and 204 are aligned with one another, but have a trapeze shape or any other shape formed, initially by the bar to bar width delta and other distortions, and subsequently, by the implanted dummy pixels at pixel locations 228.
In some embodiments, at a step 4, processor 20 is configured to calculate one or more shape-correcting locations 230, such that when one or more dummy pixels 232 and 234 are implanted in respective images 202 and 204 at locations 230, the increased width of the implanted dummy pixels compensates for the trapeze distortion and converts the trapeze shape of images 202 and 204 to a rectangular or parallelogram shape. As shown at steps 3 and 4, the dummy pixels may be implanted as a bar of pixels along a section of a column of images 202 and 204. The implantation pixel bars will be described in more details in
Similarly to the sequence described at steps 1 and 2 above, processor 20 is configured to carry out steps 3 and 4 simultaneously. In other embodiments, steps 3 and 4 may be carried out sequentially, in the order described above, or in a reversed order. In the example embodiment of
In this embodiment, the shifts described at steps 1 and 2, and the implants described at steps 3 and 4 are performed from left to right. In other embodiments, the shifting and implanting steps may be carried out in any suitable direction, for example, at step 1 end 208 is shifted to the left side so as to be aligned with end 210.
Additionally or alternatively, the shifting and implanting steps may be carried out vertically at any suitable direction, so as to compensate for distortions. For example, the upper ends of images 202 and 204 may be aligned after steps 1 and 2, and the lower ends of images 202 and 204 are moved as a result of the dummy pixels implanting processes carried out at steps 3 and 4.
In alternative embodiments of steps 3 and 4, the dummy pixels may be implanted as a bar of pixels along a section of a row of images 202 and 204. Furthermore, the implanting of the bar of pixels described above, may be carried out along a section of a column and/or a row of the digital image, such that the compensation for the distortion may be carried out in one axis or in two axes (e.g., X and Y) simultaneously or sequentially.
In other embodiments, the pixels locations may be arranged using any other suitable configuration, for example, in a diagonal line geometry, or in a staircase.
In some embodiments, at a step 5 that concludes the process sequence for correcting the distortions in image 200, a set of scaling and shifting operations are carried out on images 202 and 204 so as to compensate for additional sources of wave X(Y) distortion and to align the magenta and cyan images relative to sheet 50 by correcting their displacements in Y axis (i.e., Im2SubY) and/or in X axis relative to sheet 50.
At a distortion estimation step 254, processor 20 estimates, based on digital image 200, a geometrical distortion in the printed image, as described in the raw image of
At a pixel location calculation step 258, processor 20 calculates one or more pixel locations (e.g., pixel locations 228 of
At a printing step 262 that concludes method 250, system 10 receives printing instructions from processor 20 and prints the subsequent digital image having the corrected distortion, as described in step 5 of
The method begins with a printed frame 300, which comprises image 306 and testing sides 302 and 304 located adjacent to image 306, at the left and right margins of frame 300, respectively. In some embodiments, side 302 comprises five registration frames 310, 320, 330, 340 and 350 designed along testing side 302. In the example of
In some embodiments, frame 300 is printed on sheet 50 and subsequently, station 55 acquires and sends a digital format of frame 300 to processor 20 or to any other processor as described in
In some embodiments, processor 20 inserts a constant offset to each registration mark so as to align marks 312, 314, 316 and 318 to a common position, e.g., at a center of gravity (COG) 303 of frame 301. Processor 20 is further configured to produce, based on the registration frames and registration marks, a set of interpolated curves between the respective marks of each color, for example between marks 312 of frames 310, 320, 330, 340 and 350.
As described above, in the design of the registration frames there is a deliberate shift between the registration marks so that they will not be printed on top of one another. In some embodiment, processor 20 is configured to align the location of all the registration marks of each frame to the common position per the predetermined graphics offset, and subsequently, to determine which registration mark is shifted (e.g., relative to the COG).
The interpolated curves are referred to herein as wave profile curves representing the shift distortion occurred during the printing for each respective color of system 10. The term “wave profile curve” is also referred to below simply as “curve” for brevity.
In the example of
As described in
In another embodiment, processor 20 may shift all curves to align with the rightmost curve (e.g., curve 368 in the example of
In some embodiments, processor 20 is configured to calculate, for each color image, a shift matrix that compensates for the shift distortion caused during the printing to each respective curve. Processor 20 is further configured to divide curve 360 to multiple sections that serve as correction strips 372A-372D such that the shift matrix comprises the calculated shift for each of the correction strip. In an embodiment, processor 20 is configured to set and use any suitable number of correction strips, each strip 372 may have any suitable size, which may be similar to or different from the size of the other strips.
In the example of
As shown in
In other embodiments, an alternative method may be used for calculating the shift matrix in an image 376 to be printed in system 10. Image 376 may replace, for example, image 306 of frame 300, or image 42 of
In some embodiments, printed frame 333 comprises image 376 and at least three testing columns 373, 374 and 375. In some embodiments, testing columns 373 and 374, which are located, respectively, at the left and right margins of frame 333, may replace, for example, testing sides 302 and 304, respectively. In some embodiments, columns 373 and 374 may comprise, each, multiple registration frames, such as registration frames 310, 320, 330, 340 and 350. As described above, each registration frame may comprise four registration marks 312, 314, 316 and 318 designed in four respective different colors, such as C, M, Y and K, or any other suitable number of registration marks having any suitable respective colors and arranged in the registration frames using any suitable configuration.
In some embodiments, registration frame 333 may comprise one or more additional testing columns, such as testing column 375, disposed within the interior of image 376. Testing column 375 may comprise multiple registration frames, such as registration frames 310, 320, 330, 340 and 350 described above. In the example of frame 333, testing column 333 may divide image 376 into two sections, a section 377 between testing columns 373 and 375, and a section 378 between testing columns 375 and 374.
In some embodiments, frame 333 is printed on sheet 50 and subsequently, station 55 or any other imaging apparatus, acquires and sends a digital format of frame 333, e.g., to processor 20, as described in
In such embodiments, the wave profile curves represent the shift distortion occurred within section 377, during the printing of each color of system 10. Similarly, and using the same techniques, processor 20 produces, based on the registration frames and registration marks of testing column 375, a set of wave profile curves representing the shift distortion occurred for each color within section 378. In other words, by increasing the frequency of registration frames and marks within frame 333, processor 20 may increase the number of the produced wave profile curves. In the example of frame 300, processor 20 produces one set of profile curves 362, 364, 366 and 368 for the entire area of image 306. In the example of frame 333, however, by having testing column 375 processor 20 may improve the distortion correction resolution within image 376, by producing two respective sets of wave profile curves (such as curves 362, 364, 366 and 368) and two respective shift matrices (such as curves 392, 394, 396 and 398) for sections 377 and 378 of image 376.
The configuration of frame 333 is provided by way of example, in order to illustrate certain problems, such as correcting distortion in image printing, which are addressed by embodiments of the present invention and to demonstrate the application of these embodiments in enhancing the performance of system 10. Embodiments of the present invention, however, are by no means limited to this specific sort of example digital printing system, and the principles described herein may similarly be applied to other sorts of digital printing systems.
In other embodiments, frame 333 may comprise additional registration frames, such as registration frame 310, which may be disposed in image 376 using any suitable arrangement. In an example embodiment, frame 333 may comprise additional testing columns, such as testing column 375, disposed within the interior of image 376. For example, by having testing columns 373 and 374 at the left and right margins, and three testing columns disposed within the interior of image 376, processor 20 may produce four sets of wave profile curves and shift matrices for respective sections of image 376.
In other embodiments, frame 333 may comprise, in addition to or instead of any of testing columns 374-376, multiple registration frames, such as registration frame 310, which may be arranged across image 376 and the margins thereof, using any suitable configuration. In such embodiments, processor 20 may divide frame 333 to any suitable number of sections and may produce sets of wave profile curves and shift matrices for the respective number of sections of image 376.
In some embodiments, the method begins with acquiring raw positions of registration frames 410, 420, 430, 440 and 450 located at side 304. Note that the raw positions are acquired by station 55 together with the acquisition of the corresponding frames of side 302 (e.g., frames 310, 320, 330, 340 and 350). Each frame of side 304 comprises marks 411, 413, 415 and 417 corresponding, by design, to marks 312, 314, 316 and 318 of registration frames 310, 320, 330, 340 and 350.
In some embodiments, processor 20 inserts a constant offset to each registration mark so as to align marks 411, 413, 415 and 417 to a common position using the same techniques described in
In some embodiments, processor 20 applies the calculated shift matrix to curves 382, 384, 386 and 388 so as to calculate respective wave profile curves 462, 464, 466 and 468 of the respective cyan, magenta, yellow and black images. Note that the applied shift matrix was calculated based on the registration frames of left end 302, and is applied to the registration frames of right end 306.
As shown at step 3 of
In some embodiments, after applying the calculated shift matrix processor 20 identifies, based on the shape of each color image, which print bar 62 of a given color is jetting droplets that eventually print the largest bar width. In these embodiments, the image having the largest print bar width may serve as a reference for all other colors that will be corrected to align with the image of the given color. In other words, the implanted dummy pixels compensate for the bar to bar width delta, thus, compensating for the wave Y(X) and trapeze distortions as well as for other local distortions.
In other embodiments, processor 20 is configured to compensate for the distortion in the digital image (e.g., image 306) by removing pixels from the digital image instead of or in addition to implanting the dummy pixels in the respective digital image.
In other embodiments, processor 20 is configured to identify other distortions, such as bar to bar Y position delta as well as any local distortion. Processor 20 is configured to align all color images by implanting the dummy pixels at the calculated pixel locations. In the example of
For example, in the cyan image that is represented by curve 462, processor 20 is configured to calculate pixel locations that, when one or more dummy pixels are implanted therein, compensate for the geometric distortion of curve 462 relative to curve 360. The geometric distortions in the cyan image are represented by arrows 412, 422, 432 and 442, and are corrected by implanting the one or more dummy pixels at the respective pixel locations. Similarly, arrows 414, 424, 434444 and 454 show the distortion in the magenta image represented by curve 464.
In some embodiments, the pixel locations are calculated for each of correction strips 372A-372D. As shown in
In some embodiments, after implanting the dummy pixels, curves 462, 464, 466 and 468 are aligned with curve 360 and appear as a merged as a calculated left end 470. As described in
As described for frame 333 shown in
In some embodiments, processor 20 applies the first calculated shift matrix (such as curves 392, 394, 396 and 398) to the first set of interpolated curves (such as curves 382, 384, 386 and 388), so as to calculate respective first set of wave profile curves (such as profile curves 462, 464, 466 and 468) of the respective C, M, Y and K images of section 377. Similarly, processor 20 applies the second calculated shift matrix to the second set of interpolated curves, so as to calculate respective second set of wave profile curves of the respective C, M, Y and K images of section 378.
Note that the first shift matrix that was produced for correcting section 377, was calculated based on the registration frames of testing columns 373, and is applied to the registration frames of testing columns 375. Similarly, the second shift matrix that was produced for correcting section 378, was calculated based on the registration frames of testing columns 375, and is applied to the registration frames of testing columns 374.
In some embodiments, as described at step 3 of
As described above for frame 300, the geometric distortions in the CMYK images are corrected by implanting the one or more dummy pixels at the respective pixel locations. In an example embodiment of frame 333, the first and second sets of geometric distortions are produced in the CMYK images of sections 377 and 378, respectively. The first and second sets of geometric distortions are corrected by implanting the one or more dummy pixels at the first and second pixel locations, respectively.
In some embodiments, by dividing image 376 to multiple sections, such as sections 377 and 378, processor 20 may improve the resolution of the geometric distortion estimation (as described in
In some embodiments, the pixel locations can be similar for all colors images in case of a need to compensate for effects that are common to all color images.
The sequence begins at a step 1 with an original version of cyan digital image 500 (also referred to herein as a source image) having cyan pixels 502 arranged, for example, in an “O” shape at the center of image 500. As described in the process sequence of
At a step 2 (note that this is a different step 2 from the step 2 described in
For example, a dummy pixel that will be implanted at location 506 will shift two cyan pixels 512 and two cyan pixels 510 of the same row, by one pixel location to the right. Similarly, a dummy pixel that will be implanted at location 514 will shift two cyan pixels 516 of the same row, by one pixel location to the right. Note that two cyan pixels 512 are located left of location 514, and therefore will not be affected by the implantation in location 514 and will remain in their original location shown in image 500 of step 1.
At a step 3 that corresponds to step 3 of
As described above, the color of each implanted dummy pixel is determined by processor 20 and/or controller 54 based on any suitable algorithm. For example, the color and the width may be similar to the nearest neighbor pixel located, at the same row, one position to the left of the dummy pixel location. Therefore, in the example of cyan image 500, the pixels will have the droplet size value defined by the level of the waveform as described in
Step 3 concludes the distortion correction of the cyan image and carried out in a similar manner for all other colors. As described at step 4 of
In some embodiments, processor 20 is configured to set the pixel locations at predefined locations with respect to the estimated geometric distortion, implemented, for example, using a lookup table (LUT). In an example embodiment of
In some embodiments, setting the pixel location as percentage of the valid width allows applying the same pixel locating algorithm for any valid width caused by the width of the digital image, and thus, the difference between the respective digital image and sheet 50. In other embodiments, the calculated positions of the pixel locations and the method determining thereof may be carried out using any other suitable technique (e.g., not necessarily same locations for all colors).
In some embodiments, the position of the pixel locations may be constant at each strip but different between the strips, using a method referred to herein as a semi-random algorithm. For example, in strips 702 and 708 the respective positions of the pixel locations 712 and 724 are set in accordance with the LUT described in
In some embodiments, a different shift relative to line 714, is carried out in strip 706. In these embodiments, pixel locations 722 are shifted by another predefined distance illustrated by an arrow 720. In other embodiments, processor 20 may determine any other suitable direction of the predefined shift, for example, in a direction opposite to arrow 720.
The method described in
Reference is now made to a frame 820. In some embodiments, processor 20 is configured to scale the size, e.g., width, of image 810 to the specified width of the original digital image, which is illustrated by a double-headed arrow 828. Processor 20 is further configured to center image 810 relative to sheet 50, by setting predefined non-printable areas having a specified width, illustrated by double-headed arrows 822.
In some embodiments, processor 20 (or any other processor coupled to or integrated with system 10) is configured set the width of image 810 by scaling the synthetic color image. The processor is further configured to center image 810 by shifting image 810 relative to sheet 50. Additionally or alternatively, the processor is configured to modify mechanically controlled parameters, e.g., moving the loading position of sheet 50 along the Y axis. Note that in some cases, it may be required, by design, to position the COG of the digital image at a predefined shift relative to the COG of sheet 50. In an embodiment, processor 20 is configured to set uneven non-printable areas between the edges of the digital image (e.g., image 810, or frame 820) and sheet 50.
In some embodiments, the methods described above may be applied, for example, in duplex printing systems in case of misalignment between images printed on different sides of the same sheet.
In some embodiments, system 10 may be defined as processor 20 and a printing subsystem, which represents all the other parts, modules and stations of system 10 but processor 20. In these embodiment, processor 20 is configured to estimate the geometric distortion and to calculate the pixel locations so as to correct the distortion by forming the subsequent digital image, and the printing subsystem is configured to print the subsequent digital image having the corrected geometric distortion.
Although the embodiments described herein mainly address correcting distortions in digital printing on sheets, the methods and systems described herein can also be used in other digital printing applications, such as in digital printing on a continuous web and/or a long print which contains a larger number of registration marks and/or registration frames.
It will thus be appreciated that the embodiments described above are cited by way of example, and that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and sub-combinations of the various features described hereinabove, as well as variations and modifications thereof which would occur to persons skilled in the art upon reading the foregoing description and which are not disclosed in the prior art. Documents incorporated by reference in the present patent application are to be considered an integral part of the application except that to the extent any terms are defined in these incorporated documents in a manner that conflicts with the definitions made explicitly or implicitly in the present specification, only the definitions in the present specification should be considered.
This application is U.S. National Phase of PCT Application PCT/IB2019/056746, which claims the benefit of U.S. Provisional Patent Application 62/717,957, filed Aug. 13, 2018. The disclosures of these related applications are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2019/056746 | 8/8/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/035766 | 2/20/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2839181 | Renner | Jun 1958 | A |
3011545 | Welsh et al. | Dec 1961 | A |
3053319 | Cronin et al. | Sep 1962 | A |
3697551 | Thomson | Oct 1972 | A |
3697568 | Boissieras et al. | Oct 1972 | A |
3889802 | Jonkers | Jun 1975 | A |
3898670 | Erikson et al. | Aug 1975 | A |
3947113 | Buchan et al. | Mar 1976 | A |
4009958 | Kurita et al. | Mar 1977 | A |
4093764 | Duckett et al. | Jun 1978 | A |
4172231 | D'Alayer et al. | Oct 1979 | A |
4293866 | Takita et al. | Oct 1981 | A |
4401500 | Hamada et al. | Aug 1983 | A |
4535694 | Fukuda | Aug 1985 | A |
4538156 | Durkee et al. | Aug 1985 | A |
4555437 | Tanck | Nov 1985 | A |
4575465 | Viola | Mar 1986 | A |
4586807 | Yuasa | May 1986 | A |
4642654 | Toganoh et al. | Feb 1987 | A |
4853737 | Hartley et al. | Aug 1989 | A |
4976197 | Yamanari et al. | Dec 1990 | A |
5012072 | Martin et al. | Apr 1991 | A |
5039339 | Phan et al. | Aug 1991 | A |
5062364 | Lewis et al. | Nov 1991 | A |
5075731 | Kamimura et al. | Dec 1991 | A |
5099256 | Anderson | Mar 1992 | A |
5106417 | Hauser et al. | Apr 1992 | A |
5109275 | Naka et al. | Apr 1992 | A |
5128091 | Agur et al. | Jul 1992 | A |
5190582 | Shinozuka et al. | Mar 1993 | A |
5198835 | Ando et al. | Mar 1993 | A |
5246100 | Stone et al. | Sep 1993 | A |
5264904 | Audi et al. | Nov 1993 | A |
5305099 | Morcos | Apr 1994 | A |
5320214 | Kordis | Jun 1994 | A |
5333771 | Cesario | Aug 1994 | A |
5349905 | Taylor et al. | Sep 1994 | A |
5352507 | Bresson et al. | Oct 1994 | A |
5365324 | Gu et al. | Nov 1994 | A |
5406884 | Okuda et al. | Apr 1995 | A |
5433541 | Hieda et al. | Jul 1995 | A |
5471233 | Okamoto et al. | Nov 1995 | A |
5532314 | Sexsmith | Jul 1996 | A |
5552875 | Sagiv et al. | Sep 1996 | A |
5575873 | Pieper et al. | Nov 1996 | A |
5587779 | Heeren et al. | Dec 1996 | A |
5608004 | Toyoda et al. | Mar 1997 | A |
5613669 | Grueninger | Mar 1997 | A |
5614933 | Hindman et al. | Mar 1997 | A |
5623296 | Fujino et al. | Apr 1997 | A |
5642141 | Hale et al. | Jun 1997 | A |
5660108 | Pensavecchia | Aug 1997 | A |
5677719 | Granzow | Oct 1997 | A |
5679463 | Visser et al. | Oct 1997 | A |
5683841 | Kato | Nov 1997 | A |
5698018 | Bishop et al. | Dec 1997 | A |
5723242 | Woo et al. | Mar 1998 | A |
5733698 | Lehman et al. | Mar 1998 | A |
5736250 | Heeks et al. | Apr 1998 | A |
5772746 | Sawada et al. | Jun 1998 | A |
5777576 | Zur et al. | Jul 1998 | A |
5777650 | Blank | Jul 1998 | A |
5780412 | Scarborough et al. | Jul 1998 | A |
5841456 | Takei et al. | Nov 1998 | A |
5859076 | Kozma et al. | Jan 1999 | A |
5865299 | Williams | Feb 1999 | A |
5880214 | Okuda | Mar 1999 | A |
5883144 | Bambara et al. | Mar 1999 | A |
5883145 | Hurley et al. | Mar 1999 | A |
5884559 | Okubo et al. | Mar 1999 | A |
5889534 | Johnson et al. | Mar 1999 | A |
5891934 | Moffatt et al. | Apr 1999 | A |
5895711 | Yamaki et al. | Apr 1999 | A |
5902841 | Jaeger et al. | May 1999 | A |
5923929 | Ben et al. | Jul 1999 | A |
5929129 | Feichtinger | Jul 1999 | A |
5932659 | Bambara et al. | Aug 1999 | A |
5935751 | Matsuoka et al. | Aug 1999 | A |
5978631 | Lee | Nov 1999 | A |
5978638 | Tanaka et al. | Nov 1999 | A |
5991590 | Chang et al. | Nov 1999 | A |
6004647 | Bambara et al. | Dec 1999 | A |
6009284 | Weinberger et al. | Dec 1999 | A |
6024018 | Darel et al. | Feb 2000 | A |
6024786 | Gore | Feb 2000 | A |
6033049 | Fukuda | Mar 2000 | A |
6045817 | Ananthapadmanabhan et al. | Apr 2000 | A |
6048114 | De Troz | Apr 2000 | A |
6053438 | Romano, Jr. et al. | Apr 2000 | A |
6055396 | Pang | Apr 2000 | A |
6059407 | Komatsu et al. | May 2000 | A |
6071368 | Boyd et al. | Jun 2000 | A |
6072976 | Kuriyama et al. | Jun 2000 | A |
6078775 | Arai et al. | Jun 2000 | A |
6094558 | Shimizu et al. | Jul 2000 | A |
6102538 | Ochi et al. | Aug 2000 | A |
6103775 | Bambara et al. | Aug 2000 | A |
6108513 | Landa et al. | Aug 2000 | A |
6109746 | Jeanmaire et al. | Aug 2000 | A |
6132541 | Heaton | Oct 2000 | A |
6143807 | Lin et al. | Nov 2000 | A |
6166105 | Santilli et al. | Dec 2000 | A |
6195112 | Fassler et al. | Feb 2001 | B1 |
6196674 | Takemoto | Mar 2001 | B1 |
6213580 | Segerstrom et al. | Apr 2001 | B1 |
6214894 | Bambara et al. | Apr 2001 | B1 |
6221928 | Kozma et al. | Apr 2001 | B1 |
6234625 | Wen | May 2001 | B1 |
6242503 | Kozma et al. | Jun 2001 | B1 |
6257716 | Yanagawa et al. | Jul 2001 | B1 |
6261688 | Kaplan et al. | Jul 2001 | B1 |
6262137 | Kozma et al. | Jul 2001 | B1 |
6262207 | Rao et al. | Jul 2001 | B1 |
6303215 | Sonobe et al. | Oct 2001 | B1 |
6316512 | Bambara et al. | Nov 2001 | B1 |
6318853 | Asano et al. | Nov 2001 | B1 |
6332943 | Herrmann et al. | Dec 2001 | B1 |
6335046 | Mackey | Jan 2002 | B1 |
6354700 | Roth | Mar 2002 | B1 |
6357869 | Rasmussen et al. | Mar 2002 | B1 |
6357870 | Beach et al. | Mar 2002 | B1 |
6358660 | Agler et al. | Mar 2002 | B1 |
6363234 | Landa et al. | Mar 2002 | B2 |
6364451 | Silverbrook | Apr 2002 | B1 |
6377772 | Chowdry et al. | Apr 2002 | B1 |
6383278 | Hirasa et al. | May 2002 | B1 |
6386697 | Yamamoto et al. | May 2002 | B1 |
6390617 | Iwao | May 2002 | B1 |
6396528 | Yanagawa | May 2002 | B1 |
6397034 | Tarnawskyj et al. | May 2002 | B1 |
6400913 | De et al. | Jun 2002 | B1 |
6402317 | Yanagawa et al. | Jun 2002 | B2 |
6405006 | Tabuchi | Jun 2002 | B1 |
6409331 | Gelbart | Jun 2002 | B1 |
6432501 | Yang et al. | Aug 2002 | B1 |
6438352 | Landa et al. | Aug 2002 | B1 |
6454378 | Silverbrook et al. | Sep 2002 | B1 |
6471803 | Pelland et al. | Oct 2002 | B1 |
6530321 | Andrew et al. | Mar 2003 | B2 |
6530657 | Polierer | Mar 2003 | B2 |
6531520 | Bambara et al. | Mar 2003 | B1 |
6551394 | Hirasa et al. | Apr 2003 | B2 |
6551716 | Landa et al. | Apr 2003 | B1 |
6554189 | Good et al. | Apr 2003 | B1 |
6559969 | Lapstun | May 2003 | B1 |
6575547 | Sakuma | Jun 2003 | B2 |
6586100 | Pickering et al. | Jul 2003 | B1 |
6590012 | Miyabayashi | Jul 2003 | B2 |
6605919 | Branecky | Aug 2003 | B1 |
6608979 | Landa et al. | Aug 2003 | B1 |
6623817 | Yang et al. | Sep 2003 | B1 |
6630047 | Jing et al. | Oct 2003 | B2 |
6633735 | Kellie et al. | Oct 2003 | B2 |
6639527 | Johnson | Oct 2003 | B2 |
6648468 | Shinkoda et al. | Nov 2003 | B2 |
6678068 | Richter et al. | Jan 2004 | B1 |
6682189 | May et al. | Jan 2004 | B2 |
6685769 | Karl et al. | Feb 2004 | B1 |
6704535 | Kobayashi et al. | Mar 2004 | B2 |
6709096 | Beach et al. | Mar 2004 | B1 |
6716562 | Uehara et al. | Apr 2004 | B2 |
6719423 | Chowdry et al. | Apr 2004 | B2 |
6720367 | Taniguchi et al. | Apr 2004 | B2 |
6755519 | Gelbart et al. | Jun 2004 | B2 |
6761446 | Chowdry et al. | Jul 2004 | B2 |
6770331 | Mielke et al. | Aug 2004 | B1 |
6789887 | Yang et al. | Sep 2004 | B2 |
6811840 | Cross | Nov 2004 | B1 |
6827018 | Hartmann et al. | Dec 2004 | B1 |
6881458 | Ludwig et al. | Apr 2005 | B2 |
6898403 | Baker et al. | May 2005 | B2 |
6912952 | Landa et al. | Jul 2005 | B1 |
6916862 | Ota et al. | Jul 2005 | B2 |
6917437 | Myers et al. | Jul 2005 | B1 |
6966712 | Trelewicz et al. | Nov 2005 | B2 |
6970674 | Sato et al. | Nov 2005 | B2 |
6974022 | Saeki | Dec 2005 | B2 |
6982799 | Lapstun | Jan 2006 | B2 |
6983692 | Beauchamp et al. | Jan 2006 | B2 |
7025453 | Ylitalo et al. | Apr 2006 | B2 |
7057760 | Lapstun et al. | Jun 2006 | B2 |
7084202 | Pickering et al. | Aug 2006 | B2 |
7128412 | King et al. | Oct 2006 | B2 |
7129858 | Ferran et al. | Oct 2006 | B2 |
7134953 | Reinke | Nov 2006 | B2 |
7160377 | Zoch et al. | Jan 2007 | B2 |
7204584 | Lean et al. | Apr 2007 | B2 |
7213900 | Ebihara | May 2007 | B2 |
7224478 | Lapstun et al. | May 2007 | B1 |
7265819 | Raney | Sep 2007 | B2 |
7271213 | Hoshida et al. | Sep 2007 | B2 |
7296882 | Buehler et al. | Nov 2007 | B2 |
7300133 | Folkins et al. | Nov 2007 | B1 |
7300147 | Johnson | Nov 2007 | B2 |
7304753 | Richter et al. | Dec 2007 | B1 |
7322689 | Kohne et al. | Jan 2008 | B2 |
7334520 | Geissler et al. | Feb 2008 | B2 |
7348368 | Kakiuchi et al. | Mar 2008 | B2 |
7360887 | Konno | Apr 2008 | B2 |
7362464 | Kitazawa | Apr 2008 | B2 |
7459491 | Tyvoll et al. | Dec 2008 | B2 |
7527359 | Stevenson et al. | May 2009 | B2 |
7575314 | Desie et al. | Aug 2009 | B2 |
7612125 | Muller et al. | Nov 2009 | B2 |
7655707 | Ma | Feb 2010 | B2 |
7655708 | House et al. | Feb 2010 | B2 |
7699922 | Breton et al. | Apr 2010 | B2 |
7708371 | Yamanobe | May 2010 | B2 |
7709074 | Uchida et al. | May 2010 | B2 |
7712890 | Yahiro | May 2010 | B2 |
7732543 | Loch et al. | Jun 2010 | B2 |
7732583 | Annoura et al. | Jun 2010 | B2 |
7808670 | Lapstun et al. | Oct 2010 | B2 |
7810922 | Gervasi et al. | Oct 2010 | B2 |
7845788 | Oku | Dec 2010 | B2 |
7867327 | Sano et al. | Jan 2011 | B2 |
7876345 | Houjou | Jan 2011 | B2 |
7910183 | Wu | Mar 2011 | B2 |
7911644 | Shiokawa | Mar 2011 | B2 |
7919544 | Matsuyama et al. | Apr 2011 | B2 |
7942516 | Ohara et al. | May 2011 | B2 |
7977408 | Matsuyama et al. | Jul 2011 | B2 |
7985784 | Kanaya et al. | Jul 2011 | B2 |
8002400 | Kibayashi et al. | Aug 2011 | B2 |
8012538 | Yokouchi | Sep 2011 | B2 |
8025389 | Yamanobe et al. | Sep 2011 | B2 |
8038284 | Hori et al. | Oct 2011 | B2 |
8041275 | Soria et al. | Oct 2011 | B2 |
8042906 | Chiwata et al. | Oct 2011 | B2 |
8059309 | Lapstun et al. | Nov 2011 | B2 |
8095054 | Nakamura | Jan 2012 | B2 |
8109595 | Tanaka et al. | Feb 2012 | B2 |
8119315 | Heuft et al. | Feb 2012 | B1 |
8122846 | Stiblert et al. | Feb 2012 | B2 |
8147055 | Cellura et al. | Apr 2012 | B2 |
8162428 | Eun et al. | Apr 2012 | B2 |
8177351 | Taniuchi et al. | May 2012 | B2 |
8184347 | Bradley | May 2012 | B2 |
8186820 | Chiwata | May 2012 | B2 |
8192904 | Nagai et al. | Jun 2012 | B2 |
8215762 | Ageishi | Jul 2012 | B2 |
8242201 | Goto et al. | Aug 2012 | B2 |
8256857 | Folkins et al. | Sep 2012 | B2 |
8263683 | Gibson et al. | Sep 2012 | B2 |
8264135 | Ozolins et al. | Sep 2012 | B2 |
8295733 | Imoto | Oct 2012 | B2 |
8303071 | Eun | Nov 2012 | B2 |
8303072 | Shibata et al. | Nov 2012 | B2 |
8304043 | Nagashima et al. | Nov 2012 | B2 |
8353589 | Ikeda et al. | Jan 2013 | B2 |
8434847 | Dejong et al. | May 2013 | B2 |
8460450 | Taverizatshy et al. | Jun 2013 | B2 |
8469476 | Mandel et al. | Jun 2013 | B2 |
8474963 | Hasegawa et al. | Jul 2013 | B2 |
8536268 | Karjala et al. | Sep 2013 | B2 |
8546466 | Yamashita et al. | Oct 2013 | B2 |
8556400 | Yatake et al. | Oct 2013 | B2 |
8693032 | Goddard et al. | Apr 2014 | B2 |
8711304 | Mathew et al. | Apr 2014 | B2 |
8714731 | Leung et al. | May 2014 | B2 |
8746873 | Tsukamoto et al. | Jun 2014 | B2 |
8779027 | Idemura et al. | Jul 2014 | B2 |
8802221 | Noguchi et al. | Aug 2014 | B2 |
8867097 | Mizuno | Oct 2014 | B2 |
8885218 | Hirose | Nov 2014 | B2 |
8891128 | Yamazaki | Nov 2014 | B2 |
8894198 | Hook et al. | Nov 2014 | B2 |
8919946 | Suzuki et al. | Dec 2014 | B2 |
9004629 | De Jong et al. | Apr 2015 | B2 |
9186884 | Landa et al. | Nov 2015 | B2 |
9207585 | Hatano et al. | Dec 2015 | B2 |
9227429 | LeStrange et al. | Jan 2016 | B1 |
9229664 | Landa et al. | Jan 2016 | B2 |
9264559 | Motoyanagi et al. | Feb 2016 | B2 |
9284469 | Song et al. | Mar 2016 | B2 |
9290016 | Landa et al. | Mar 2016 | B2 |
9327496 | Landa et al. | May 2016 | B2 |
9327519 | Larson et al. | May 2016 | B1 |
9353273 | Landa et al. | May 2016 | B2 |
9381736 | Landa et al. | Jul 2016 | B2 |
9446586 | Matos et al. | Sep 2016 | B2 |
9498946 | Landa et al. | Nov 2016 | B2 |
9505208 | Shmaiser et al. | Nov 2016 | B2 |
9517618 | Landa et al. | Dec 2016 | B2 |
9566780 | Landa et al. | Feb 2017 | B2 |
9568862 | Shmaiser et al. | Feb 2017 | B2 |
9643400 | Landa et al. | May 2017 | B2 |
9643403 | Landa et al. | May 2017 | B2 |
9776391 | Landa et al. | Oct 2017 | B2 |
9782993 | Landa et al. | Oct 2017 | B2 |
9849667 | Landa et al. | Dec 2017 | B2 |
9884479 | Landa et al. | Feb 2018 | B2 |
9902147 | Shmaiser et al. | Feb 2018 | B2 |
9914316 | Landa et al. | Mar 2018 | B2 |
10065411 | Landa et al. | Sep 2018 | B2 |
10175613 | Watanabe | Jan 2019 | B2 |
10179447 | Shmaiser et al. | Jan 2019 | B2 |
10190012 | Landa et al. | Jan 2019 | B2 |
10195843 | Landa et al. | Feb 2019 | B2 |
10201968 | Landa et al. | Feb 2019 | B2 |
10226920 | Shmaiser et al. | Mar 2019 | B2 |
10266711 | Landa et al. | Apr 2019 | B2 |
10289874 | Smith | May 2019 | B2 |
10300690 | Landa et al. | May 2019 | B2 |
10357963 | Landa et al. | Jul 2019 | B2 |
10357985 | Landa et al. | Jul 2019 | B2 |
10427399 | Shmaiser et al. | Oct 2019 | B2 |
10434761 | Landa et al. | Oct 2019 | B2 |
10477188 | Stiglic et al. | Nov 2019 | B2 |
10518526 | Landa et al. | Dec 2019 | B2 |
10569532 | Shmaiser et al. | Feb 2020 | B2 |
10569533 | Landa et al. | Feb 2020 | B2 |
10569534 | Shmaiser et al. | Feb 2020 | B2 |
10576734 | Landa et al. | Mar 2020 | B2 |
10596804 | Landa et al. | Mar 2020 | B2 |
10632740 | Landa et al. | Apr 2020 | B2 |
10642198 | Landa et al. | May 2020 | B2 |
10703094 | Shmaiser et al. | Jul 2020 | B2 |
10730333 | Landa et al. | Aug 2020 | B2 |
10759953 | Landa et al. | Sep 2020 | B2 |
10800936 | Landa et al. | Oct 2020 | B2 |
10828888 | Landa et al. | Nov 2020 | B2 |
10889128 | Landa et al. | Jan 2021 | B2 |
10926532 | Chechik et al. | Feb 2021 | B2 |
10933661 | Landa et al. | Mar 2021 | B2 |
10960660 | Landa et al. | Mar 2021 | B2 |
10981377 | Landa et al. | Apr 2021 | B2 |
10994528 | Burkatovsky | May 2021 | B1 |
11318734 | Chechik et al. | May 2022 | B2 |
11655382 | Landa et al. | May 2023 | B2 |
20010022607 | Takahashi et al. | Sep 2001 | A1 |
20010033688 | Taylor | Oct 2001 | A1 |
20020041317 | Kashiwazaki et al. | Apr 2002 | A1 |
20020061451 | Kita et al. | May 2002 | A1 |
20020064404 | Iwai | May 2002 | A1 |
20020102374 | Gervasi et al. | Aug 2002 | A1 |
20020121220 | Lin | Sep 2002 | A1 |
20020150408 | Mosher et al. | Oct 2002 | A1 |
20020164494 | Grant et al. | Nov 2002 | A1 |
20020197481 | Jing et al. | Dec 2002 | A1 |
20030004025 | Okuno et al. | Jan 2003 | A1 |
20030007055 | Ogawa | Jan 2003 | A1 |
20030018119 | Frenkel et al. | Jan 2003 | A1 |
20030030686 | Abe et al. | Feb 2003 | A1 |
20030032700 | Morrison et al. | Feb 2003 | A1 |
20030041777 | Karl et al. | Mar 2003 | A1 |
20030043258 | Kerr et al. | Mar 2003 | A1 |
20030049065 | Barrus et al. | Mar 2003 | A1 |
20030054139 | Ylitalo et al. | Mar 2003 | A1 |
20030055129 | Alford | Mar 2003 | A1 |
20030063179 | Adachi | Apr 2003 | A1 |
20030064317 | Bailey et al. | Apr 2003 | A1 |
20030081964 | Shimura et al. | May 2003 | A1 |
20030118381 | Law et al. | Jun 2003 | A1 |
20030129435 | Blankenship et al. | Jul 2003 | A1 |
20030175602 | Kazama | Sep 2003 | A1 |
20030186147 | Pickering et al. | Oct 2003 | A1 |
20030214568 | Nishikawa et al. | Nov 2003 | A1 |
20030234849 | Pan et al. | Dec 2003 | A1 |
20040003863 | Eckhardt | Jan 2004 | A1 |
20040020382 | McLean et al. | Feb 2004 | A1 |
20040036758 | Sasaki et al. | Feb 2004 | A1 |
20040047666 | Imaizumi et al. | Mar 2004 | A1 |
20040087707 | Zoch et al. | May 2004 | A1 |
20040123761 | Szumla et al. | Jul 2004 | A1 |
20040124831 | Micke et al. | Jul 2004 | A1 |
20040125188 | Szumla et al. | Jul 2004 | A1 |
20040145643 | Nakamura | Jul 2004 | A1 |
20040173111 | Okuda | Sep 2004 | A1 |
20040200369 | Brady | Oct 2004 | A1 |
20040221943 | Yu et al. | Nov 2004 | A1 |
20040228642 | Iida et al. | Nov 2004 | A1 |
20040246324 | Nakashima | Dec 2004 | A1 |
20040246326 | Dwyer et al. | Dec 2004 | A1 |
20040252175 | Bejat et al. | Dec 2004 | A1 |
20040265016 | Kitani et al. | Dec 2004 | A1 |
20050031807 | Quintens et al. | Feb 2005 | A1 |
20050082146 | Axmann | Apr 2005 | A1 |
20050110855 | Taniuchi et al. | May 2005 | A1 |
20050111861 | Calamita et al. | May 2005 | A1 |
20050134874 | Overall et al. | Jun 2005 | A1 |
20050150408 | Hesterman | Jul 2005 | A1 |
20050185009 | Claramunt et al. | Aug 2005 | A1 |
20050195235 | Kitao | Sep 2005 | A1 |
20050235870 | Ishihara | Oct 2005 | A1 |
20050266332 | Pavlisko et al. | Dec 2005 | A1 |
20050272334 | Wang et al. | Dec 2005 | A1 |
20060004123 | Wu et al. | Jan 2006 | A1 |
20060066704 | Nishida | Mar 2006 | A1 |
20060120740 | Yamada et al. | Jun 2006 | A1 |
20060135709 | Hasegawa et al. | Jun 2006 | A1 |
20060164488 | Taniuchi et al. | Jul 2006 | A1 |
20060164489 | Vega et al. | Jul 2006 | A1 |
20060192827 | Takada et al. | Aug 2006 | A1 |
20060233578 | Maki et al. | Oct 2006 | A1 |
20060286462 | Jackson et al. | Dec 2006 | A1 |
20070014595 | Kawagoe | Jan 2007 | A1 |
20070025768 | Komatsu et al. | Feb 2007 | A1 |
20070029171 | Nemedi | Feb 2007 | A1 |
20070045939 | Toya et al. | Mar 2007 | A1 |
20070054981 | Yanagi et al. | Mar 2007 | A1 |
20070064077 | Konno | Mar 2007 | A1 |
20070077520 | Maemoto | Apr 2007 | A1 |
20070120927 | Snyder et al. | May 2007 | A1 |
20070123642 | Banning et al. | May 2007 | A1 |
20070134030 | Lior et al. | Jun 2007 | A1 |
20070139734 | Fan et al. | Jun 2007 | A1 |
20070144368 | Barazani et al. | Jun 2007 | A1 |
20070146462 | Taniuchi et al. | Jun 2007 | A1 |
20070147894 | Yokota et al. | Jun 2007 | A1 |
20070166071 | Shima | Jul 2007 | A1 |
20070176995 | Kadomatsu et al. | Aug 2007 | A1 |
20070189819 | Uehara et al. | Aug 2007 | A1 |
20070195348 | Gerrits | Aug 2007 | A1 |
20070199457 | Cyman et al. | Aug 2007 | A1 |
20070229639 | Yahiro | Oct 2007 | A1 |
20070253726 | Kagawa | Nov 2007 | A1 |
20070257955 | Tanaka et al. | Nov 2007 | A1 |
20070285486 | Harris et al. | Dec 2007 | A1 |
20080006176 | Houjou | Jan 2008 | A1 |
20080030536 | Furukawa et al. | Feb 2008 | A1 |
20080032072 | Taniuchi et al. | Feb 2008 | A1 |
20080044587 | Maeno et al. | Feb 2008 | A1 |
20080053327 | Weilacher | Mar 2008 | A1 |
20080055356 | Yamanobe | Mar 2008 | A1 |
20080055381 | Doi et al. | Mar 2008 | A1 |
20080074462 | Hirakawa | Mar 2008 | A1 |
20080112912 | Springob et al. | May 2008 | A1 |
20080124158 | Folkins | May 2008 | A1 |
20080137914 | Minhas | Jun 2008 | A1 |
20080138546 | Soria et al. | Jun 2008 | A1 |
20080166495 | Maeno et al. | Jul 2008 | A1 |
20080167185 | Hirota | Jul 2008 | A1 |
20080175612 | Oikawa et al. | Jul 2008 | A1 |
20080196612 | Rancourt et al. | Aug 2008 | A1 |
20080196621 | Ikuno et al. | Aug 2008 | A1 |
20080213548 | Koganehira et al. | Sep 2008 | A1 |
20080236480 | Furukawa et al. | Oct 2008 | A1 |
20080253812 | Pearce et al. | Oct 2008 | A1 |
20090022504 | Kuwabara et al. | Jan 2009 | A1 |
20090039583 | Horn et al. | Feb 2009 | A1 |
20090041515 | Kim | Feb 2009 | A1 |
20090041932 | Ishizuka et al. | Feb 2009 | A1 |
20090064884 | Hook et al. | Mar 2009 | A1 |
20090074492 | Ito | Mar 2009 | A1 |
20090082503 | Yanagi et al. | Mar 2009 | A1 |
20090087565 | Houjou | Apr 2009 | A1 |
20090098385 | Kaemper et al. | Apr 2009 | A1 |
20090116885 | Ando | May 2009 | A1 |
20090148200 | Hara et al. | Jun 2009 | A1 |
20090165937 | Inoue et al. | Jul 2009 | A1 |
20090185204 | Wu et al. | Jul 2009 | A1 |
20090190951 | Torimaru et al. | Jul 2009 | A1 |
20090196670 | McNestry et al. | Aug 2009 | A1 |
20090202275 | Nishida et al. | Aug 2009 | A1 |
20090211490 | Ikuno et al. | Aug 2009 | A1 |
20090220873 | Enomoto et al. | Sep 2009 | A1 |
20090237479 | Yamashita et al. | Sep 2009 | A1 |
20090256896 | Scarlata | Oct 2009 | A1 |
20090279170 | Miyazaki et al. | Nov 2009 | A1 |
20090279780 | Matsui | Nov 2009 | A1 |
20090315926 | Yamanobe | Dec 2009 | A1 |
20090317555 | Hori | Dec 2009 | A1 |
20090318591 | Ageishi et al. | Dec 2009 | A1 |
20100012023 | Lefevre et al. | Jan 2010 | A1 |
20100053292 | Thayer et al. | Mar 2010 | A1 |
20100053293 | Thayer et al. | Mar 2010 | A1 |
20100066796 | Yanagi et al. | Mar 2010 | A1 |
20100075843 | Ikuno et al. | Mar 2010 | A1 |
20100086692 | Ohta et al. | Apr 2010 | A1 |
20100091064 | Araki et al. | Apr 2010 | A1 |
20100141985 | Noy et al. | Jun 2010 | A1 |
20100225695 | Fujikura | Sep 2010 | A1 |
20100231623 | Hirato | Sep 2010 | A1 |
20100239789 | Umeda | Sep 2010 | A1 |
20100245511 | Ageishi | Sep 2010 | A1 |
20100247171 | Ono et al. | Sep 2010 | A1 |
20100282100 | Okuda et al. | Nov 2010 | A1 |
20100285221 | Oki et al. | Nov 2010 | A1 |
20100300604 | Goss et al. | Dec 2010 | A1 |
20100303504 | Funamoto et al. | Dec 2010 | A1 |
20100310281 | Miura et al. | Dec 2010 | A1 |
20110044724 | Funamoto et al. | Feb 2011 | A1 |
20110058001 | Gila et al. | Mar 2011 | A1 |
20110058859 | Nakamatsu et al. | Mar 2011 | A1 |
20110069110 | Matsumoto et al. | Mar 2011 | A1 |
20110069117 | Ohzeki et al. | Mar 2011 | A1 |
20110069129 | Shimizu | Mar 2011 | A1 |
20110085828 | Kosako et al. | Apr 2011 | A1 |
20110128300 | Gay et al. | Jun 2011 | A1 |
20110141188 | Morita | Jun 2011 | A1 |
20110149002 | Kessler | Jun 2011 | A1 |
20110150509 | Komiya | Jun 2011 | A1 |
20110150541 | Michibata | Jun 2011 | A1 |
20110169889 | Kojima et al. | Jul 2011 | A1 |
20110179961 | Yanagawa | Jul 2011 | A1 |
20110195260 | Lee et al. | Aug 2011 | A1 |
20110199414 | Lang | Aug 2011 | A1 |
20110234683 | Komatsu | Sep 2011 | A1 |
20110234689 | Saito | Sep 2011 | A1 |
20110242181 | Otobe | Oct 2011 | A1 |
20110249090 | Moore et al. | Oct 2011 | A1 |
20110269885 | Imai | Nov 2011 | A1 |
20110279554 | Dannhauser et al. | Nov 2011 | A1 |
20110298884 | Furuta | Dec 2011 | A1 |
20110304674 | Sambhy et al. | Dec 2011 | A1 |
20120013693 | Tasaka et al. | Jan 2012 | A1 |
20120013694 | Kanke | Jan 2012 | A1 |
20120013928 | Yoshida et al. | Jan 2012 | A1 |
20120026224 | Anthony et al. | Feb 2012 | A1 |
20120039647 | Brewington et al. | Feb 2012 | A1 |
20120094091 | Van et al. | Apr 2012 | A1 |
20120098882 | Onishi et al. | Apr 2012 | A1 |
20120105561 | Taniuchi et al. | May 2012 | A1 |
20120105562 | Sekiguchi et al. | May 2012 | A1 |
20120113180 | Tanaka et al. | May 2012 | A1 |
20120113203 | Kushida et al. | May 2012 | A1 |
20120127250 | Kanasugi et al. | May 2012 | A1 |
20120127251 | Tsuji et al. | May 2012 | A1 |
20120140009 | Kanasugi et al. | Jun 2012 | A1 |
20120154497 | Nakao et al. | Jun 2012 | A1 |
20120156375 | Brust et al. | Jun 2012 | A1 |
20120156624 | Rondon et al. | Jun 2012 | A1 |
20120162302 | Oguchi et al. | Jun 2012 | A1 |
20120163846 | Andoh et al. | Jun 2012 | A1 |
20120188565 | Schweid et al. | Jul 2012 | A1 |
20120194830 | Gaertner et al. | Aug 2012 | A1 |
20120236100 | Toya | Sep 2012 | A1 |
20120237260 | Sengoku et al. | Sep 2012 | A1 |
20120287260 | Lu et al. | Nov 2012 | A1 |
20120301186 | Yang et al. | Nov 2012 | A1 |
20120314013 | Takemoto et al. | Dec 2012 | A1 |
20120314077 | Clavenna, II et al. | Dec 2012 | A1 |
20130011158 | Meguro et al. | Jan 2013 | A1 |
20130017006 | Suda | Jan 2013 | A1 |
20130033554 | Bouverie et al. | Feb 2013 | A1 |
20130044188 | Nakamura et al. | Feb 2013 | A1 |
20130057603 | Gordon | Mar 2013 | A1 |
20130088543 | Tsuji et al. | Apr 2013 | A1 |
20130096871 | Takahama | Apr 2013 | A1 |
20130120513 | Thayer et al. | May 2013 | A1 |
20130182045 | Ohzeki et al. | Jul 2013 | A1 |
20130201237 | Thomson et al. | Aug 2013 | A1 |
20130234080 | Torikoshi et al. | Sep 2013 | A1 |
20130242016 | Edwards et al. | Sep 2013 | A1 |
20130278945 | Ono | Oct 2013 | A1 |
20130302065 | Mori et al. | Nov 2013 | A1 |
20130338273 | Shimanaka et al. | Dec 2013 | A1 |
20140001013 | Takifuji et al. | Jan 2014 | A1 |
20140011125 | Inoue et al. | Jan 2014 | A1 |
20140043398 | Butler et al. | Feb 2014 | A1 |
20140104360 | Häcker et al. | Apr 2014 | A1 |
20140132698 | Lakin | May 2014 | A1 |
20140153956 | Yonemoto | Jun 2014 | A1 |
20140168330 | Liu et al. | Jun 2014 | A1 |
20140175707 | Wolk et al. | Jun 2014 | A1 |
20140198162 | Dirubio et al. | Jul 2014 | A1 |
20140225970 | Lakin et al. | Aug 2014 | A1 |
20140232782 | Mukai et al. | Aug 2014 | A1 |
20140267777 | Le et al. | Sep 2014 | A1 |
20140334855 | Onishi et al. | Nov 2014 | A1 |
20140339056 | Iwakoshi et al. | Nov 2014 | A1 |
20150022605 | Mantell et al. | Jan 2015 | A1 |
20150024648 | Landa et al. | Jan 2015 | A1 |
20150025179 | Landa et al. | Jan 2015 | A1 |
20150072090 | Landa et al. | Mar 2015 | A1 |
20150085036 | Liu et al. | Mar 2015 | A1 |
20150085037 | Liu et al. | Mar 2015 | A1 |
20150085038 | Liu | Mar 2015 | A1 |
20150116408 | Armbruster et al. | Apr 2015 | A1 |
20150116734 | Howard et al. | Apr 2015 | A1 |
20150118503 | Landa et al. | Apr 2015 | A1 |
20150165758 | Sambhy et al. | Jun 2015 | A1 |
20150195509 | Phipps | Jul 2015 | A1 |
20150210065 | Kelly et al. | Jul 2015 | A1 |
20150269719 | Kitai | Sep 2015 | A1 |
20150304531 | Rodriguez et al. | Oct 2015 | A1 |
20150315403 | Song et al. | Nov 2015 | A1 |
20150336378 | Guttmann et al. | Nov 2015 | A1 |
20150361288 | Song et al. | Dec 2015 | A1 |
20160031246 | Sreekumar et al. | Feb 2016 | A1 |
20160222232 | Landa et al. | Aug 2016 | A1 |
20160250879 | Chen et al. | Sep 2016 | A1 |
20160286462 | Gohite et al. | Sep 2016 | A1 |
20160375680 | Nishitani et al. | Dec 2016 | A1 |
20160378036 | Onishi et al. | Dec 2016 | A1 |
20170028688 | Dannhauser et al. | Feb 2017 | A1 |
20170104887 | Nomura | Apr 2017 | A1 |
20180149998 | Furukawa | May 2018 | A1 |
20180205853 | Terada | Jul 2018 | A1 |
20180259888 | Mitsui et al. | Sep 2018 | A1 |
20180348672 | Yoshida | Dec 2018 | A1 |
20180348675 | Nakamura et al. | Dec 2018 | A1 |
20190016114 | Sugiyama et al. | Jan 2019 | A1 |
20190094727 | Landa et al. | Mar 2019 | A1 |
20190105895 | Muehl et al. | Apr 2019 | A1 |
20190152218 | Stein et al. | May 2019 | A1 |
20190218411 | Landa et al. | Jul 2019 | A1 |
20190248153 | Muehl et al. | Aug 2019 | A1 |
20200156366 | Shmaiser et al. | May 2020 | A1 |
20200171813 | Chechik et al. | Jun 2020 | A1 |
20200210792 | Chen et al. | Jul 2020 | A1 |
20200238727 | Alacar | Jul 2020 | A1 |
20200276801 | Landa et al. | Sep 2020 | A1 |
20200314413 | Stiglic et al. | Oct 2020 | A1 |
20200326646 | Landa et al. | Oct 2020 | A1 |
20200353746 | Landa et al. | Nov 2020 | A1 |
20200361202 | Burkatovsky | Nov 2020 | A1 |
20200376878 | Landa et al. | Dec 2020 | A1 |
20200384758 | Shmaiser et al. | Dec 2020 | A1 |
20210001622 | Landa et al. | Jan 2021 | A1 |
20210053341 | Landa et al. | Feb 2021 | A1 |
20210062021 | Landa et al. | Mar 2021 | A1 |
20210070038 | Pomerantz et al. | Mar 2021 | A1 |
20210070083 | Levanon et al. | Mar 2021 | A1 |
20210084192 | Kasuya et al. | Mar 2021 | A1 |
20210095145 | Landa et al. | Apr 2021 | A1 |
20210268793 | Burkatovsky | Sep 2021 | A1 |
20220016880 | Landa et al. | Jan 2022 | A1 |
20220016881 | Shmaiser et al. | Jan 2022 | A1 |
20220057732 | Landa et al. | Feb 2022 | A1 |
20220111633 | Shmaiser et al. | Apr 2022 | A1 |
20220119659 | Landa et al. | Apr 2022 | A1 |
20220153015 | Landa et al. | May 2022 | A1 |
20220153048 | Landa et al. | May 2022 | A1 |
20220176693 | Landa et al. | Jun 2022 | A1 |
20220188050 | Boris | Jun 2022 | A1 |
20220379598 | Landa et al. | Dec 2022 | A1 |
Number | Date | Country |
---|---|---|
1121033 | Apr 1996 | CN |
1200085 | Nov 1998 | CN |
1212229 | Mar 1999 | CN |
1305895 | Aug 2001 | CN |
1324901 | Dec 2001 | CN |
1445622 | Oct 2003 | CN |
1493514 | May 2004 | CN |
1535235 | Oct 2004 | CN |
1543404 | Nov 2004 | CN |
1555422 | Dec 2004 | CN |
1680506 | Oct 2005 | CN |
1703326 | Nov 2005 | CN |
1720187 | Jan 2006 | CN |
1261831 | Jun 2006 | CN |
1809460 | Jul 2006 | CN |
1289368 | Dec 2006 | CN |
101073937 | Nov 2007 | CN |
101177057 | May 2008 | CN |
101249768 | Aug 2008 | CN |
101344746 | Jan 2009 | CN |
101359210 | Feb 2009 | CN |
101396910 | Apr 2009 | CN |
101508200 | Aug 2009 | CN |
101519007 | Sep 2009 | CN |
101524916 | Sep 2009 | CN |
101544100 | Sep 2009 | CN |
101544101 | Sep 2009 | CN |
101592896 | Dec 2009 | CN |
101607468 | Dec 2009 | CN |
201410787 | Feb 2010 | CN |
101820241 | Sep 2010 | CN |
101835611 | Sep 2010 | CN |
101835612 | Sep 2010 | CN |
101873982 | Oct 2010 | CN |
102229294 | Nov 2011 | CN |
102248776 | Nov 2011 | CN |
102300932 | Dec 2011 | CN |
102529257 | Jul 2012 | CN |
102648095 | Aug 2012 | CN |
102673209 | Sep 2012 | CN |
102925002 | Feb 2013 | CN |
103045008 | Apr 2013 | CN |
103309213 | Sep 2013 | CN |
103568483 | Feb 2014 | CN |
103627337 | Mar 2014 | CN |
104015415 | Sep 2014 | CN |
104220934 | Dec 2014 | CN |
104271356 | Jan 2015 | CN |
104284850 | Jan 2015 | CN |
104618642 | May 2015 | CN |
105058999 | Nov 2015 | CN |
102555450 | Mar 2016 | CN |
103991293 | Jan 2017 | CN |
107111267 | Aug 2017 | CN |
102010049945 | May 2011 | DE |
102010060999 | Jun 2012 | DE |
0457551 | Nov 1991 | EP |
0499857 | Aug 1992 | EP |
0606490 | Jul 1994 | EP |
0609076 | Aug 1994 | EP |
0613791 | Sep 1994 | EP |
0676300 | Oct 1995 | EP |
0530627 | Mar 1997 | EP |
0784244 | Jul 1997 | EP |
0835762 | Apr 1998 | EP |
0843236 | May 1998 | EP |
0854398 | Jul 1998 | EP |
1013466 | Jun 2000 | EP |
1146090 | Oct 2001 | EP |
1158029 | Nov 2001 | EP |
0825029 | May 2002 | EP |
1247821 | Oct 2002 | EP |
1271263 | Jan 2003 | EP |
0867483 | Jun 2003 | EP |
0923007 | Mar 2004 | EP |
1454968 | Sep 2004 | EP |
1503326 | Feb 2005 | EP |
1777243 | Apr 2007 | EP |
2028238 | Feb 2009 | EP |
2042317 | Apr 2009 | EP |
2065194 | Jun 2009 | EP |
2228210 | Sep 2010 | EP |
2270070 | Jan 2011 | EP |
2042318 | Feb 2011 | EP |
2042325 | Feb 2012 | EP |
2634010 | Sep 2013 | EP |
2683556 | Jan 2014 | EP |
2075635 | Oct 2014 | EP |
3260486 | Dec 2017 | EP |
2823363 | Oct 2018 | EP |
748821 | May 1956 | GB |
1496016 | Dec 1977 | GB |
1520932 | Aug 1978 | GB |
1522175 | Aug 1978 | GB |
2321430 | Jul 1998 | GB |
48043941 | Dec 1973 | JP |
S5578904 | Jun 1980 | JP |
S57121446 | Jul 1982 | JP |
S6076343 | Apr 1985 | JP |
S60199692 | Oct 1985 | JP |
S6223783 | Jan 1987 | JP |
H03248170 | Nov 1991 | JP |
H05147208 | Jun 1993 | JP |
H05192871 | Aug 1993 | JP |
H05297737 | Nov 1993 | JP |
H06954 | Jan 1994 | JP |
H06100807 | Apr 1994 | JP |
H06171076 | Jun 1994 | JP |
H06345284 | Dec 1994 | JP |
H07112841 | May 1995 | JP |
H07186453 | Jul 1995 | JP |
H07238243 | Sep 1995 | JP |
H0862999 | Mar 1996 | JP |
H08112970 | May 1996 | JP |
2529651 | Aug 1996 | JP |
H09123432 | May 1997 | JP |
H09157559 | Jun 1997 | JP |
H09172551 | Jun 1997 | JP |
H09281851 | Oct 1997 | JP |
H09300678 | Nov 1997 | JP |
H09314867 | Dec 1997 | JP |
H10130597 | May 1998 | JP |
H10207645 | Aug 1998 | JP |
H1142811 | Feb 1999 | JP |
H11503244 | Mar 1999 | JP |
H11106081 | Apr 1999 | JP |
H11138740 | May 1999 | JP |
H11245383 | Sep 1999 | JP |
2000108320 | Apr 2000 | JP |
2000108334 | Apr 2000 | JP |
2000137595 | May 2000 | JP |
2000141710 | May 2000 | JP |
2000168062 | Jun 2000 | JP |
2000169772 | Jun 2000 | JP |
2000206801 | Jul 2000 | JP |
2000343025 | Dec 2000 | JP |
2001005245 | Jan 2001 | JP |
2001088430 | Apr 2001 | JP |
2001098201 | Apr 2001 | JP |
2001139865 | May 2001 | JP |
3177985 | Jun 2001 | JP |
2001164165 | Jun 2001 | JP |
2001199150 | Jul 2001 | JP |
2001206522 | Jul 2001 | JP |
2002020666 | Jan 2002 | JP |
2002049211 | Feb 2002 | JP |
2002504446 | Feb 2002 | JP |
2002069346 | Mar 2002 | JP |
2002103598 | Apr 2002 | JP |
2002169383 | Jun 2002 | JP |
2002229276 | Aug 2002 | JP |
2002234243 | Aug 2002 | JP |
2002278365 | Sep 2002 | JP |
2002292983 | Oct 2002 | JP |
2002304066 | Oct 2002 | JP |
2002326733 | Nov 2002 | JP |
2002371208 | Dec 2002 | JP |
2003057967 | Feb 2003 | JP |
2003076159 | Mar 2003 | JP |
2003094795 | Apr 2003 | JP |
2003114558 | Apr 2003 | JP |
2003145914 | May 2003 | JP |
2003183557 | Jul 2003 | JP |
2003211770 | Jul 2003 | JP |
2003219271 | Jul 2003 | JP |
2003246135 | Sep 2003 | JP |
2003246484 | Sep 2003 | JP |
2003292855 | Oct 2003 | JP |
2003295560 | Oct 2003 | JP |
2003313466 | Nov 2003 | JP |
2004009632 | Jan 2004 | JP |
2004011263 | Jan 2004 | JP |
2004019022 | Jan 2004 | JP |
2004025708 | Jan 2004 | JP |
2004034441 | Feb 2004 | JP |
2004077669 | Mar 2004 | JP |
2004114377 | Apr 2004 | JP |
2004114675 | Apr 2004 | JP |
2004148687 | May 2004 | JP |
2004167902 | Jun 2004 | JP |
2004231711 | Aug 2004 | JP |
2004524190 | Aug 2004 | JP |
2004261975 | Sep 2004 | JP |
2004318132 | Nov 2004 | JP |
2004325782 | Nov 2004 | JP |
2004340983 | Dec 2004 | JP |
2005014255 | Jan 2005 | JP |
2005014256 | Jan 2005 | JP |
2005114769 | Apr 2005 | JP |
2005215247 | Aug 2005 | JP |
2005307184 | Nov 2005 | JP |
2005319593 | Nov 2005 | JP |
2006001688 | Jan 2006 | JP |
2006023403 | Jan 2006 | JP |
2006095870 | Apr 2006 | JP |
2006102975 | Apr 2006 | JP |
2006137127 | Jun 2006 | JP |
2006143778 | Jun 2006 | JP |
2006152133 | Jun 2006 | JP |
2006224583 | Aug 2006 | JP |
2006231666 | Sep 2006 | JP |
2006234212 | Sep 2006 | JP |
2006243212 | Sep 2006 | JP |
2006263984 | Oct 2006 | JP |
2006347081 | Dec 2006 | JP |
2006347085 | Dec 2006 | JP |
2007025246 | Feb 2007 | JP |
2007041530 | Feb 2007 | JP |
2007069584 | Mar 2007 | JP |
2007079159 | Mar 2007 | JP |
2007083445 | Apr 2007 | JP |
2007174060 | Jul 2007 | JP |
2007190745 | Aug 2007 | JP |
2007216673 | Aug 2007 | JP |
2007253347 | Oct 2007 | JP |
2007334125 | Dec 2007 | JP |
2008006816 | Jan 2008 | JP |
2008018716 | Jan 2008 | JP |
2008019286 | Jan 2008 | JP |
2008036968 | Feb 2008 | JP |
2008082820 | Apr 2008 | JP |
2008137146 | Jun 2008 | JP |
2008137239 | Jun 2008 | JP |
2008139877 | Jun 2008 | JP |
2008142962 | Jun 2008 | JP |
2008183744 | Aug 2008 | JP |
2008194997 | Aug 2008 | JP |
2008532794 | Aug 2008 | JP |
2008201564 | Sep 2008 | JP |
2008238674 | Oct 2008 | JP |
2008246787 | Oct 2008 | JP |
2008246990 | Oct 2008 | JP |
2008254203 | Oct 2008 | JP |
2008255135 | Oct 2008 | JP |
2009040892 | Feb 2009 | JP |
2009045794 | Mar 2009 | JP |
2009045851 | Mar 2009 | JP |
2009045885 | Mar 2009 | JP |
2009083314 | Apr 2009 | JP |
2009083317 | Apr 2009 | JP |
2009083325 | Apr 2009 | JP |
2009096175 | May 2009 | JP |
2009148908 | Jul 2009 | JP |
2009154330 | Jul 2009 | JP |
2009190375 | Aug 2009 | JP |
2009202355 | Sep 2009 | JP |
2009214318 | Sep 2009 | JP |
2009214439 | Sep 2009 | JP |
2009532240 | Sep 2009 | JP |
2009226805 | Oct 2009 | JP |
2009226852 | Oct 2009 | JP |
2009226886 | Oct 2009 | JP |
2009226890 | Oct 2009 | JP |
2009227909 | Oct 2009 | JP |
2009233977 | Oct 2009 | JP |
2009234219 | Oct 2009 | JP |
2009240925 | Oct 2009 | JP |
2009271422 | Nov 2009 | JP |
2010005815 | Jan 2010 | JP |
2010030300 | Feb 2010 | JP |
2010054855 | Mar 2010 | JP |
2010510357 | Apr 2010 | JP |
2010105365 | May 2010 | JP |
2010173201 | Aug 2010 | JP |
2010184376 | Aug 2010 | JP |
2010214885 | Sep 2010 | JP |
4562388 | Oct 2010 | JP |
2010228192 | Oct 2010 | JP |
2010228392 | Oct 2010 | JP |
2010231040 | Oct 2010 | JP |
2010234599 | Oct 2010 | JP |
2010234681 | Oct 2010 | JP |
2010240897 | Oct 2010 | JP |
2010241073 | Oct 2010 | JP |
2010247381 | Nov 2010 | JP |
2010247528 | Nov 2010 | JP |
2010258193 | Nov 2010 | JP |
2010260204 | Nov 2010 | JP |
2010260287 | Nov 2010 | JP |
2010260302 | Nov 2010 | JP |
2010286570 | Dec 2010 | JP |
2011002532 | Jan 2011 | JP |
2011025431 | Feb 2011 | JP |
2011031619 | Feb 2011 | JP |
2011037070 | Feb 2011 | JP |
2011064850 | Mar 2011 | JP |
2011067956 | Apr 2011 | JP |
2011126031 | Jun 2011 | JP |
2011133884 | Jul 2011 | JP |
2011144271 | Jul 2011 | JP |
2011523601 | Aug 2011 | JP |
2011168024 | Sep 2011 | JP |
2011173325 | Sep 2011 | JP |
2011173326 | Sep 2011 | JP |
2011186346 | Sep 2011 | JP |
2011189627 | Sep 2011 | JP |
2011201951 | Oct 2011 | JP |
2011224032 | Nov 2011 | JP |
2012042943 | Mar 2012 | JP |
2012086437 | May 2012 | JP |
2012086499 | May 2012 | JP |
2012111194 | Jun 2012 | JP |
2012126123 | Jul 2012 | JP |
2012139905 | Jul 2012 | JP |
2012196787 | Oct 2012 | JP |
2012201419 | Oct 2012 | JP |
2013001081 | Jan 2013 | JP |
2013060299 | Apr 2013 | JP |
2013103474 | May 2013 | JP |
2013104044 | May 2013 | JP |
2013121671 | Jun 2013 | JP |
2013129158 | Jul 2013 | JP |
2014008609 | Jan 2014 | JP |
2014047005 | Mar 2014 | JP |
2014073675 | Apr 2014 | JP |
2014094827 | May 2014 | JP |
2014131843 | Jul 2014 | JP |
2015517928 | Jun 2015 | JP |
2015202616 | Nov 2015 | JP |
2016074206 | May 2016 | JP |
2016093999 | May 2016 | JP |
2016185688 | Oct 2016 | JP |
2016539830 | Dec 2016 | JP |
2017093178 | May 2017 | JP |
2017219753 | Dec 2017 | JP |
2180675 | Mar 2002 | RU |
2282643 | Aug 2006 | RU |
WO-8600327 | Jan 1986 | WO |
WO-9307000 | Apr 1993 | WO |
WO-9401283 | Jan 1994 | WO |
WO-9604339 | Feb 1996 | WO |
WO-9631809 | Oct 1996 | WO |
WO-9707991 | Mar 1997 | WO |
WO-9736210 | Oct 1997 | WO |
WO-9821251 | May 1998 | WO |
WO-9855901 | Dec 1998 | WO |
WO-9912633 | Mar 1999 | WO |
WO-9942509 | Aug 1999 | WO |
WO-9943502 | Sep 1999 | WO |
WO-0064685 | Nov 2000 | WO |
WO-0154902 | Aug 2001 | WO |
WO-0170512 | Sep 2001 | WO |
WO-02068191 | Sep 2002 | WO |
WO-02078868 | Oct 2002 | WO |
WO-02094912 | Nov 2002 | WO |
WO-2004113082 | Dec 2004 | WO |
WO-2004113450 | Dec 2004 | WO |
WO-2006051733 | May 2006 | WO |
WO-2006069205 | Jun 2006 | WO |
WO-2006073696 | Jul 2006 | WO |
WO-2006091957 | Aug 2006 | WO |
WO-2007009871 | Jan 2007 | WO |
WO-2007145378 | Dec 2007 | WO |
WO-2008078841 | Jul 2008 | WO |
WO-2009025809 | Feb 2009 | WO |
WO-2009134273 | Nov 2009 | WO |
WO-2010042784 | Jul 2010 | WO |
WO-2010073916 | Jul 2010 | WO |
WO-2011142404 | Nov 2011 | WO |
WO-2012014825 | Feb 2012 | WO |
WO-2012148421 | Nov 2012 | WO |
WO-2013060377 | May 2013 | WO |
WO-2013087249 | Jun 2013 | WO |
WO-2013132339 | Sep 2013 | WO |
WO-2013132340 | Sep 2013 | WO |
WO-2013132343 | Sep 2013 | WO |
WO-2013132345 | Sep 2013 | WO |
WO-2013132356 | Sep 2013 | WO |
WO-2013132418 | Sep 2013 | WO |
WO-2013132419 | Sep 2013 | WO |
WO-2013132420 | Sep 2013 | WO |
WO-2013132424 | Sep 2013 | WO |
WO-2013132432 | Sep 2013 | WO |
WO-2013132438 | Sep 2013 | WO |
WO-2013132439 | Sep 2013 | WO |
WO-2013136220 | Sep 2013 | WO |
2015026864 | Feb 2015 | WO |
WO-2015036864 | Mar 2015 | WO |
WO-2015036906 | Mar 2015 | WO |
WO-2015036960 | Mar 2015 | WO |
WO-2016166690 | Oct 2016 | WO |
WO-2017208155 | Dec 2017 | WO |
WO-2017208246 | Dec 2017 | WO |
WO-2018100541 | Jun 2018 | WO |
2020136517 | Jul 2020 | WO |
Entry |
---|
English translation of JP-2001005245-A (Patents Application H11-175002). (Year: 2001). |
English translation of JP-2010231040-A (Patents Application 2009-079294). (Year: 2010). |
CN101592896A Machine Translation (by EPO and Google)—published Dec. 2, 2009; Canon KK. |
CN101820241A Machine Translation (by EPO and Google)—published Sep. 1, 2010; Canon KK. |
CN102529257A Machine Translation (by EPO and Google)—published Jul. 4, 2012; Nippon Synthetic Chem Ind. |
CN102673209A Machine Translation (by EPO and Google)—published Sep. 19, 2012; Wistron Corp. |
CN103568483A Machine Translation (by EPO and Google)—published Feb. 12, 2014; Anhui Printing Mechanical & Electrical Co Ltd. |
CN104015415A Machine Translation (by EPO and Google)—published Sep. 3, 2014; Avery Dennison Corp. |
CN1305895A Machine Translation (by EPO and Google)—published Aug. 1, 2001; IMAJE SA [FR]. |
CN1543404A Machine Translation (by EPO and Google)—published Nov. 3, 2004; 3M Innovative Properties Co [US]. |
CN1703326A Machine Translation (by EPO and Google)—published Nov. 30, 2005; Nissha Printing [JP]. |
Co-pending U.S. Appl. No. 17/438,497, inventors Helena; Chechik et al., filed Sep. 13, 2021. |
Co-pending U.S. Appl. No. 17/583,372, inventor Pomerantz; Uriel, filed Jan. 25, 2022. |
Co-pending U.S. Appl. No. 17/676,398, filed Mar. 21, 2022. |
Co-pending U.S. Appl. No. 17/694,702, inventor Chechik; Helena, filed Mar. 15, 2022. |
Co-pending U.S. Appl. No. 17/712,198, filed Apr. 4, 2022. |
JP2000343025A Machine Translation (by EPO and Google)—published Dec. 12, 2000; Kyocera Corp. |
JP2003076159A Machine Translation (by EPO and Google)—published Mar. 14, 2003, Ricoh KK. |
JP2003094795A Machine Translation (by EPO and Google)—published Apr. 3, 2003; Ricoh KK. |
JP2004167902A Machine Translation (by EPO and Google)—published Jun. 17, 2004; Nippon New Chrome KK. |
JP2004340983A Machine Translation (by EPO and Google)—published Dec. 2, 2004; Ricoh KK. |
JP2008082820A Machine Translation (by EPO and Google)—published Apr. 10, 2008; Ricoh KK. |
JP2008137146A Machine Translation (by EPO and Google)—published Jun. 19, 2008; CBG ACCIAI SRL. |
JP2009226805A Machine Translation (by EPO and Google)—published Oct. 8, 2009; Fuji Xerox Co Ltd. |
JP2009226890A Machine Translation (by EPO and Google)—published Oct. 8, 2009; Fuji Xerox Co Ltd. |
JP2009227909A Machine Translation (EPO, PlatPat and Google) published on Oct. 8, 2009 Fujifilm Corp. |
JP2009240925A Machine Translation (by EPO and Google)—published Oct. 22, 2009; Fujifilm Corp. |
JP2009271422A Machine Translation (by EPO and Google)—published Nov. 19, 2009; Ricoh KK. |
JP2009532240A Machine Translation (by EPO and Google)—published Sep. 10, 2009; Aisapack Holding SA. |
JP2010030300A Machine Translation (by EPO and Google)—published Feb. 12, 2010; Xerox Corp. |
JP2010240897A Machine Translation (by EPO and Google)—published Oct. 28, 2010; Toppan Printing Co Ltd. |
JP2011031619A Machine Translation (by EPO and Google)—published Feb. 17, 2011; Xerox Corp. |
JP2011064850A Machine Translation (by EPO and Google)—published Mar. 31, 2011; Seiko Epson Corp. |
JP2011168024A Machine Translation (EPO, PlatPat and Google) published on Sep. 1, 2011 Ricoh Co Ltd. |
JP2013104044A Machine Translation (by EPO and Google)—published May 30, 2013; Three M Innovative Properties. |
JP2014008609A Machine Translation (EPO, PlatPat and Google) published on Jan. 20, 2014 Seiko Epson Corp. |
JP2014073675A Machine Translation (EPO and Google) published on Apr. 24, 2014 Ricoh Co Ltd. |
JP2015202616A Machine Translation (EPO, PlatPat and Google) published on Nov. 16, 2015 Canon KK. |
JP2016074206A Machine Translation (EPO and Google) published on May 12, 2016 Xerox Corp. |
JP2016093999A Machine Translation (by EPO and Google)—published May 26, 2016; Canon KK. |
JP2017093178A Machine Translation (EPO and Google) published on May 25, 2017 Samsung Electronics Co Ltd. |
JP4562388B2 Machine Translation (by EPO and Google)—published Oct. 13, 2010; Sk Kaken Co Ltd. |
JP48043941 Machine Translation (by EPO and Google)—published Dec. 21, 1973. |
JPH09300678A Machine Translation (by EPO and Google)—published Nov. 25, 1997; Mitsubishi Electric Corp. |
JPH10130597A Machine Translation (by EPO and Google)—published May 19, 1998; Sekisui Chemical Co Ltd. |
JPH11138740A Machine Translation (by EPO and Google)—published May 25, 1999; Nikka KK. |
Xiameter™ “OFS-0777 Siliconate Technical Data Sheet,” Dec. 31, 2017, 5 pages. [Retrieved from the internet on Oct. 13, 2021]: https://www.dow.com/en-us/document-viewer.html?ramdomVar=6236427586842315077&docPath=/content/dam/dcc/documents/en-us/productdatasheet/95/95-4/95-435-01-xiameter-ofs-0777-siliconate.pdf. |
DE102010049945A1 Machine Translation (by EPO and Google)—published May 26, 2011; Heidelberger Druckmasch AG [DE]. |
JP2000137595A Machine Translation (by EPO and Google)—published May 16, 2000; Dainippon Screen Mfg. |
JP2002292983A Machine Translation (by EPO and Google)—published Oct. 9, 2002; Fuji Xerox Co Ltd. |
JP2003295560A Machine Translation (by EPO and Google)—published Oct. 15, 2003; Fuji Xerox Co Ltd. |
JP2007174060A Machine Translation (by EPO and Google)—published Jul. 5, 2007; Fuji Xerox Co Ltd. |
JP2012086437A Machine Translation (by EPO and Google)—published May 10, 2012; Sharp KK. |
JP2017219753A Machine Translation (by EPO and Google)—published Dec. 14, 2017; Ricoh Co Ltd. |
JPH09172551A Machine Translation (by EPO and Google)—published Jun. 30, 1997; Fuji Photo Film Co Ltd. |
JPH10207645A Machine Translation (by EPO and Google)—published Aug. 7, 1998; Canon KK. |
Mestha L.K. et al., “Control Elements in Production Printing and Publishing Systems: Docucolor Igen3,” 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), Dec. 2003, vol. 4, pp. 4096-4108. doi: 10.11 09/CDC.2003.1271793. |
“Amino Functional Silicone Polymers”, in Xiameter.COPYRGT. 2009 Dow Corning Corporation. |
BASF , “JONCRYL 537”, Datasheet , Retrieved from the internet : Mar. 23, 2007 p. 1. |
Clariant., “Ultrafine Pigment Dispersion for Design and Creative Materials: Hostafine Pigment Preparation” Jun. 19, 2008. Retrieved from the Internet: [URL: http://www.clariant.com/C125720D002B963C/4352D0BC052E90CEC1257479002707D9/$FILE /DP6208E_0608_FL_Hostafinefordesignandcreativematerials.pdf]. |
CN101073937A Machine Translation (by EPO and Google)—published Nov. 21, 2007; Werner Kaman Maschinen Gmbh & [DE]. |
CN101177057 Machine Translation (by EPO and Google)—published May 14, 2008—Hangzhou Yuanyang Industry Co. |
CN101249768A Machine Translation (by EPO and Google)—published Aug. 27, 2008; Shantou Xinxie Special Paper T [CN]. |
CN101344746A Machine Translation (by EPO and Google)—published Jan. 14, 2009; Ricoh KK [JP]. |
CN101359210A Machine Translation (by EPO and Google)—published Feb. 4, 2009; Canon KK [JP]. |
CN101524916A Machine Translation (by EPO and Google)—published Sep. 9, 2009; Fuji Xerox Co Ltd. |
CN101544100A Machine Translation (by EPO and Google)—published Sep. 30, 2009; Fuji Xerox Co Ltd. |
CN101873982A Machine Translation (by EPO and Google)—published Oct. 27, 2010; Habasit AG, Delair et al. |
CN102229294A Machine Translation (by EPO and Google)—published Nov. 2, 2011; Guangzhou Changcheng Ceramics Co Ltd. |
CN102300932A Machine Translation (by EPO and Google)—published Dec. 28, 2011; Yoshida Hiroaki et al. |
CN102648095A Machine Translation (by EPO and Google)—published Aug. 22, 2012; Mars Inc. |
CN102925002 Machine Translation (by EPO and Google)—published Feb. 13, 2013; Jiangnan University, Fu et al. |
CN103045008A Machine Translation (by EPO and Google)—published Apr. 17, 2013; Fuji Xerox Co Ltd. |
CN103627337A Machine Translation (by EPO and Google)—published Mar. 12, 2014; Suzhou Banlid New Material Co Ltd. |
CN103991293A Machine Translation (by EPO and Google)—published Aug. 20, 2014; Miyakoshi Printing Machinery Co., Ltd, Junichi et al. |
CN103991293B Machine Translation (by EPO and Google)—issued on Jan. 4, 2017; Miyakoshi Printing Machinery Co., Ltd, Junichi et al. |
CN104618642 Machine Translation (by EPO and Google); published on May 13, 2015, Yulong Comp Comm Tech Shenzhen. |
CN105058999A Machine Translation (by EPO and Google)—published Nov. 18, 2015; Zhuoli Imaging Technology Co Ltd. |
CN107111267A Machine Translation (by EPO and Google)—published Aug. 29, 2017; Hewlett Packard Indigo BV. |
CN1121033A Machine Translation (by EPO and Google—published Apr. 24, 1996; Kuehnle Manfred R [US]. |
CN1212229A Machine Translation (by EPO and Google)—published Mar. 31, 1999; Honta Industry Corp [JP]. |
CN1493514A Machine Translation (by EPO and Google)—published May 5, 2004; GD SPA, Boderi et al. |
CN1555422A Machine Translation (by EPO and Google)—published Dec. 15, 2004; Noranda Inc. |
CN1680506A Machine Translation (by EPO and Google)—published Oct. 12, 2005; Shinetsu Chemical Co [JP]. |
CN1809460A Machine Translation (by EPO and Google)—published Jul. 26, 2006; Canon KK. |
CN201410787Y Machine Translation (by EPO and Google)—published Feb. 24, 2010; Zhejiang Chanx Wood Co Ltd. |
Co-pending U.S. Appl. No. 16/590,397, filed Oct. 2, 2019. |
Co-pending U.S. Appl. No. 17/088,257, filed Nov. 3, 2020. |
Co-pending U.S. Appl. No. 17/106,245, filed Nov. 30, 2020. |
Co-pending U.S. Appl. No. 17/155,121, filed Jan. 22, 2021. |
Co-pending U.S. Appl. No. 17/157,767, filed Jan. 25, 2021. |
Co-pending U.S. Appl. No. 17/184,411, filed Feb. 24, 2021. |
Co-pending U.S. Appl. No. 17/186,043, filed Feb. 26, 2021. |
Co-pending U.S. Appl. No. 17/252,747, filed Dec. 16, 2020. |
DE102010060999 Machine Translation (by EPO and Google)—published Jun. 6, 2012; Wolf, Roland, Dr.-Ing. |
Epomin Polyment, product information from Nippon Shokubai, dated Feb. 28, 2014. |
Flexicon., “Bulk Handling Equipment and Systems: Carbon Black,” 2018, 2 pages. |
Furia, T.E., “CRC Handbook of Food Additives, Second Edition, vol. 1” CRC Press LLC, 1972, p. 434. |
Handbook of Print Media, 2001, Springer Verlag, Berlin/Heidelberg/New York, pp. 127-136,748—With English Translation. |
IP.com Search, 2018, 2 pages. |
IP.com Search, 2019, 1 page. |
IP.com search (Year: 2021). |
JP2000108320 Machine Translation (by PlatPat English machine translation)—published Apr. 18, 2000 Brother Ind. Ltd. |
JP2000108334A Machine Translation (by EPO and Google)—published Apr. 18, 2000; Brother Ind Ltd. |
JP2000141710A Machine Translation (by EPO and Google)—published May 23, 2000; Brother Ind Ltd. |
JP2000168062A Machine Translation (by EPO and Google)—published Jun. 20, 2000; Brother Ind Ltd. |
JP2000169772 Machine Translation (by EPO and Google)—published Jun. 20, 2000; Tokyo Ink MFG Co Ltd. |
JP2000206801 Machine Translation (by PlatPat English machine translation); published on Jul. 28, 2000, Canon KK, Kobayashi et al. |
JP2001088430A Machine Translation (by EPO and Google)—published Apr. 3, 2001; Kimoto KK. |
JP2001098201A Machine Translation (by EPO and Google)—published Apr. 10, 2001; Eastman Kodak Co. |
JP2001139865A Machine Translation (by EPO and Google)—published May 22, 2001; Sharp KK. |
JP2001164165A Machine Translation (by EPO and Google)—published Jun. 19, 2001; Dainippon Ink & Chemicals. |
JP2001199150A Machine Translation (by EPO and Google)—published Jul. 24, 2001; Canon KK. |
JP2001206522 Machine Translation (by EPO, PlatPat and Google)—published Jul. 31, 2001; Nitto Denko Corp, Kato et al. |
JP2002049211A Machine Translation (by EPO and Google)—published Feb. 15, 2002; Pfu Ltd. |
JP2002069346A Machine Translation (by EPO and Google)—published Mar. 8, 2002; Dainippon Ink & Chemicals. |
JP2002103598A Machine Translation (by EPO and Google)—published Apr. 9, 2002; Olympus Optical Co. |
JP2002169383 Machine Translation (by EPO, PlatPat and Google)—published Jun. 14, 2002 Ricoh KK. |
JP2002234243 Machine Translation (by EPO and Google)—published Aug. 20, 2002; Hitachi Koki Co Ltd. |
JP2002278365 Machine Translation (by PlatPat English machine translation)—published Sep. 27, 2002 Katsuaki, Ricoh KK. |
JP2002304066A Machine Translation (by EPO and Google)—published Oct. 18, 2002; Pfu Ltd. |
JP2002326733 Machine Translation (by EPO, PlatPat and Google)—published Nov. 12, 2002; Kyocera Mita Corp. |
JP2002371208 Machine Translation (by EPO and Google)—published Dec. 26, 2002; Canon Inc. |
JP2003114558 Machine Translation (by EPO, PlatPat and Google)—published Apr. 18, 2003 Mitsubishi Chem Corp, Yuka Denshi Co Ltd, et al. |
JP2003145914A Machine Translation (by EPO and Google)—published May 21, 2003; Konishiroku Photo Ind. |
JP2003211770 Machine Translation (by EPO and Google)—published Jul. 29, 2003 Hitachi Printing Solutions. |
JP2003219271 Machine Translation (by EPO and Google); published on Jul. 31, 2003, Japan Broadcasting. |
JP2003246135 Machine Translation (by PlatPat English machine translation)—published Sep. 2, 2003 Ricoh KK, Morohoshi et al. |
JP2003246484 Machine Translation (English machine translation)—published Sep. 2, 2003 Kyocera Corp. |
JP2003292855A Machine Translation (by EPO and Google)—published Oct. 15, 2003; Konishiroku Photo Ind. |
JP2003313466A Machine Translation (by EPO and Google)—published Nov. 6, 2003; Ricoh KK. |
JP2004009632A Machine Translation (by EPO and Google)—published Jan. 15, 2004; Konica Minolta Holdings Inc. |
JP2004011263A Machine Translation (by EPO and Google)—published Jan. 15, 2004; Sumitomo Denko Steel Wire KK. |
JP2004019022 Machine Translation (by EPO and Google)—published Jan. 22, 2004; Yamano et al. |
JP2004025708A Machine Translation (by EPO and Google)—published Jan. 29, 2004; Konica Minolta Holdings Inc. |
JP2004034441A Machine Translation (by EPO and Google)—published Feb. 5, 2004; Konica Minolta Holdings Inc. |
JP2004077669 Machine Translation (by PlatPat English machine translation)—published Mar. 11, 2004 Fuji Xerox Co Ltd. |
JP2004114377(A) Machine Translation (by EPO and Google)—published Apr. 15, 2004; Konica Minolta Holdings Inc, et al. |
JP2004114675 Machine Translation (by EPO and Google)—published Apr. 15, 2004; Canon Inc. |
JP2004148687A Machine Translation (by EPO and Google)—published May 27, 2014; Mitsubishi Heavy Ind Ltd. |
JP2004231711 Machine Translation (by EPO and Google)—published Aug. 19, 2004; Seiko Epson Corp. |
JP2004261975 Machine Translation (by EPO, PlatPat and Google); published on Sep. 24, 2004, Seiko Epson Corp, Kataoka et al. |
JP2004325782A Machine Translation (by EPO and Google)—published Nov. 18, 2004; Canon KK. |
JP2004524190A Machine Translation (by EPO and Google)—published Aug. 12, 2004; Avery Dennison Corp. |
JP2005014255 Machine Translation (by EPO and Google)—published Jan. 20, 2005; Canon Inc. |
JP2005014256 Machine Translation (by EPO and Google)—published Jan. 20, 2005; Canon Inc. |
JP2005114769 Machine Translation (by PlatPat English machine translation)—published Apr. 28, 2005 Ricoh KK. |
JP2005215247A Machine Translation (by EPO and Google)—published Aug. 11, 2005; Toshiba Corp. |
JP2005319593 Machine Translation (by EPO and Google)—published Nov. 17, 2005, Jujo Paper Co Ltd. |
JP2006001688 Machine Translation (by PlatPat English machine translation)—published Jan. 5, 2006 Ricoh KK. |
JP2006023403A Machine Translation (by EPO and Google)—published Jan. 26, 2006; Ricoh KK. |
JP2006095870A Machine Translation (by EPO and Google)—published Apr. 13, 2006; Fuji Photo Film Co Ltd. |
JP2006102975 Machine Translation (by EPO and Google)—published Apr. 20, 2006; Fuji Photo Film Co Ltd. |
JP2006137127 Machine Translation (by EPO and Google)—published Jun. 1, 2006; Konica Minolta Med & Graphic. |
JP2006143778 Machine Translation (by EPO, PlatPat and Google)—published Jun. 8, 2006 Sun Bijutsu Insatsu KK et al. |
JP2006152133 Machine Translation (by EPO, PlatPat and Google)—published Jun. 15, 2006 Seiko Epson Corp. |
JP2006224583A Machine Translation (by EPO and Google)—published Aug. 31, 2006; Konica Minolta Holdings Inc. |
JP2006231666A Machine Translation (by EPO and Google)—published Sep. 7, 2006; Seiko Epson Corp. |
JP2006234212A Machine Translation (by EPO and Google)—published Sep. 7, 2006; Matsushita Electric Ind Co Ltd. |
JP2006243212 Machine Translation (by PlatPat English machine translation)—published Sep. 14, 2006 Fuji Xerox Co Ltd. |
JP2006263984 Machine Translation (by EPO, PlatPat and Google)—published Oct. 5, 2006 Fuji Photo Film Co Ltd. |
JP2006347081 Machine Translation (by EPO and Google)—published Dec. 28, 2006; Fuji Xerox Co Ltd. |
JP2006347085 Machine Translation (by EPO and Google)—published Dec. 28, 2006 Fuji Xerox Co Ltd. |
JP2007025246A Machine Translation (by EPO and Google)—published Feb. 1, 2007; Seiko Epson Corp. |
JP2007041530A Machine Translation (by EPO and Google)—published Feb. 15, 2007; Fuji Xerox Co Ltd. |
JP2007069584 Machine Translation (by EPO and Google)—published Mar. 22, 2007 Fujifilm. |
JP2007079159A Machine Translation (by EPO and Google)—published Mar. 29, 2007; Ricoh KK. |
JP2007083445A Machine Translation (by EPO and Google)—published Apr. 5, 2007; Fujifilm Corp. |
JP2007216673 Machine Translation (by EPO and Google)—published Aug. 30, 2007 Brother Ind. |
JP2007253347A Machine Translation (by EPO and Google)—published Oct. 4, 2007; Ricoh KK, Matsuo et al. |
JP2008006816 Machine Translation (by EPO and Google)—published Jan. 17, 2008; Fujifilm Corp. |
JP2008018716 Machine Translation (by EPO and Google)—published Jan. 31, 2008; Canon Inc. |
JP2008137239A Machine Translation (by EPO and Google); published on Jun. 19, 2008, Kyocera Mita Corp. |
JP2008139877A Machine Translation (by EPO and Google)—published Jun. 19, 2008; Xerox Corp. |
JP2008142962 Machine Translation (by EPO and Google)—published Jun. 26, 2008; Fuji Xerox Co Ltd. |
JP2008183744A Machine Translation (by EPO and Google)—published Aug. 14, 2008, Fuji Xerox Co Ltd. |
JP2008194997A Machine Translation (by EPO and Google)—published Aug. 28, 2008; Fuji Xerox Co Ltd. |
JP2008201564 Machine Translation (English machine translation)—published Sep. 4, 2008 Fuji Xerox Co Ltd. |
JP2008238674A Machine Translation (by EPO and Google)—published Oct. 9, 2008; Brother Ind Ltd. |
JP2008246990 Machine Translation (by EPO and Google)—published Oct. 16, 2008, Jujo Paper Co Ltd. |
JP2008254203A Machine Translation (by EPO and Google)—published Oct. 23, 2008; Fujifilm Corp. |
JP2008255135 Machine Translation (by EPO and Google)—published Oct. 23, 2008; Fujifilm Corp. |
JP2009045794 Machine Translation (by EPO and Google)—published Mar. 5, 2009; Fujifilm Corp. |
JP2009045851A Machine Translation (by EPO and Google); published on Mar. 5, 2009, Fujifilm Corp. |
JP2009045885A Machine Translation (by EPO and Google)—published Mar. 5, 2009; Fuji Xerox Co Ltd. |
JP2009083314 Machine Translation (by EPO, PlatPat and Google)—published Apr. 23, 2009 Fujifilm Corp. |
JP2009083317 Abstract; Machine Translation (by EPO and Google)—published Apr. 23, 2009; Fuji Film Corp. |
JP2009083325 Abstract; Machine Translation (by EPO and Google)—published Apr. 23, 2009 Fujifilm. |
JP2009096175 Machine Translation (EPO, PlatPat and Google) published on May 7, 2009 Fujifilm CORP. |
JP2009148908A Machine Translation (by EPO and Google)—published Jul. 9, 2009; Fuji Xerox Co Ltd. |
JP2009154330 Machine Translation (by EPO and Google)—published Jul. 16, 2009; Seiko Epson Corp. |
JP2009190375 Machine Translation (by EPO and Google)—published Aug. 27, 2009; Fuji Xerox Co Ltd. |
JP2009202355 Machine Translation (by EPO and Google)—published Sep. 10, 2009; Fuji Xerox Co Ltd. |
JP2009214318 Machine Translation (by EPO and Google)—published Sep. 24, 2009 Fuji Xerox Co Ltd. |
JP2009214439 Machine Translation (by PlatPat English machine translation)—published Sep. 24, 2009 Fujifilm Corp. |
JP2009226852 Machine Translation (by EPO and Google)—published Oct. 8, 2009; Hirato Katsuyuki, Fujifilm Corp. |
JP2009233977 Machine Translation (by EPO and Google)—published Oct. 15, 2009; Fuji Xerox Co Ltd. |
JP2009234219 Machine Translation (by EPO and Google)—published Oct. 15, 2009; Fujifilm Corp. |
JP2010054855 Machine Translation (by PlatPat English machine translation)—published Mar. 11, 2010 Itatsu, Fuji Xerox Co. |
JP2010105365 Machine Translation (by EPO and Google)—published May 13, 2010; Fuji Xerox Co Ltd. |
JP2010173201 Abstract; Machine Translation (by EPO and Google)—published Aug. 12, 2010; Richo Co Ltd. |
JP2010184376 Machine Translation (by EPO, PlatPat and Google)—published Aug. 26, 2010 Fujifilm Corp. |
JP2010214885A Machine Translation (by EPO and Google)—published Sep. 30, 2010; Mitsubishi Heavy Ind Ltd. |
JP2010228192 Machine Translation (by PlatPat English machine translation)—published Oct. 14, 2010 Fuji Xerox. |
JP2010228392A Machine Translation (by EPO and Google)—published Oct. 14, 2010; Jujo Paper Co Ltd. |
JP2010234599A Machine Translation (by EPO and Google)—published Oct. 21, 2010; Duplo Seiko Corp et al. |
JP2010234681A Machine Translation (by EPO and Google)—published Oct. 21, 2010; Riso Kagaku Corp. |
JP2010241073 Machine Translation (by EPO and Google)—published Oct. 28, 2010; Canon Inc. |
JP2010247381A Machine Translation (by EPO and Google); published on Nov. 4, 2010, Ricoh Co Ltd. |
JP2010258193 Machine Translation (by EPO and Google)—published Nov. 11, 2010; Seiko Epson Corp. |
JP2010260204A Machine Translation (by EPO and Google)—published Nov. 18, 2010; Canon KK. |
JP2010260287 Machine Translation (by EPO and Google)—published Nov. 18, 2010, Canon KK. |
JP2010260302A Machine Translation (by EPO and Google)—published Nov. 18, 2010; Riso Kagaku Corp. |
JP2011002532 Machine Translation (by PlatPat English machine translation)—published Jan. 6, 2011 Seiko Epson Corp. |
JP2011025431 Machine Translation (by EPO and Google)—published Feb. 10, 2011; Fuji Xerox Co Ltd. |
JP2011037070A Machine Translation (by EPO and Google)—published Feb. 24, 2011; Riso Kagaku Corp. |
JP2011067956A Machine Translation (by EPO and Google)—published Apr. 7, 2011; Fuji Xerox Co Ltd. |
JP2011126031A Machine Translation (by EPO and Google); published on Jun. 30, 2011, Kao Corp. |
JP2011144271 Machine Translation (by EPO and Google)—published Jun. 28, 2011 Toyo Ink SC Holdings Co Ltd. |
JP2011173325 Abstract; Machine Translation (by EPO and Google)—published Sep. 8, 2011; Canon Inc. |
JP2011173326 Machine Translation (by EPO and Google)—published Sep. 8, 2011; Canon Inc. |
JP2011186346 Machine Translation (by PlatPat English machine translation)—published Sep. 22, 2011 Seiko Epson Corp, Nishimura et al. |
JP2011189627 Machine Translation (by Google Patents)—published Sep. 29, 2011; Canon KK. |
JP2011201951A Machine Translation (by PlatPat English machine translation); published on Oct. 13, 2011, Shin-Etsu Chemical Co Ltd, Todoroki et al. |
JP2011224032 Machine Translation (by EPO & Google)—published Nov. 10, 2011, Mameita KK. |
JP2012086499 Machine Translation (by EPO and Google)—published May 10, 2012; Canon Inc. |
JP2012111194 Machine Translation (by EPO and Google)—published Jun. 14, 2012; Konica Minolta. |
JP2012196787A Machine Translation (by EPO and Google)—published Oct. 18, 2012; Seiko Epson Corp. |
JP2012201419A Machine Translation (by EPO and Google)—published Oct. 22, 2012, Seiko Epson Corp. |
JP2013001081 Machine Translation (by EPO and Google)—published Jan. 7, 2013; Kao Corp. |
JP2013060299 Machine Translation (by EPO and Google)—published Apr. 4, 2013; Ricoh Co Ltd. |
JP2013103474 Machine Translation (by EPO and Google)—published May 30, 2013; Ricoh Co Ltd. |
JP2013121671 Machine Translation (by EPO and Google)—published Jun. 20, 2013; Fuji Xerox Co Ltd. |
JP2013129158 Machine Translation (by EPO and Google)—published Jul. 4, 2013; Fuji Xerox Co Ltd. |
JP2014047005A Machine Translation (by EPO and Google)—published Mar. 17, 2014; Ricoh Co Ltd. |
JP2014094827A Machine Translation (by EPO and Google)—published May 22, 2014; Panasonic Corp. |
JP2014131843A Machine Translation (by EPO and Google)—published Jul. 17, 2014; Ricoh Co Ltd. |
JP2016185688A Machine Translation (by EPO and Google)—published Oct. 27, 2016; Hitachi Industry Equipment Systems Co Ltd. |
JP2529651 B2 Machine Translation (by EPO and Google)—issued Aug. 28, 1996;Osaka Sealing Insatsu KK. |
JPH03248170A Machine Translation (by EPO & Google)—published Nov. 6, 1991; Fujitsu Ltd. |
JPH05147208 Machine Translation (by EPO and Google)—published Jun. 15, 1993-Mita Industrial Co Ltd. |
JPH06100807 Machine Translation (by EPO and Google)—published Apr. 12, 1994; Seiko Instr Inc. |
JPH06171076A Machine Translation (by PlatPat English machine translation)—published Jun. 21, 1994, Seiko Epson Corp. |
JPH06345284A Machine Translation (by EPO and Google); published on Dec. 20, 1994, Seiko Epson Corp. |
JPH06954A Machine Translation (by EPO and Google)—published Jan. 11, 1994; Seiko Epson Corp. |
JPH07186453A Machine Translation (by EPO and Google)—published Jul. 25, 1995; Toshiba Corp. |
JPH07238243A Machine Translation (by EPO and Google)—published Sep. 12, 1995; Seiko Instr Inc. |
JPH08112970 Machine Translation (by EPO and Google)—published May 7, 1996; Fuji Photo Film Co Ltd. |
JPH0862999A Machine Translation (by EPO & Google)—published Mar. 8, 1996 Toray Industries, Yoshida, Tomoyuki. |
JPH09123432 Machine Translation (by EPO and Google)—published May 13, 1997, Mita Industrial Co Ltd. |
JPH09157559A Machine Translation (by EPO and Google)—published Jun. 17, 1997; Toyo Ink Mfg Co. |
JPH09281851A Machine Translation (by EPO and Google)—published Oct. 31, 1997; Seiko Epson Corp. |
JPH09314867A Machine Translation (by PlatPat English machine translation)—published Dec. 9, 1997, Toshiba Corp. |
JPH11106081A Machine Translation (by EPO and Google)—published Apr. 20, 1999; Ricoh KK. |
JPH11245383A Machine Translation (by EPO and Google)—published Sep. 14, 1999; Xerox Corp. |
JPH5297737 Machine Translation (by EPO & Google machine translation)—published Nov. 12, 1993 Fuji Xerox Co Ltd. |
JPS5578904A Machine Translation (by EPO and Google)—published Jun. 14, 1980; Yokoyama Haruo. |
JPS57121446U Machine Translation (by EPO and Google)—published Jul. 28, 1982. |
JPS60199692A Machine Translation (by EPO and Google)—published Oct. 9, 1985; Suwa Seikosha KK. |
JPS6076343A Machine Translation (by EPO and Google)—published Apr. 30, 1985; Toray Industries. |
JPS6223783A Machine Translation (by EPO and Google)—published Jan. 31, 1987; Canon KK. |
Larostat 264 A Quaternary Ammonium Compound, Technical Bulletin, BASF Corporation, Dec. 2002, p. 1. |
Machine Translation (by EPO and Google) of JPH07112841 published on May 2, 1995 Canon KK. |
Marconi Studios, Virtual SET Real Time; http://www.marconistudios.il/pages/virtualset_en.php. |
Montuori G.M., et al., “Geometrical Patterns for Diagrid Buildings: Exploring Alternative Design Strategies From the Structural Point of View,” Engineering Structures, Jul. 2014, vol. 71, pp. 112-127. |
“Solubility of Alcohol”, in http://www.solubilityoflhings.com/water/alcohol; downloaded on Nov. 30, 2017. |
Poly(vinyl acetate) data sheet. PolymerProcessing.com. Copyright 2010. http://polymerprocessing .com/polymers/PV AC.html. |
Royal Television Society, The Flight of the Phoenix; https://rts.org.uk/article/flight-phoenix, Jan. 27, 2011. |
RU2180675C2 Machine Translation (by EPO and Google)—published Mar. 20, 2002; Zao Rezinotekhnika. |
RU2282643C1Machine Translation (by EPO and Google)—published Aug. 27, 2006; Balakovorezinotekhnika Aoot. |
Technical Information Lupasol Types, Sep. 2010, 10 pages. |
The Engineering Toolbox., “Dynamic Viscosity of Common Liquids,” 2018, 4 pages. |
Units of Viscosity published by Hydramotion Ltd. 1 York Road Park, Malton, York Y017 6YA, England; downloaded from www.hydramotion.com website on Jun. 19, 2017. |
WO2006051733A1 Machine Translation (by EPO and Google)—published May 18, 2006; Konica Minolta Med & Graphic. |
WO2010073916A1 Machine Translation (by EPO and Google)—published Jul. 1, 2010; Nihon Parkerizing [JP] et al. |
WO2013087249 Machine Translation (by EPO and Google)—published Jun. 20, 2013; Koenig & Bauer AG. |
Co-pending U.S. Appl. No. 18/261,852, filed Jul. 18, 2023. |
Number | Date | Country | |
---|---|---|---|
20210309020 A1 | Oct 2021 | US |
Number | Date | Country | |
---|---|---|---|
62717957 | Aug 2018 | US |