The present disclosure relates to a transfer tape dispenser, and more particularly to an applicator tip with a protuberance for use in a transfer tape dispenser.
Transfer tape dispensers are typically used to apply an application layer of material to a surface from a flexible carrier tape. The dispensers typically include an applicator tip that receives the carrier tape coated on one side with the application layer from a supply spool and apply the application layer to a surface. A return spool then collects the carrier tape.
The applicator tip includes a platform across which the carrier tape traverses. Tape guides typically extend perpendicularly from the platform of the applicator tip. The tape guides maintain the carrier tape on the platform of the applicator tip while the dispenser is in use by not allowing the carrier tape to slip off the side of the platform.
The application layer can consist of one or more layers of material. When the application layer is pressed against a surface by the applicator tip, it is released from the carrier tape and transferred to the surface. A correction application layer consists of an opaque layer to obscure a mark and a contact adhesive layer to attach the opaque layer to a surface.
In certain circumstances, it has been found that the carrier tape may fold over itself along its length. While the tape guides are effective for maintaining the carrier ribbon on the platform, they have no effect in ensuring that the carrier tape does not fold over itself. This is especially a problem when the user must follow a curving or twisting path to cover a mark. It can also be a problem in certain designs of transfer tape dispensers in which the carrier tape must rotate 90° along its length after leaving the supply spool but before traversing the applicator tip.
While the disclosure is susceptible to various modifications and alternative constructions, certain illustrative embodiments thereof have been shown in the drawings and will be described below in detail. It should be understood, however, that there is no intention to limit the disclosure to the specific forms disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions, and the equivalents falling within the spirit and scope of the invention as defined by the appended claims.
Referring to
One of ordinary skill in the art will readily appreciate that the application layer (not shown) of the transfer tape 32 can provide numerous functions. For example, the application layer (not shown) can be an adhesive material, a highlighting material, or a decorative coating material. Accordingly, one side of the application layer (not shown) can adhere to the surface 42, while the other side of the application layer (not shown) can provide a different functionality. In the disclosed example, however, the application layer (not shown) is a correction tape layer and is referred to as such. The correction tape layer (not shown) can be applied to a surface 42 to mask a portion of the surface 42 to which it is applied. The correction tape layer (not shown) is applied to one side of a carrier tape. The carrier tape consists of a flexible ribbon or strip of plastic or paper.
Referring to
Referring to
The application tip cover 35 can be employed to protect the applicator tip 28 when not in use. Referring to
The case 22 includes a shaft 48 for mounting a drive wheel 50 inside the case 22. The drive wheel 50 includes a central hub 52 for being rotationally mounted on the shaft 48. The shaft 48 extends laterally and, in this example, from the second side 49 to first side 47. Accordingly, the drive wheel 50 can freely rotate about the shaft 48, but is prevented from moving or rotating in any other direction. The supply spool 24 is rotationally mounted on a supply side 58 of the drive wheel 50, and as will described in detail below can rotate with the drive wheel 50 or slip relative to the drive wheel 50 when necessary. The return spool 26 is disposed on a return side 60 of the drive wheel 50. In the disclosed example, the return spool 26 is an integral part of the drive wheel 50 and, therefore, rotates with the drive wheel 50. In the disclosed example, the return spool 26 is a circular ledge 62 that is integral with and protrudes outwardly from the return side 60 of the drive wheel 50. The circular ledge 62 is concentric with the drive wheel 50 and has a wider width than the width of the transfer tape 32. Accordingly, the circular ledge 62 defines the return spool 26 for collecting the carrier tape (not shown) of the transfer tape 32 in a winding manner, hence the return spool 26. To prevent the transfer tape 32 from sliding off the circular ledge 62 when being wound thereon, a plurality of side walls 64 are provided around the circular ledge 62 to contain the transfer tape 32 on the return spool 26.
To dispense the transfer tape 32 from the supply spool 24, the drive wheel 50 rotates in a dispensing direction 66 to unwind the transfer tape 32 from the supply spool 24. Additionally, the carrier tape (not shown) is collected on the return spool 26 by being wound thereon when the drive wheel 50 rotates in the dispensing direction 66. Accordingly, the transfer tape 32 is dispensed by unwinding from the top of the supply spool 24 and is collected by being wound on the return spool 26 from the bottom thereof. One of ordinary skill in the art will appreciate, however, that the aforementioned winding and unwinding configuration of the transfer tape 32 can be reversed to achieve the same result.
To prevent the wheel 50 from rotating in a non-dispensing direction (i.e., opposite the dispensing direction 66), the drive wheel 50 includes a number of flexible tabs 68 radially disposed on the return side 26 of the drive wheel 50 that engage a number of detents 70 radially disposed on the interior of the second side 49. As shown in
As the transfer tape 32 is unwound from the supply spool 24 and wound on the return spool 26, the diameter of the supply spool 24, including the supply of transfer tape 32, shrinks and the diameter of the return spool, including the supply of carrier tape (not shown), grows. Because the two spools 24, 26 generally rotate in unison, the changing diameter would cause tension in the transfer tape 32 to change. The slip clutch mechanism 46 maintains a maximum desired tension in the transfer tape 32 as the diameters of the supply spool 24 and the return spool 26 change.
As shown in
When the diameter of the return spool 26 is larger than the diameter of the supply spool 24, the transfer tape 32 needs to unwind faster from the supply spool 24 than the speed by which is being wound on the return spool 26. The tension of the transfer tape 32 needs to be sufficient to overcome the frictional forces between the ridges 80 and the internal periphery of the supply spool 24 to provide faster rotation of the supply spool 24 relative to the drive wheel 50. Thus, the supply spool 24 must slip on the arcuate shoes 74 when necessary to synchronize the length of tape unwound from the supply spool 24 with the length of the tape wound on the return spool 26.
When the diameter of the return spool 26 is smaller than the diameter of the supply spool 24, the transfer tape 32 needs to unwind slower from the supply spool 24 than the speed by which is being wound on the return spool 26. The tension of the transfer tape 32 needs to be sufficient to overcome the frictional forces between the ridges 80 and the internal periphery of the supply spool 24 to provide slower rotation of the supply spool 24 relative to the drive wheel 50. Thus, the supply spool 24 must slip on the arcuate shoes 74 when necessary to synchronize the length of tape unwound from the supply spool 24 with the length of the tape wound on the return spool 26.
One of ordinary skill in the art will appreciate that the slip clutch mechanism operates by providing a slippable engagement between the drive wheel 50 and the supply spool 24. Accordingly, a variety of well known slip clutch mechanisms can be utilized for the transfer tape dispenser 20. For example, a gasket, an o-ring, or a washer (not shown) that is constructed from a flexible material can be disposed on the hub 52 to frictionally engage the internal periphery of the supply spool 24. In yet another example, the hub 52 can include a plurality of detents (not shown) radially disposed thereon that can engage a plurality of detents (not shown) on the internal periphery of the supply spool 24.
Referring to
As shown in
Referring to
The applicator tip 28 includes a pivot shaft 90 that is pivotally mounted in the case 22 to provide pivoting of the applicator tip 28 at the application edge 30 when being applied to a surface 42. The pivot shaft 90 is parallel with the application edge 30 and is pivotally mounted in a pair of forks 92 that protrude from the case 22. Accordingly, each end of the pivot shaft 90 pivots inside a corresponding fork 92 to provide pivoting of the applicator tip 28.
The pivoting of the applicator tip 28 is limited and cushioned, in this example, by a cushion body 94 disposed between the applicator tip 28 and the first side 47 of the case 22. When the application edge 30 is pressed on a surface 42, the applicator tip 28 pivots in a direction 93 as shown in
The cushion body 94 also can provide cushioned pivoting of the applicator tip 28 when the application edge 30 is being applied to an uneven surface. Furthermore, the cushioned pivoting of the applicator tip 28 can compensate for any misalignment between the application edge 30 and a surface 42. One of ordinary skill in the art will readily appreciate that the cushion body 94 may operate like a spring, a dampener or both. The cushion body 94, in this example, is a resilient body that when pressed in a direction provides a reaction force in an opposite direction.
Referring to
The cushion body 94 may be connected to the applicator tip 28 by, for example, being co-molded with the applicator tip 28, as described above. The cushion body 94 may also be a discrete cushion body that is disposed between the applicator tip 28 and the case 22 without being connected to either the applicator tip 28 or the case 22. The cushion body 94 may also be connected to the case 22 without being connected to the applicator tip 28. However, the cushion body 94, in this example, is constructed from a different material than the applicator tip 28 and the case 22. In the disclosed example, the cushion body 94 is constructed as a one-piece elastomer body. The cushion body 94 is also shaped to fit between the applicator tip 28 and the case 22. Furthermore, one of ordinary skill in the art will appreciate that the cushion body 94 and the applicator tip 28 can be co manufactured by, for example, an injection molding process. Similarly, the cushion body 94 and the first side 47 of the case 22 can be co manufactured by, for example, an injection molding process.
Referring now to
In this example, the application side 84 is the supply side surface, and the non-application side 82 is the return side surface. That is, the transfer tape 32 travels from the supply spool 24, over the application side 84, around the application edge 30, back across the non-application side 82, and back to the return spool 26.
Extending up from the application side 82 of the applicator tip 20 is a protuberance 132. In this example, the protuberance 132 is in the shape of a portion of a cylinder. The protuberance 132 can extend up from the application surface 84 near the back edge 106. The protuberance as shown has a length approximately ⅓ of the distance between the application edge 30 and the back edge 106, and further has a width that is slightly less than the width W between the first side wall 116 and the second side wall 118. These dimensional specifications are merely examples, and other dimensions can be effective. For example, the protuberance 132 is not limited to merely being disposed near the back edge 106 of the application surface 84. It can be placed anywhere on the application side 84. Furthermore, in this example the protuberance extends up from the application side 84. The protuberance 132 may also extend up from the non-application side 82 or a protuberance 132 may extend up from both the application side 84 and the non-application side 82.
As shown in
In prior designs, when the transfer tape dispenser 20 is manipulated along a curved path, the transfer tape 32 has a tendency to fold up and over about itself along its length, i.e. the side edge 32a may fold up and about the middle portion 32c and over and on top of the opposing side edge 32b. This tendency can be exacerbated by designs in which the axis of rotation of the supply spool 24 is perpendicular to the application edge 30 such that the transfer tape 32 must twist or rotate 90° along its length as in the transfer tape dispenser 20. The protuberance 132, in forcing the transfer tape 32 into a convex shape, ensures that the transfer tape 32 cannot fold up and over itself along its length.
While the protuberance 132 here is shown as a portion of a cylinder, other shapes could be used to ensure that transfer tape 32 does not fold up and over itself. For example,
An alternate example of an applicator tip 134 is shown in
A further example of an applicator tip 150 and a protuberance 151 is disclosed in
The applicator tip 150 includes a platform 152 that is defined by a front edge 154, a back edge 156, a left edge 158, a right edge 160, a top surface 162 and a bottom surface 164. Adjacent the left edge 158 is a first sidewall 166, and adjacent the right edge 160 is a second sidewall 168. In this example the sidewalls 166, 168 are curved over the platform 152 to help to maintain the correction tape on the platform 152. Further, the platform 152 includes a first leg 170 and a second leg 172 separated by a longitudinal slot 174 to impart flexibility to the platform 152.
In this example, the protuberance 151 is defined by an arch 176 disposed near the back edge 156 on the top surface 162. The arch 176 has a convex surface 178 and a concave surface 180 and in this example serves the same purpose as the protuberance 132 in the previous example. The arch 176 includes a first end 182 attached to the first leg 170 and a second end 184 attached to the second leg 172 with the arch 176 spanning the slot 174.
In use, the transfer tape 32 is disposed over the convex surface 178 of the arch 176. The side edges 32a and 32b of the transfer tape are disposed near the first end 182 and second end 184, respectively, adjacent to the platform 152. The middle portion 32c rides along the convex surface 178 such that the transfer tape 32 is forced into a convex shape. This can help prevent the transfer tape 32 from folding over itself along its length.
As can be seen, any structure that helps to maintain the side edges 32a, 32b of the correction tape 32 adjacent the platform and/or force the middle portion 32c of the correction tape 32 upwards can be effective to prevent the correction tape 32 from folding over itself.
Finally, those of ordinary skill in the art will recognize that any applicator tip with a protuberance can be useful with any transfer tape dispenser, not only those disclosed herein. The applicator tip can take on any configuration with respect to at least size, flexibility, manufacturing materials, or other parameters. Further, the structure of the transfer tape dispenser 20 disclosed herein is only but one example of a dispenser that can be used with the application tip 28. Accordingly, the structure of the transfer tape dispenser 20 and its components can vary from that shown.
From the foregoing, one of ordinary skill in the art will appreciate that the present disclosure sets forth a flexible applicator tip for corrective tape. However, one of ordinary skill in the art could readily apply the novel teachings of this disclosure to any number of applicators. As such, the teachings of this disclosure shall not be considered to be limited to the specific examples disclosed herein, but to include all applications within the spirit and scope of the invention.