This application is related to the following applications, each of which is hereby incorporated by reference:
U.S. patent application Ser. No. 11/097,676, “Bloom Filters for Query Simulation,” filed on Mar. 31, 2005;
U.S. patent application Ser. No. 11/097,690, “Selecting the Best Answer to a Fact Query from Among a Set of Potential Answers,” filed on Mar. 31, 2005;
U.S. patent application Ser. No. 11/097,689, “User Interface for Facts Query Engine with Snippets from Information Sources that Include Query Terms and Answer Terms,” filed on Mar. 31, 2005; and
U.S. patent application Ser. No. 11/024,784, “Supplementing Search Results with Information of Interest,” filed on Dec. 30, 2004.
The disclosed embodiments relate generally to fact databases, and more particularly, to corroboration of facts extracted from multiple sources.
The World Wide Web (also known as the “Web”) and the web pages within the Web are a vast source of factual information. Users may look to web pages to get answers to factual questions, such as “what is the capital of Poland” or “what is the birth date of George Washington.” Web search engines, however, may be unhelpful to users in this regard, as they generally do not provide a simple, succinct answer to factual queries such as the ones described above. Rather, Web search engines provide to the user a list of Web pages that are determined to match the query, and the user has to sort through the matching Web pages to find the answer.
Attempts that have been made to build search engines that that can provide quick answers to factual questions have their own shortcomings. For example, some search engines draw their facts from a single source, such as a particular encyclopedia. This limits the types of questions that these engines can answer. For instance, a search engine based on an encyclopedia is unlikely to be able to answer many questions concerning popular culture, such as questions about movies, songs or the like, and is also unlikely to be able to answer many questions about products, services, retail and wholesale businesses and so on. If the set of sources used by such a search engine were to be expanded, however, such expansion might introduce the possibility of multiple possible answers to a factual query, some of which might be contradictory or ambiguous. Furthermore, as the universe of sources expands, information may be drawn from untrustworthy sources or sources of unknown reliability.
According to an aspect of the invention, a method for corroborating facts includes identifying one or more attribute-value pairs associated with a common subject; identifying a subset of the attribute-value pairs associated with the common subject, each of the attribute-value pairs in the subset meeting one or more predefined corroboration requirements; and performing a predefined action with respect to status of the identified subset of attribute-value pairs in a fact repository.
According to another aspect of the invention, a method for corroboration facts includes identifying one or more attribute-value pairs associated with a common subject; identifying a set of attributes from the identified attribute-value pairs, each of the attributes of the identified set meeting a first corroboration requirement; identifying a subset of the attribute-value pairs associated with the common subject, each of the attribute-value pairs in the subset having an attribute in the set of identified attributes and meeting a second corroboration requirement; and performing a predefined action with respect to the status of the identified subset of attribute-value pairs in a fact repository.
According to another aspect of the invention, a method for corroboration facts include identifying one or more attribute-value pairs associated with a common subject; identifying a set of candidate attributes from the identified attribute-value pairs; for each of the set of candidate attributes, determining a first score; identifying a subset of the set of candidate attributes, each of the subset of the set of candidate attributes having a respective first score exceeding a first predefined threshold; and for each of the subset of the set of candidate attributes: identifying one or more first candidate values associated with the respective candidate attribute; for each of the first candidate values, determining a second score; selecting a second candidate value of the first candidate values, the second candidate value being an only member of the first candidate values or having a respective second score exceeding second scores of other first candidate values by at least a predefined margin; and performing a predefined action with respect to a respective attribute-value pair having both the respective candidate attribute and the selected second candidate value.
Like reference numerals refer to corresponding parts throughout the drawings.
Factual information from web pages may be extracted and stored in a facts database. The facts database may be used to provide answers to factual questions such as the ones described above. However, not every fact in a web page is acceptable for inclusion in the facts database. Some web pages may have facts that are unintentionally erroneous, due to typographical errors or outdated information, for example. Other web pages may have facts that are trivial, uninteresting or of potentially doubtful veracity. Furthermore, some web pages may purposely include outright falsehoods as “facts.” In addition, content from a web page that is not factual information may be misidentified and extracted as facts. Storing these “facts” in the facts database would diminish the quality of the fact database.
Facts, associated with a particular subject, that are proper for inclusion in the fact repository may be identified by a process that corroborates the facts across documents that include facts associated with the particular subject. Furthermore, the number of corroborated facts in a document may be a basis for reducing the corroboration requirements for other facts in the same document.
The document hosts 102 store documents and provide access to the documents. A document may be any machine-readable data including any combination of text, graphics, multimedia content, etc. In some embodiments, a document may be a combination of text, graphics and possible other forms of information written in the Hypertext Markup Language, i.e., web pages. A document may include one or more hyperlinks to other documents. A document may include one or more facts within its contents. A document stored in a document host 102 may be located and/or identified by a Uniform Resource Locator (URL), or Web address, or any other appropriate form of identification and/or location. Each document may also be associated with a page importance metric. The page importance metric of a document measures the importance, popularity or reputation of the document relative to other documents. In some embodiments, the page importance metric is the PageRank of the document. For more information on such the PageRank metric and its computation, see, for example, Lawrence et al., “The PageRank citation ranking: Bringing order to the web,” Stanford Digital Libraries Working Paper, 1998; Haveliwala, “Topic-sensitive PageRank,” Proceedings of the Eleventh International World Wide Web Conference, 2002; Richardson and Domingos, “The Intelligent Surfer: Probabilistic Combination of Link and Content Information in PageRank,” volume 14. MIT Press, Cambridge, Mass., 2002; and Jeh and Widom, “Scaling personalized web search,” Stanford University Technical Report, 2002; Brin and Page, “The Anatomy of a Large-Scale Hypertextual Search Engine,” 7th International World Wide Web Conference, Brisbane, Australia; and U.S. Pat. No. 6,285,999, each of which is hereby incorporated by reference in its entirety as background information.
The fact repository engine 106 includes an importer 108, a repository manager 110, a fact index 112, and a fact repository 114. The importer 108 extracts factual information from documents stored on document hosts 102. The importer 108 analyzes the contents of the documents stored in document host 102, determines if the contents include factual information and the subject or subjects with which the factual information are associated, and extracts any available factual information within the contents.
The repository manager 110 processes facts extracted by the importer 108. The repository manager 110 builds and manages the fact repository 114 and the fact index 112. The repository manager 110 receives facts extracted by the importer 108 and stores them in the fact repository 114. The repository manager 114 may also perform operations on facts in the fact repository 114 to “clean up” the data within the fact repository 114. For example, the repository manager 110 may look through the fact repository 114 to find duplicate facts (that is, facts that convey the exact same factual information) and merge them. The repository manager 110 may also normalize facts into standard formats. The repository manager 110 may also remove unwanted facts from the fact repository 114, such as facts related to pornographic content.
The fact repository 114 stores factual information extracted from a plurality of documents that are located on the document hosts 102. A document from which a particular fact may be extracted is a source document (or “source”) of that particular fact. In other words, a source of a fact includes that fact within its contents. Sources documents may include, without limitation, Web pages. Within the fact repository 114, entities, concepts, and the like for which the fact repository 114 may have factual information stored are represented by objects. An object may have one or more facts associated with it. Each object is a collection of facts; an object that has no facts associated with it (an empty object) may be viewed as a non-existent object within the fact repository 114. Within each object, each fact associated with the object is stored as an attribute-value pair. Each fact also includes a list of source documents that include the fact within its contents and from which the fact was extracted. Further details about objects and facts in the fact repository are described below, in relation to
The fact index 112 provides an index to the fact repository 114 and facilitates efficient lookup of information in the fact repository 114. The fact index 112 may index the fact repository 114 based on one or more parameters. For example, the fact index 112 may have an index that indexes unique terms to locations within the fact repository 114.
It should be appreciated that each of the components of the fact repository engine 106 may be distributed over multiple computers. For example, the fact repository 114 may be deployed over N servers, with a mapping function such as the “modulo N” function being used to determine which facts are stored in each of the N servers. Similarly, the fact index 112 may be distributed over multiple servers, and the importer 108 and repository manager 110 may each be distributed over multiple computers. However, for convenience of explanation, we will discuss the components of the fact repository engine 106 as though they were implemented on a single computer.
Each fact 204 also may include one or more metrics 218. The metrics may provide indications of the quality of the fact. In some embodiments, the metrics include a confidence level and an importance level. The confidence level indicates the likelihood that the fact is correct. The importance level indicates the relevance of the fact to the object, compared to other facts for the same object. The importance level may optionally be viewed as a measure of how vital a fact is to an understanding of the entity or concept represented by the object.
Each fact 204 includes a list of sources 220 that include the fact and from which the fact was extracted. Each source may be identified by a Uniform Resource Locator (URL), or Web address, or any other appropriate form of identification and/or location, such as a unique document identifier.
In some embodiments, some facts may include an agent field 222 that identifies the module that extracted the fact. For example, the agent may be a specialized module that extracts facts from a specific source (e.g., the pages of a particular web site, or family of web sites) or type of source (e.g., web pages that present factual information in tabular form), or a module that extracts facts from free text in documents throughout the Web, and so forth.
In some embodiments, an object 200 may have one or more specialized facts, such as a name fact 206 and a property fact 208. A name fact 206 is a fact that conveys a name for the entity or concept represented by the object 200. For example, for an object representing the country Spain, there may be a fact conveying the name of the object as “Spain.” A name fact 206, being a special instance of a general fact 204, includes the same parameters as any other fact 204; it has an attribute, a value, a fact ID, metrics, sources, etc. The attribute 224 of a name fact 206 indicates that the fact is a name fact, and the value is the actual name. The name may be a string of text. An object 200 may have one or more name facts, as many entities or concepts can have more than one name. For example, an object representing Spain may have name facts conveying the country's common name “Spain” and the official name “Kingdom of Spain.” As another example, an object representing the U.S. Patent and Trademark Office may have name facts conveying the agency's acronyms “PTO” and “USPTO” and the official name “United States Patent and Trademark Office.”
A property fact 208 is a fact that conveys a statement about the entity or concept represented by the object 200 that may be of interest. For example, for the object representing Spain, a property fact may convey that Spain is a country in Europe. A property fact 208, being a special instance of a general fact 204, also includes the same parameters (such as attribute, value, fact ID, etc.) as other facts 204. The attribute field 226 of a property fact 208 indicates that the fact is a property fact, and the value field is a string of text that conveys the statement of interest. For example, for the object representing Spain, the value of a property fact may be the text string “is a country in Europe.” Some objects 200 may have one or more property facts while other objects may have no property objects.
It should be appreciated that the data structure illustrated in
One or more sources that include one or more facts associated with a common subject are identified (302). In other words, documents that include factual information are grouped according to the subject of the factual information included in each document. In some embodiments, the subject with which the facts included in a source are associated may be identified by analyzing the source' content, such as the title text. In some other embodiments, the subject with which the facts included in a source are associated may be identified by analyzing the anchor text of hyperlinks from other documents to the source. Each distinct anchor text (or each distinct subject extracted from the anchor text of the hyperlinks to the source) may be given a weighted score based on how many documents have a hyperlink to the source with the same anchor text (or the same subject extracted from the anchor text) and the page importance metrics of those documents. The anchor text (or the subject extracted from the anchor text) with the highest score is determined to be the subject (or object name) associated with the facts extracted from the source.
From the sources including facts associated with a common subject, one or more attribute-value pairs (hereinafter “A-V pairs”) associated with the common subject are extracted (304). For convenience, this document may use the shorthand phrase “A-V pairs in a selected source” (and other similar phrases) to mean facts or attribute-value pairs extracted from or otherwise derived from the selected source. One or more attributes are identified from the extracted A-V pairs (306). A subset of the identified attributes, where each member of the subset meets a first corroboration requirement, is identified (308). In some embodiments, the first corroboration requirement is based on the number of sources that include at least one A-V pair that has the particular attribute. In other words, the first corroboration requirement looks for facts about the common subject with attributes that may be important with regard to the common subject, based on the frequency of appearance of facts with particular attribute across sources. For example, the first corroboration requirement may be that at least four (or more generally, N, where N is an integer greater than 1) independent sources (e.g., from different web sites) be the source of A-V pairs having the same attribute.
In some embodiments, each attribute identified at 306 is given a first source count score and the first source count score is tested against a first predefined threshold. The first source count score for an attribute is the number of independent sources that include at least one A-V pair that has the particular attribute. The first predefined threshold represents the first corroboration requirement, namely a minimum number of sources that includes an A-V pair with the particular attribute. To reduce “gaming” of the facts repository by persons or entities attempting to insert biased, dubious and false information into the facts repository by positing a few web pages containing such information, the count of sources may exclude documents (e.g., web pages) from the same web site as a document already included in the count, and may also exclude duplicates and near-duplicates of documents already included in the count. Other techniques may also be used to reduce gaming of the facts repository, and some of these techniques may be incorporated into the first corroboration requirement and/or the second corroboration requirement (discussed below). For example, the incorporation of a page importance-weighted score in the second corroboration requirement (as discussed below) may help to reduce gaming of the facts repository by favoring facts from sources of higher importance (with importance being a proxy for the reliability of a source).
In some embodiments, the first corroboration requirement may be based on a number of sources that include at least one A-V pair that has the particular attribute or any of its synonymous or equivalent attributes. Synonymous or equivalent attributes of an attribute convey the same concept as the respective attribute. For example, attributes “birthdate” and “birthday” are synonymous with or equivalent to the attribute “date of birth,” because they both convey the same concept, namely the date when a person was born. In some embodiments, synonymous or equivalent attributes are identified by comparing the attributes identified at 306 to each other and determining a degree of similarity based on each comparison. Attributes whose degrees of similarity are above a predefined similarity threshold are deemed to be synonymous or equivalent.
After the subset of attributes that satisfy the first corroboration requirement is identified, one of the attributes is selected (310). For that selected attribute, an A-V pair that includes the selected attribute and satisfies a second corroboration requirement is identified (312). The identified A-V pair that satisfies the second corroboration requirement (and also satisfies the first corroboration requirement because it includes an attribute that satisfies the first corroboration requirement) may be said to be an “accepted” A-V pair. In some embodiments, the second corroboration requirement is based on the number of sources that include the particular A-V pair and on a comparison of the page importance-weighted score of the particular A-V pair against page importance-weighted scores of other A-V pairs that include the selected attribute but a different value. The second corroboration requirements looks for the “most correct” value for the selected attribute, with regard to the common subject, based on the frequency of appearance of the particular value in A-V pairs that include the selected attribute across documents and the importance of the sources that include the A-V pair with the selected attribute and the particular value. In other words, the second corroboration requirement is that the A-V pair with the selected attribute and the particular value appears in at least a minimum number of sources and has a page importance-weighted score that is “lopsided” compared to page importance-weighted scores of other A-V pairs with the selected attribute but different values.
In some embodiments, for the selected attribute, one or more values are identified. The identified values are values that are included in A-V pairs that include the selected attribute. A second source count score that is the number of sources that includes the A-V pair having the selected attribute and the particular identified value is determined. In some embodiments, the second source count score is the number of sources that includes the A-V pair having the selected attribute (or its synonymous/equivalent attributes) and the particular identified value or its synonymous/equivalent values. Synonymous/equivalent values are similar to synonymous/equivalent attributes. Grouping of synonymous/equivalent values are based on degrees of similarity determined from comparisons of the identified values to each other, similar to the grouping of synonymous/equivalent attributes, as described above. In some embodiments, the function for computing the second source count score is:
As noted above with respect to the first corroboration requirement, in some embodiments the sources of an A-V pair included in the score computations (including the score computations discussed below) for evaluating the second corroboration requirement may be restricted in various ways to reduce gaming of the facts repository. The second source count score is tested against a second predefined threshold. For those A-V pairs whose second source count scores satisfy the second predefined threshold, a page importance-weighted score is determined. In some embodiments, the page importance-weighted score is the sum of the page importance metrics of the sources that include the A-V pair having the selected attribute (or its synonymous/equivalent attributes) and the particular value (or its synonymous/equivalent values). In some embodiments, the function for computing the page importance-weighted score is:
In some other embodiments, the page importance-weighted score may be the average of the page importance metrics of the sources that include the A-V pair having the selected attribute (or its synonymous/equivalent attributes) and the particular value (or its synonymous/equivalent values). In some embodiments, the function for computing this version of the page importance-weighted score is:
where K is the number of sources of the A-V pair included in the score computation.
The page importance-weighted scores of the A-V pairs whose second source count scores exceed the second predefined threshold are compared against each other. The A-V pair having the largest page importance-weighted score over each of the other page importance-weighted scores by at least a predefined margin is the A-V pair that satisfies the second corroboration requirement, i.e., the accepted A-V pair. In some embodiments, the predefined margin may be defined by the inequality S>αC+β, where S is the page importance-weighted score of an A-V pair, C is the page importance-weighted score of another A-V pair, and α and β are predefined constants. In some embodiments, α may be set to a positive number greater than 1, such as a number between 2 and 5, inclusive, and β may be set to 0.
Thus, in some embodiments, the second corroboration requirement is both that the second source count score is above the second predefined threshold and that the page importance-weighted score is greater than other page importance-weighted scores by at least the predefined margin.
It may be the case that an A-V pair is the only one whose second source count score exceeds the second predefined threshold. In some embodiments, such an A-V pair may be accepted without performing the comparison of page importance-weighted scores.
It should be appreciated that while the description above describes scoring A-V pairs based on source count and page importance, in other embodiments the values in A-V pairs with a particular attribute are scored based on source count and page importance. In these cases, the practical effect is the same: A-V pairs are scored based on source count and the page importance of the sources of the A-V pairs.
If an accepted A-V pair is identified (314—yes), a predefined action may be performed (316) with respect to the A-V pair and/or with respect to its status in the fact repository 114. In some embodiments, the predefined action is to store the A-V pair in the fact repository 114 as a fact 204 associated with an object 202. In other embodiments, the predefined action may be to mark the A-V pair, if already stored in the fact repository 114, as proper for retention in the fact repository 114 and/or proper for access. Other A-V pairs having the same attribute may be marked for deletion from the fact repository, or may be marked as being unavailable for retrieval in response to a fact search query. If an accepted A-V pair is not identified (314—no), or after completion of the predefined action at 316, if there are further attributes in the subset remaining to be processed (318—no), another attribute in the subset is selected (310). If there are no attributes in the subset remaining to be processed (318—yes), then the process may end (320).
It may be the case that, for an attribute that meets the first corroboration requirement, there may not be an A-V pair that meets the second corroboration requirement, and thus leading to the non-identification of an accepted A-V pair. In some embodiments, the reason for this may be that no A-V pair with that particular attribute has a second source count score greater than the second predefined threshold, or that no A-V pair with that particular attribute has a page importance-weighted score that is greater than the page importance-weighted scores of other A-V pairs with that particular attribute by the predefined margin.
If there are more sources that have at least M accepted A-V pairs (408—no), another source is selected (402). If there are no more sources remaining to select (408—yes), an attribute that met the reduced first corroboration requirement is selected (410). An A-V pair that includes the selected attribute and meets a reduced second corroboration requirement is identified (412). If one is identified (414—yes), a predefined action may be performed with respect to it and/or with respect to its status in the fact repository 114 (416). Operations 412, 414, and 416 are the same as operations 312, 314, and 316, respectively, as described above, except that in operation 412 the second corroboration requirement is reduced for A-V pairs having the selected attribute. In some embodiments, the second corroboration requirement is reduced by counting a source that include the A-V pair having the selected attribute and at least M accepted A-V pairs as two sources (or more generally, as N sources, where N is a value greater than 1). In other words, the second source count scores and the page importance-weighted scores of those A-V pairs with the selected attribute are positively adjusted. In some other embodiments, the second corroboration requirement may be reduced by lowering the second predefined threshold or reducing the predefined margin.
If an accepted A-V pair is not identified (414—no), or after completion of operation 416, if there are other attributes to be processed (418—no), then another attribute is selected (410). Otherwise (418—yes), the process may end.
Thus, as described above, the acceptance of facts in the initial processing may be used as an indication of the reliability and trustworthiness of a source. When a source meets a predefined reliability requirement, other facts extracted from the same source that have not yet been accepted may be accepted, or given a second opportunity to be accepted, even though those facts would otherwise fail to meet one or more corroboration requirements. In the process of
In some embodiments, the corroboration process may be performed in three phases. For example, the processes described above, in relation to
In some embodiments, the corroboration process may be performed on facts already stored in the fact repository 114, rather than before the extracted facts are stored in the fact repository 114. The process is similar to that described above. In some embodiments, the predefined action may be to mark an accepted fact as accepted. Afterwards, the repository manager, while removing unwanted facts, may keep accepted facts in the fact repository 114 unless other criteria mandate removal. In some other embodiments, the predefined action may be to mark the fact as accessible. Facts that are so marked may be accessed (for example, while processing a search query), while facts not marked are not accessible, even if they remain in the fact repository 114.
In some embodiments, memory 512 of system 500 includes the fact index instead of an interface 532 to the fact index. The system 500 also includes a fact storage system 540 for storing facts. Each fact stored in the fact storage system 540 includes a corresponding list of sources from which the respective fact was extracted.
It should be appreciated that at least some of the modules described above may be grouped together as one module. For example, the modules 526, 528, and 534 may be grouped into a first corroboration module.
Each of the above identified elements may be stored in one or more of the previously mentioned memory devices, and corresponds to a set of instructions for performing a function described above. The above identified modules or programs (i.e., sets of instructions) need not be implemented as separate software programs, procedures or modules, and thus various subsets of these modules may be combined or otherwise re-arranged in various embodiments. In some embodiments, memory 512 may store a subset of the modules and data structures identified above. Furthermore, memory 512 may store additional modules and data structures not described above.
Although
The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated.
Number | Name | Date | Kind |
---|---|---|---|
5010478 | Deran | Apr 1991 | A |
5133075 | Risch | Jul 1992 | A |
5347653 | Flynn et al. | Sep 1994 | A |
5440730 | Elmasri et al. | Aug 1995 | A |
5475819 | Miller et al. | Dec 1995 | A |
5519608 | Kupiec | May 1996 | A |
5546507 | Staub | Aug 1996 | A |
5560005 | Hoover et al. | Sep 1996 | A |
5574898 | Leblang et al. | Nov 1996 | A |
5675785 | Hall et al. | Oct 1997 | A |
5680622 | Even | Oct 1997 | A |
5694590 | Thuraisingham et al. | Dec 1997 | A |
5701470 | Joy et al. | Dec 1997 | A |
5717911 | Madrid et al. | Feb 1998 | A |
5717951 | Yabumoto | Feb 1998 | A |
5724571 | Woods | Mar 1998 | A |
5778373 | Levy et al. | Jul 1998 | A |
5778378 | Rubin | Jul 1998 | A |
5787413 | Kauffman et al. | Jul 1998 | A |
5793966 | Amstein et al. | Aug 1998 | A |
5802299 | Logan et al. | Sep 1998 | A |
5815415 | Bentley et al. | Sep 1998 | A |
5819210 | Maxwell, III et al. | Oct 1998 | A |
5819265 | Ravin et al. | Oct 1998 | A |
5822743 | Gupta et al. | Oct 1998 | A |
5826258 | Gupta et al. | Oct 1998 | A |
5838979 | Hart et al. | Nov 1998 | A |
5909689 | Van Ryzin | Jun 1999 | A |
5920859 | Li | Jul 1999 | A |
5943670 | Prager | Aug 1999 | A |
5956718 | Prasad et al. | Sep 1999 | A |
5974254 | Hsu | Oct 1999 | A |
5987460 | Niwa et al. | Nov 1999 | A |
6006221 | Liddy et al. | Dec 1999 | A |
6018741 | Howland et al. | Jan 2000 | A |
6038560 | Wical | Mar 2000 | A |
6044366 | Graffe et al. | Mar 2000 | A |
6052693 | Smith et al. | Apr 2000 | A |
6064952 | Imanaka et al. | May 2000 | A |
6073130 | Jacobson et al. | Jun 2000 | A |
6078918 | Allen et al. | Jun 2000 | A |
6112203 | Bharat et al. | Aug 2000 | A |
6112210 | Nori et al. | Aug 2000 | A |
6122647 | Horowitz et al. | Sep 2000 | A |
6134555 | Chadha et al. | Oct 2000 | A |
6138270 | Hsu | Oct 2000 | A |
6182063 | Woods | Jan 2001 | B1 |
6202065 | Wills | Mar 2001 | B1 |
6212526 | Chaudhuri et al. | Apr 2001 | B1 |
6240546 | Lee et al. | May 2001 | B1 |
6263328 | Coden et al. | Jul 2001 | B1 |
6263358 | Lee et al. | Jul 2001 | B1 |
6266805 | Nwana et al. | Jul 2001 | B1 |
6285999 | Page | Sep 2001 | B1 |
6289338 | Stoffel et al. | Sep 2001 | B1 |
6311194 | Sheth et al. | Oct 2001 | B1 |
6314555 | Ndumu et al. | Nov 2001 | B1 |
6327574 | Kramer et al. | Dec 2001 | B1 |
6349275 | Schumacher et al. | Feb 2002 | B1 |
6377943 | Jakobsson | Apr 2002 | B1 |
6397228 | Lamburt et al. | May 2002 | B1 |
6438543 | Kazi et al. | Aug 2002 | B1 |
6470330 | Das et al. | Oct 2002 | B1 |
6473898 | Waugh et al. | Oct 2002 | B1 |
6487495 | Gale et al. | Nov 2002 | B1 |
6502102 | Haswell et al. | Dec 2002 | B1 |
6519631 | Rosenschein et al. | Feb 2003 | B1 |
6556991 | Borkovsky | Apr 2003 | B1 |
6565610 | Wang et al. | May 2003 | B1 |
6567846 | Garg et al. | May 2003 | B1 |
6567936 | Yang et al. | May 2003 | B1 |
6572661 | Stern | Jun 2003 | B1 |
6578032 | Chandrasekar et al. | Jun 2003 | B1 |
6584464 | Warthen | Jun 2003 | B1 |
6584646 | Fujita | Jul 2003 | B2 |
6594658 | Woods | Jul 2003 | B2 |
6606625 | Muslea et al. | Aug 2003 | B1 |
6606659 | Hegli et al. | Aug 2003 | B1 |
6609123 | Cazemier et al. | Aug 2003 | B1 |
6636742 | Torkki et al. | Oct 2003 | B1 |
6643641 | Snyder | Nov 2003 | B1 |
6665659 | Logan | Dec 2003 | B1 |
6665666 | Brown et al. | Dec 2003 | B1 |
6665837 | Dean et al. | Dec 2003 | B1 |
6675159 | Lin et al. | Jan 2004 | B1 |
6684205 | Modha et al. | Jan 2004 | B1 |
6693651 | Biebesheimer et al. | Feb 2004 | B2 |
6704726 | Amouroux | Mar 2004 | B1 |
6738767 | Chung et al. | May 2004 | B1 |
6745189 | Schreiber | Jun 2004 | B2 |
6754873 | Law et al. | Jun 2004 | B1 |
6763496 | Hennings et al. | Jul 2004 | B1 |
6799176 | Page | Sep 2004 | B1 |
6804667 | Martin | Oct 2004 | B1 |
6820081 | Kawai et al. | Nov 2004 | B1 |
6820093 | de la Huerga | Nov 2004 | B2 |
6823495 | Vedula et al. | Nov 2004 | B1 |
6832218 | Emens et al. | Dec 2004 | B1 |
6845354 | Kuo et al. | Jan 2005 | B1 |
6850896 | Kelman et al. | Feb 2005 | B1 |
6873982 | Bates et al. | Mar 2005 | B1 |
6873993 | Charlesworth et al. | Mar 2005 | B2 |
6886005 | Davis | Apr 2005 | B2 |
6886010 | Kostoff | Apr 2005 | B2 |
6901403 | Bata et al. | May 2005 | B1 |
6904429 | Sako et al. | Jun 2005 | B2 |
6957213 | Yuret | Oct 2005 | B1 |
6963880 | Pingte et al. | Nov 2005 | B1 |
6965900 | Srinivasa et al. | Nov 2005 | B2 |
7003506 | Fisk et al. | Feb 2006 | B1 |
7003522 | Reynar et al. | Feb 2006 | B1 |
7003719 | Rosenoff et al. | Feb 2006 | B1 |
7007228 | Carro | Feb 2006 | B1 |
7013308 | Tunstall-Pedoe | Mar 2006 | B1 |
7020662 | Boreham et al. | Mar 2006 | B2 |
7043521 | Eitel | May 2006 | B2 |
7051023 | Kapur et al. | May 2006 | B2 |
7076491 | Tsao | Jul 2006 | B2 |
7080073 | Jiang et al. | Jul 2006 | B1 |
7080085 | Choy et al. | Jul 2006 | B1 |
7100082 | Little et al. | Aug 2006 | B2 |
7143099 | Leeheler-Moore et al. | Nov 2006 | B2 |
7146536 | Bingham et al. | Dec 2006 | B2 |
7158980 | Shen | Jan 2007 | B2 |
7162499 | Lees et al. | Jan 2007 | B2 |
7165024 | Glover et al. | Jan 2007 | B2 |
7174504 | Tsao | Feb 2007 | B2 |
7181471 | Ibuki et al. | Feb 2007 | B1 |
7194380 | Barrow et al. | Mar 2007 | B2 |
7197449 | Hu et al. | Mar 2007 | B2 |
7216073 | Lavi et al. | May 2007 | B2 |
7233943 | Modha et al. | Jun 2007 | B2 |
7260573 | Jeh et al. | Aug 2007 | B1 |
7263565 | Tawara et al. | Aug 2007 | B2 |
7277879 | Varadarajan | Oct 2007 | B2 |
7302646 | Nomiyama et al. | Nov 2007 | B2 |
7305380 | Hoelzle et al. | Dec 2007 | B1 |
7325160 | Tsao | Jan 2008 | B2 |
7363312 | Goldsack | Apr 2008 | B2 |
7376895 | Tsao | May 2008 | B2 |
7398461 | Broder et al. | Jul 2008 | B1 |
7409381 | Steel et al. | Aug 2008 | B1 |
7412078 | Kim | Aug 2008 | B2 |
7418736 | Ghanea-Hercock | Aug 2008 | B2 |
7472182 | Young et al. | Dec 2008 | B1 |
7483829 | Murakami et al. | Jan 2009 | B2 |
7493308 | Bair, Jr. et al. | Feb 2009 | B1 |
7493317 | Geva | Feb 2009 | B2 |
7587387 | Hogue | Sep 2009 | B2 |
7644076 | Ramesh et al. | Jan 2010 | B1 |
7672971 | Betz et al. | Mar 2010 | B2 |
7685201 | Zeng et al. | Mar 2010 | B2 |
7698303 | Goodwin et al. | Apr 2010 | B2 |
7716225 | Dean et al. | May 2010 | B1 |
7747571 | Boggs | Jun 2010 | B2 |
7756823 | Young et al. | Jul 2010 | B2 |
7797282 | Kirshenbaum et al. | Sep 2010 | B1 |
7885918 | Statchuk | Feb 2011 | B2 |
7917154 | Fortescue et al. | Mar 2011 | B2 |
7953720 | Rohde et al. | May 2011 | B1 |
8024281 | Proctor et al. | Sep 2011 | B2 |
8065290 | Hogue | Nov 2011 | B2 |
8108501 | Birnie et al. | Jan 2012 | B2 |
20010021935 | Mills | Sep 2001 | A1 |
20020022956 | Ukrainczyk et al. | Feb 2002 | A1 |
20020038307 | Obradovic et al. | Mar 2002 | A1 |
20020042707 | Zhao et al. | Apr 2002 | A1 |
20020065845 | Naito et al. | May 2002 | A1 |
20020073115 | Davis | Jun 2002 | A1 |
20020083039 | Ferrari et al. | Jun 2002 | A1 |
20020087567 | Spiegler et al. | Jul 2002 | A1 |
20020107861 | Clendinning et al. | Aug 2002 | A1 |
20020147738 | Reader | Oct 2002 | A1 |
20020169770 | Kim et al. | Nov 2002 | A1 |
20020174099 | Raj et al. | Nov 2002 | A1 |
20020178448 | Te Kiefte et al. | Nov 2002 | A1 |
20020194172 | Schreiber | Dec 2002 | A1 |
20030018652 | Heckerman et al. | Jan 2003 | A1 |
20030058706 | Okamoto et al. | Mar 2003 | A1 |
20030069880 | Harrison et al. | Apr 2003 | A1 |
20030078902 | Leong et al. | Apr 2003 | A1 |
20030088607 | Ruellan et al. | May 2003 | A1 |
20030097357 | Ferrari et al. | May 2003 | A1 |
20030120644 | Shirota | Jun 2003 | A1 |
20030120675 | Stauber et al. | Jun 2003 | A1 |
20030126102 | Borthwick | Jul 2003 | A1 |
20030126152 | Rajak | Jul 2003 | A1 |
20030149567 | Schmitz et al. | Aug 2003 | A1 |
20030149699 | Tsao | Aug 2003 | A1 |
20030154071 | Shreve | Aug 2003 | A1 |
20030167163 | Glover et al. | Sep 2003 | A1 |
20030177110 | Okamoto et al. | Sep 2003 | A1 |
20030182310 | Charnock et al. | Sep 2003 | A1 |
20030195872 | Senn | Oct 2003 | A1 |
20030195877 | Ford et al. | Oct 2003 | A1 |
20030196052 | Bolik et al. | Oct 2003 | A1 |
20030204481 | Lau | Oct 2003 | A1 |
20030208354 | Lin et al. | Nov 2003 | A1 |
20040003067 | Ferrin | Jan 2004 | A1 |
20040015481 | Zinda | Jan 2004 | A1 |
20040024739 | Copperman et al. | Feb 2004 | A1 |
20040049503 | Modha et al. | Mar 2004 | A1 |
20040059726 | Hunter et al. | Mar 2004 | A1 |
20040064447 | Simske et al. | Apr 2004 | A1 |
20040069880 | Samelson et al. | Apr 2004 | A1 |
20040088292 | Dettinger et al. | May 2004 | A1 |
20040107125 | Guheen et al. | Jun 2004 | A1 |
20040122844 | Malloy et al. | Jun 2004 | A1 |
20040122846 | Chess et al. | Jun 2004 | A1 |
20040123240 | Gerstl et al. | Jun 2004 | A1 |
20040128624 | Arellano et al. | Jul 2004 | A1 |
20040143600 | Musgrove et al. | Jul 2004 | A1 |
20040153456 | Charnock et al. | Aug 2004 | A1 |
20040167870 | Wakefield et al. | Aug 2004 | A1 |
20040177015 | Galai et al. | Sep 2004 | A1 |
20040177080 | Doise et al. | Sep 2004 | A1 |
20040199923 | Russek | Oct 2004 | A1 |
20040243552 | Titemore et al. | Dec 2004 | A1 |
20040243614 | Boone et al. | Dec 2004 | A1 |
20040255237 | Tong | Dec 2004 | A1 |
20040260979 | Kumai | Dec 2004 | A1 |
20040267700 | Dumais et al. | Dec 2004 | A1 |
20040268237 | Jones et al. | Dec 2004 | A1 |
20050076012 | Manber et al. | Apr 2005 | A1 |
20050080613 | Colledge et al. | Apr 2005 | A1 |
20050086211 | Mayer | Apr 2005 | A1 |
20050086222 | Wang et al. | Apr 2005 | A1 |
20050086251 | Hatscher et al. | Apr 2005 | A1 |
20050097150 | McKeon et al. | May 2005 | A1 |
20050108630 | Wasson et al. | May 2005 | A1 |
20050125311 | Chidiac et al. | Jun 2005 | A1 |
20050149576 | Marmaros et al. | Jul 2005 | A1 |
20050149851 | Mittal | Jul 2005 | A1 |
20050187923 | Cipollone | Aug 2005 | A1 |
20050188217 | Ghanea-Hercock | Aug 2005 | A1 |
20050240615 | Barsness et al. | Oct 2005 | A1 |
20050256825 | Dettinger et al. | Nov 2005 | A1 |
20060036504 | Allocca et al. | Feb 2006 | A1 |
20060041597 | Conrad et al. | Feb 2006 | A1 |
20060047691 | Humphreys et al. | Mar 2006 | A1 |
20060047838 | Chauhan | Mar 2006 | A1 |
20060053171 | Eldridge et al. | Mar 2006 | A1 |
20060053175 | Gardner et al. | Mar 2006 | A1 |
20060064411 | Gross et al. | Mar 2006 | A1 |
20060074824 | Li | Apr 2006 | A1 |
20060074910 | Yun et al. | Apr 2006 | A1 |
20060085465 | Nori et al. | Apr 2006 | A1 |
20060112110 | Maymir-Ducharme et al. | May 2006 | A1 |
20060123046 | Doise et al. | Jun 2006 | A1 |
20060136585 | Mayfield et al. | Jun 2006 | A1 |
20060143227 | Helm et al. | Jun 2006 | A1 |
20060143603 | Kalthoff et al. | Jun 2006 | A1 |
20060152755 | Curtis et al. | Jul 2006 | A1 |
20060167991 | Heikes et al. | Jul 2006 | A1 |
20060224582 | Hogue | Oct 2006 | A1 |
20060238919 | Bradley | Oct 2006 | A1 |
20060242180 | Graf et al. | Oct 2006 | A1 |
20060248045 | Toledano et al. | Nov 2006 | A1 |
20060248456 | Bender et al. | Nov 2006 | A1 |
20060253418 | Charnock et al. | Nov 2006 | A1 |
20060259462 | Timmons | Nov 2006 | A1 |
20060277169 | Lunt et al. | Dec 2006 | A1 |
20060288268 | Srinivasan et al. | Dec 2006 | A1 |
20060293879 | Zhao et al. | Dec 2006 | A1 |
20070005593 | Self et al. | Jan 2007 | A1 |
20070005639 | Gaussier et al. | Jan 2007 | A1 |
20070016890 | Brunner et al. | Jan 2007 | A1 |
20070038610 | Omoigui | Feb 2007 | A1 |
20070043708 | Tunstall-Pedoe | Feb 2007 | A1 |
20070055656 | Tunstall-Pedoe | Mar 2007 | A1 |
20070073768 | Goradia | Mar 2007 | A1 |
20070094246 | Dill et al. | Apr 2007 | A1 |
20070100814 | Lee et al. | May 2007 | A1 |
20070130123 | Majumder | Jun 2007 | A1 |
20070143282 | Betz et al. | Jun 2007 | A1 |
20070143317 | Hogue et al. | Jun 2007 | A1 |
20070150800 | Betz et al. | Jun 2007 | A1 |
20070198451 | Kehlenbeck et al. | Aug 2007 | A1 |
20070198480 | Hogue et al. | Aug 2007 | A1 |
20070198481 | Hogue et al. | Aug 2007 | A1 |
20070198503 | Hogue et al. | Aug 2007 | A1 |
20070198577 | Betz et al. | Aug 2007 | A1 |
20070198598 | Betz et al. | Aug 2007 | A1 |
20070198600 | Betz | Aug 2007 | A1 |
20070203867 | Hogue et al. | Aug 2007 | A1 |
20070208773 | Tsao | Sep 2007 | A1 |
20070271268 | Fontoura et al. | Nov 2007 | A1 |
20080071739 | Kumar et al. | Mar 2008 | A1 |
20080104019 | Nath | May 2008 | A1 |
20090006359 | Liao | Jan 2009 | A1 |
20090119255 | Frank et al. | May 2009 | A1 |
Number | Date | Country |
---|---|---|
5-174020 | Jul 1993 | JP |
11-265400 | Sep 1999 | JP |
2002-157276 | May 2002 | JP |
2002-540506 | Nov 2002 | JP |
2003-281173 | Oct 2003 | JP |
WO 0127713 | Apr 2001 | WO |
WO 2004114163 | Dec 2004 | WO |
WO 2006104951 | Oct 2006 | WO |
Entry |
---|
Page, L., et al., “The PageRank Citation Ranking: Bringing Order to the Web,” Technical Report, Stanford Univ., Stanford, CA, 1998. |
Haveliwala, T., “Topice Sensitive PageRank,” Proceedings of the Eleventh Int'l World Wide Web Conf., Honolulu, Hawaii, May 2002. |
Richardson, M., et al., “The Intelligent Surfer: Probabilistic Combination of Link and Content Information in PageRank,” vol. 14, MIT Press, Cambridge, MA, 2002. |
Jeh, G., et al., “Scaling Personalized Web Search,” Proceedings of the 12th Int'l World Wide Web Conf Budapest, Hungary, May 20-24, 2003. |
Brin, S., et al., “The Anatomy of a Large Scale Hypertextual Search Engine,” Proceedings of the 7th Int'l World Wide Web Conf., Brisbane, Australia, Apr. 14-18, 1998. |
Andritsos, Information-theoretic tools for mining database structure from large data sets, Jun. 13-18, 2004, 12 pgs. |
Betz, Examiner's Answer, U.S. Appl. No. 11/394,414, Jan. 24, 2011, 31 pgs. |
Betz, Notice of Allowance, U.S. Appl. No. 11/142,740, Apr. 16, 2009, 7 pgs. |
Betz, Notice of Allowance, U.S. Appl. No. 11/142,765, Jul. 1, 2010, 14 pgs. |
Betz, Notice of Allowance, U.S. Appl. No. 11/341,069, Sep. 8, 2008, 6 pgs. |
Betz, Notice of Allowance, U.S. Appl. No. 12/939,981, Aug. 11, 2011, 7 pgs. |
Betz, Notice of Allowance, U.S. Appl. No. 12/939,981, Apr. 26, 2011, 11 pgs. |
Betz, Office Action, U.S. Appl. No. 11/142,740, Aug. 13, 2007, 12 pgs. |
Betz, Office Action, U.S. Appl. No. 11/142,740, May 17, 2007, 12 pgs. |
Betz, Office Action, U.S. Appl. No. 11/142,740, Jul. 23, 2008, 11 pgs. |
Betz, Office Action, U.S. Appl. No. 11/142,740, Dec. 26, 2007, 12 pgs. |
Betz, Office Action, U.S. Appl. No. 11/142,740, Jan. 27, 2009, 11 pgs. |
Betz, Office Action, U.S. Appl. No. 11/142,740, Apr. 30, 2008, 14 pgs. |
Betz, Office Action, U.S. Appl. No. 11/142,765, Jan. 8, 2010, 17 pgs. |
Betz, Office Action, U.S. Appl. No. 11/142,765, May 9, 2008, 20 pgs. |
Betz, Office Action, U.S. Appl. No. 11/142,765, Jan. 17, 2008, 16 pgs. |
Betz, Office Action, U.S. Appl. No. 11/142,765, Oct. 17, 2007, 14 pgs. |
Betz, Office Action, U.S. Appl. No. 11/142,765, Oct. 17, 2008, 17 pgs. |
Betz, Office Action, U.S. Appl. No. 11/142,765, Jun. 18, 2007, 13 pgs. |
Betz, Office Action, U.S. Appl. No. 11/142,765, Apr. 28, 2009, 16 pgs. |
Betz, Office Action, U.S. Appl. No. 11/341,069, Apr. 1, 2008, 8 pgs. |
Betz, Office Action, U.S. Appl. No. 11/394,414, Mar. 5, 2010, 24 pgs. |
Betz, Office Action, U.S. Appl. No. 11/394,414, Sep. 15, 2009, 16 pgs. |
Betz, Office Action, U.S. Appl. No. 11/394,552, Apr. 1, 2008, 14 pgs. |
Betz, Office Action, U.S. Appl. No. 11/394,552, Aug. 4, 2010, 19 pgs. |
Betz, Office Action, U.S. Appl. No. 11/394,552, Feb. 8, 2011, 22 pgs. |
Betz, Office Action, U.S. Appl. No. 11/394,552, Jul. 8, 2011, 13 pgs. |
Betz, Office Action, U.S. Appl. No. 11/394,552, Apr. 11, 2012, 15 pgs. |
Betz, Office Action, U.S. Appl. No. 11/394,552, Nov. 12, 2008, 11 pgs. |
Betz, Office Action, U.S. Appl. No. 11/394,552, Jan. 13, 2010, 15 pgs. |
Betz, Office Action, U.S. Appl. No. 11/394,552, Mar. 13, 2009, 12 pgs. |
Betz, Office Action, U.S. Appl. No. 11/394,552, Apr. 23, 2013, 21 pgs. |
Betz, Office Action, U.S. Appl. No. 11/394,552, Sep. 24, 2012, 21 pgs. |
Betz, Office Action, U.S. Appl. No. 12/939,981, Dec. 9, 2010, 12 pgs. |
Betz, Office Action, U.S. Appl. No. 13/302,755, Mar. 25, 2012, 15 pgs. |
Chen, A scheme for inference problems using rough sets and entropy, Aug. 13-Sep 3, 2005, 10 pgs. |
Cover, Entropy, relative entropy and mutual information, Chapter 2 Elements of Information Theory, 1991, 13 pgs. |
Dean, Using design recovery techniques to transform legacy systems, 2001, 10 pgs. |
Etzioni, Unsupervised named-entity extraction from the web: an experimental study, Feb. 28, 2005, 42 pgs. |
Gigablast, Web/Directory, printed Aug. 24, 2010, 1 pg. |
Gilster, P., “Get fast answers, easily, ” The News Observer, May 13, 2003, 2 pgs. |
Google Inc., ISR/WO, PCT/US2006/010965, Jul. 5, 2006, 7 pgs. |
Google Inc., Office Action, CA 2,610,208, Sep. 21, 2011, 3 pgs. |
Google Inc., Office Action, CA 2603085, Sep. 18, 2012, 2 pgs. |
Google Inc., Office Action, EP 06784449.8, Mar. 26, 2012, 7 pgs. |
Google Inc., Office Action, JP 2008-504204, Oct. 12, 2011, 4 pgs. |
Hogue, Examiner's Answer, U.S. Appl. No. 11/142,748, Oct. 3, 2011, 23 pgs. |
Hogue, Notice of Allowance, U.S. Appl. No. 11/097,689, Apr. 30, 2009, 8 pgs. |
Hogue, Notice of Allowance, U.S. Appl. No. 11/356,837, Jan. 6, 2012, 12 pgs. |
Hogue, Notice of Allowance, U.S. Appl. No. 11/356,837, Apr. 27, 2012, 7 pgs. |
Hogue, Notice of Allowance, U.S. Appl. No. 12/546,578, Jan. 6, 2011, 8 pgs. |
Hogue, Notice of Allowance, U.S. Appl. No. 12/546,578, Jul. 12, 2011, 10 pgs. |
Hogue, Notice of Allowance, U.S. Appl. No. 13/206,457, Mar. 14, 2012, 9 pgs. |
Hogue, Notice of Allowance, U.S. Appl. No. 13/549,361, Jun. 26, 2013, 8 pgs. |
Hogue, Notice of Allowance, U.S. Appl. No. 13/603,354, Jun. 26, 2013, 8 pgs. |
Hogue, Office Action, U.S. Appl. No. 11/097,689, Oct. 3, 2008, 13 pgs. |
Hogue, Office Action, U.S. Appl. No. 11/097,689, Apr. 9, 2008, 11 pgs. |
Hogue, Office Action, U.S. Appl. No. 11/097,689, Jun. 21, 2007, 9 pgs. |
Hogue, Office Action, U.S. Appl. No. 11/097,689, Nov. 27, 2007, 10 pgs. |
Hogue, Office Action, U.S. Appl. No. 11/142,748, Dec. 7, 2007, 13 pgs. |
Hogue, Office Action, U.S. Appl. No. 11/142,748, Jul. 13, 2010, 12 pgs. |
Hogue, Office Action, U.S. Appl. No. 11/142,748, Aug. 17, 2009, 14 pgs. |
Hogue, Office Action, U.S. Appl. No. 11/142,748, Nov. 17, 2010, 14 pgs. |
Hogue, Office Action, U.S. Appl. No. 11/142,748, May 18, 2007, 9 pgs. |
Hogue, Office Action, U.S. Appl. No. 11/142,748, Jul. 22, 2008, 18 pgs. |
Hogue, Office Action, U.S. Appl. No. 11/142,748, Aug. 23, 2007, 13 pgs. |
Hogue, Office Action, U.S. Appl. No. 11/142,748, Jan. 27, 2009, 17 pgs. |
Hogue, Office Action, U.S. Appl. No. 11/356,837, Jun. 3, 2011, 18 pgs. |
Hogue, Office Action, U.S. Appl. No. 11/356,837, Aug. 4, 2010, 20 pgs. |
Hogue, Office Action, U.S. Appl. No. 11/356,837, Feb. 8, 2011, 14 pgs. |
Hogue, Office Action, U.S. Appl. No. 11/356,837, May 11, 2009, 18 pgs. |
Hogue, Office Action, U.S. Appl. No. 11/356,837, Feb. 19, 2010, 20 pgs. |
Hogue, Office Action, U.S. Appl. No. 11/356,837, Mar. 21, 2008, 15 pgs. |
Hogue, Office Action, U.S. Appl. No. 11/356,837, Oct. 27, 2009, 20 pgs. |
Hogue, Office Action, U.S. Appl. No. 11/356,837, Sep. 30, 2008, 20 pgs. |
Hogue, Office Action, U.S. Appl. No. 11/399,857, Mar. 1, 2012, 25 pgs. |
Hogue, Office Action, U.S. Appl. No. 11/399,857, Mar. 3, 2011, 15 pgs. |
Hogue, Office Action, U.S. Appl. No. 11/399,857, Jan. 5, 2009, 21 pgs. |
Hogue, Office Action, U.S. Appl. No. 11/399,857, Jun. 8, 2009, 14 pgs. |
Hogue, Office Action, U.S. Appl. No. 11/399,857, Sep. 13, 2010, 13 pgs. |
Hogue, Office Action, U.S. Appl. No. 11/399,857, Jun. 24, 2011, 14 pgs. |
Hogue, Office Action, U.S. Appl. No. 11/399,857, Dec. 28, 2009, 11 pgs. |
Hogue, Office Action, U.S. Appl. No. 11/399,857, Mar. 31, 2008, 23 pgs. |
Hogue, Office Action, U.S. Appl. No. 12/546,578, Aug. 4, 2010, 10 pgs. |
Hogue, Office Action, U.S. Appl. No. 13/206,457, Oct. 28, 2011, 6 pgs. |
Hogue, Office Action, U.S. Appl. No. 13/549,361, Oct. 4, 2012, 18 pgs. |
Hogue, Office Action, U.S. Appl. No. 13/549,361, Mar. 6, 2013, 13 pgs. |
Hogue, Office Action, U.S. Appl. No. 13/603,354, Jan. 9, 2013, 5 pgs. |
Hsu, C. “Finite-state transducers for semi-structured text mining,” IJCA Workshop on Text Mining: Foundations, Techniques and Applications, 1999, 12 pgs. |
Ilyas, Rank-aware query optimization, Jun. 13-18, 2004, 12 pgs. |
Koeller, Approximate matching of textual domain attributes for information source integration, Jun. 17, 2005, 10 pgs. |
Kosala, Web mining research, Jul. 2000, 14 pgs. |
Laroco, Notice of Allowance, U.S. Appl. No. 11/551,657, May 13, 2011, 8 pgs. |
Laroco, Notice of Allowance, U.S. Appl. No. 11/551,657, Sep. 28, 2011, 8 pgs. |
Laroco, Notice of Allowance, U.S. Appl. No. 13/364,244, Aug. 6, 2013, 6 pgs. |
Laroco, Office Action, U.S. Appl. No. 11/551,657, Aug. 1, 2008, 15 pgs. |
Laroco, Office Action, U.S. Appl. No. 11/551,657, Aug. 13, 2009, 16 pgs. |
Laroco, Office Action, U.S. Appl. No. 11/551,657, Nov. 17, 2010, 20 pgs. |
Laroco, Office Action, U.S. Appl. No. 11/551,657, Feb. 24, 2010, 17 pgs. |
Laroco, Office Action, U.S. Appl. No. 11/551,657, Jan. 28, 2009, 17 pgs. |
Laroco, Office Action, U.S. Appl. No. 13/364,244, Jan. 30, 2013, 8 pgs. |
Lin, Question answering from the web using knowledge annotation and knowledge mining techniques, Nov. 3-8, 2003, 8 pgs. |
Merriam Webster Dictionary defines “normalize” as“To make conform to or reduce to a norm or standard”, 1865, 2 pgs. |
Merriam Webster Dictionary defines “value” as “A numerical quantity that is assigned or is determined by . . . ”, 1300, 2 pgs. |
Microsoft Computer Dictionary defines “normalize” as “adjust number within specific range”, May 1, 2002, 4 pgs. |
Microsoft Computer Dictionary defines “quantity” as a “number”, May 1, 2002, 4 pgs. |
Microsoft Computer Dictionary defines “value” as a “quantity”, May 1, 2002, 4 pgs. |
Nadeau, Unspervised named-entity recognition: generating gazetteers and resolving ambiguity, Aug. 1, 2006, 12 pgs. |
Nyberg, The JAVELIN question-answering system at TREC 2003, Nov. 18-21, 2003, 9 pgs. |
Ogden, Improving cross-language text retrieval with human interactions, Jan. 2000, 9 pgs. |
Plaisant, Interface and data architecture for query preview in networked information systems, Jul. 1999, 28 pgs. |
Rohde, Notice of Allowance, U.S. Appl. No. 11/097,690, Dec. 23, 2010, 8 pgs. |
Rohde, Office Action, U.S. Appl. No. 11/097,690, May 1, 2008, 21 pgs. |
Rohde, Office Action, U.S. Appl. Nov. 11/097,690, Jun. 9, 2010, 11 pgs. |
Rohde, Office Action, U.S. Appl. No. 11/097,690, Oct. 15, 2008, 22 pgs. |
Rohde, Office Action, U.S. Appl. No. 11/097,690, Aug. 27, 2009, 13 pgs. |
Rohde, Office Action, U.S. Appl. No. 11/097,690, Apr. 28, 2009, 9 pgs. |
Rohde, Office Action, U.S. Appl. No. 11/097,690, Sep. 28, 2007, 17 pgs. |
Shamsi, Notice of Allowance, U.S. Appl. No. 11/781,891, Oct. 25, 2010, 7 pgs. |
Shamsi, Notice of Allowance, U.S. Appl. No. 11/781,891, May 27, 2010, 6 pgs. |
Shamsi, Office Action, U.S. Appl. No. 11/781,891, Nov. 16, 2009, 10 pgs. |
Shamsi, Office Action, U.S. Appl. No. 13/171,296, Apr. 3, 2013, 7 pgs. |
Vespe, Notice of Allowance, U.S. Appl. No. 11/686,217, Aug. 27, 2012, 11 pgs. |
Vespe, Notice of Allowance, U.S. Appl. No. 11/745,605, Jun. 13, 2011, 9 pgs. |
Vespe, Notice of Allowance, U.S. Appl. No. 11/745,605, Sep. 22, 2011, 9 pgs. |
Vespe, Notice of Allowance, U.S. Appl. No. 11/745,605, Mar. 28, 2012, 10 pgs. |
Vespe, Office Action, U.S. Appl. No. 11/686,217, Sep. 10, 2010, 14 pgs. |
Vespe, Office Action, U.S. Appl. No. 11/686,217, Jan. 26, 2012, 12 pgs. |
Vespe, Office Action, U.S. Appl. No. 11/686,217, Mar. 26, 2010, 13 pgs. |
Vespe, Office Action, U.S. Appl. No. 11/745,605, Apr. 8, 2010, 15 pgs. |
Vespe, Office Action, U.S. Appl. No. 11/745,605, Jul. 30, 2009, 17 pgs. |
Wirzenius, C preprocessor trick for implementing similar data types, Jan. 17, 2009, 9 pgs. |
Zhao, Corroborate and learn facts from the web, Aug. 12-15, 2007, 9 pgs. |
Zhao, Notice of Allowance, U.S. Appl. No. 11/394,610, May 11, 2009, 15 pgs. |
Zhao, Office Action, U.S. Appl. No. 11/142,853, Oct. 2, 2009, 10 pgs. |
Zhao, Office Action, U.S. Appl. No. 11/142,853, Sep. 5, 2008, 9 pgs. |
Zhao, Office Action, U.S. Appl. No. 11/142,853, Mar. 17, 2009, 9 pgs. |
Zhao, Office Action, U.S. Appl. No. 11/142,853, Jan. 25, 2008, 7 pgs. |
Zhao, Office Action, U.S. Appl. No. 11/394,610, Apr. 1, 2008, 18 pgs. |
Zhao, Office Action, U.S. Appl. No. 11/394,610, Nov. 13, 2008, 18 pgs. |
Zhao, Office Action, U.S. Appl. No. 11/941,382, Sep. 8, 2011, 28 pgs. |
Zhao, Office Action, U.S. Appl. No. 11/941,382, Aug. 12, 2010, 23 pgs. |
Zhao, Office Action, U.S. Appl. No. 11/941,382, May 24, 2012, 26 pgs. |
Zhao, Office Action, U.S. Appl. No. 11/941,382, Nov. 26, 2012, 24 pgs. |
Zhao, Office Action, U.S. Appl. No. 11/941,382, Jan. 27, 2011, 24 pgs. |
Zhao, Office Action, U.S. Appl. No. 11/941,382, Dec. 29, 2009, 25 pgs. |
Betz, Notice of Allowance, U.S. Appl. No. 13/302,755, Aug. 28, 2013, 6 pgs. |
Hogue, Notice of Allowance, U.S. Appl. No. 13/549,361, Oct. 2, 2013, 9 pgs. |
Zhao, Office Action, U.S. Appl. No. 11/941,382, Sep. 27, 2013, 30 pgs. |
Agichtein, E., et al., “Snowball Extracting Relations from Large Plain-Text Collections,” Columbia Univ. Computer Science Dept. Technical Report CUCS-033-99, Dec. 1999, pp. 1-13. |
Brill, E., et al., “An Analysis of the AskMSR Question-Answering System,” Proceedings of the Conference of Empirical Methods in Natural Language Processing (EMNLP), Jul. 2002, pp. 257-264. |
Brin, S., Extracting Patterns and Relations from the World Wide Web, 1999, 12 pages. |
Bunescu, R., et al., “Using Encyclopedia Knowledge for Named Entity Disambiguation,” Department of Computer Sciences, University of Texas, retrieved from internet Dec. 28, 2006, 8 pages. |
Chang, C., et al., “IEPAD: Information Extraction Based on Pattern Discovery,” WWW 10 '01, ACM, May 1-5, 2001, pp. 681-688. |
Chu-Carroll, J., et al., “A Multi-Strategy and Multi-Source Approach to Question Answering,” 2006, 8 pages. |
Craswell, N., et al., “Effective Site Finding using Link Anchor Information,” SIGIR '01, Sep. 9-12, 2001, pp. 250-257. |
Dean, J., et al., “MapReduce: Simplified Data Processing on Large Clusters,” OSDI, 2004, pp. 1-13. |
Dong, X., et al., “Reference Reconciliation in Complex Information Spaces,” SIGACM-SIGMOD, 2005, 12 pages. |
Downey, D., et al., “Learning Text Patterns for Web Information Extraction and Assessment,” American Association for Artificial Intelligence, 2002, 6 pages. |
Etzioni, O., et al., “Web-scale Information Extraction in KnowItAll (Preliminary Results),” WWW2004, ACM May 17-20, 2004, 11 pages. |
Freitag, D., et al., “Boosted Wrapper Induction,” American Association for Artificial Intelligence, 2000, 7 pages. |
Gao, X., et al., “Learning Information Extraction Patterns from Tabular Web Pages Without Manual Labelling,” Proceedings of IEEE/WIC Int'l Conf. on Web Intelligence (WI'03), Oct. 13-17, 2003, pp. 495-498. |
Gray, R.M., “Entropy and Information Theory,” Springer-Verlag, New York, NY, 1990, pp. 17-46. |
Guha, R., “Object Co-Identification on the Semantic Web,” WWW2004, ACM, May 17-22, 2004, 9 pages. |
Guha, R., et al., “Disambiguating People in Search,” World Wide Web Conference, May 17-22, 2004, 9 pages. |
Hogue, A. W., Tree Pattern Inference and Matching for Wrapper Induction on the World Wide Web, Master of Engineering in Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Jun. 2004, pp. 3-106. |
“Information Entropy,” Wikipedia, The Free Encyclopedia, Retrieved on May 3, 2006, pp. 1-9. |
“Information Theory,” Wikipedia, The Free Encyclopedia,: Retrieved on May 3, 2006, pp. 1-12. |
International Search Report and Written Opinion for International Application No. PCT/US2007/61156, mailed Feb. 11, 2008, 7 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2006/019807, mailed Dec. 18, 2006, 4 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2006/07639, mailed Sep. 13, 2006, 6 pages. |
Ji, H., et al., “Re-Ranking Algorithms for Name Tagging,” Workshop on Computationally Hard Problems and Joint Inference in Speech and Language Processing, Jun. 2006, 8 pages. |
Jones, R., et al., Bootstrapping for Text Learning Tasks, 1999, 12 pages. |
Kolodner, J., “Indexing and Retrieval Strategies for Natural Language Fact Retrieval,” ACM Trans. Database Syst. 8.3., Sep. 1983, 434-464. |
Kosseim, L., et al., “Answer Formulation for Question-Answering,” 11 pages, Oct. 1, 2007. |
Liu, B. et al., “Mining Data Records in Web Pages,” Conference 2000, ACM, 2000, pp. 1-10. |
MacKay, D.J.C., “Information Theory, Inference and Learning Algorithms,” Cambridge University Press, 2003, pp. 22-33, 138-140. |
Mann, G. et al., “Unsupervised Personal Name Disambiguation,” Proceedings of the Seventy Conference on Natural Language Learning at HLT-NAACL, 2003, 8 pages. |
McCallum, A., et al., “Object Consolidation by Graph Partitioning with a Conditionally-Trained Distance Metric,”SIGKDDD 03, ACM, Aug. 24-27, 2003, 6 pages. |
Mihalcea, R., et al., PageRank on Semantic Networks, with Application to Word Sense Disambiguation, Proceedings of the 20th International Conference on Computational Linguistics, Aug. 23-27, 2004, 7 pages. |
Mihalcea, R., et al., “TextRank: Bringing Order into Texts,” Proceedings of the Conference on Empirical Methods in Natural Language Processing, Jul. 2004, 8 pages. |
Pawson, D., “Sorting and Grouping,” www.dpawson.co.uk/xsl/sect2/N6280.html>, Feb. 7, 2004, pp. 1-19. |
Prager, J. et al., “IBM's Piquant in TREC2003,” 2003, 10 pages. |
Prager, J., et al., “Question Answering Using Constraint Satisfaction: QA-by-Dossier-with-Constraints,” 2004, 8 pages. |
Ramakrishnan, G., et al., “Is Question Answering an Acquired Skill?” WWW2004, ACM May 17, 2004, pp. 111-120. |
Richardson, M., et al., “Beyond Page Rank: Machine Learning for Static Ranking,” International World Wide Web Conference Committee, May 23, 2006, 9 pages. |
Rioloff, E., et al., “Learning Dictionaries for Information Extraction by Multi-Level Bootstrapping,” American Association for Artificial Intelligence, 1999, 6 pages. |
Shannon, C.E., et al., “A Mathematical Theory of Communication,” The Bell System Technical Journal, vol. 27, Jul. Oct. 1948, pp. 1-55. |
Sun Microsystems, “Attribute Names,” http://java.sun.com/products/jndi/tutorial/basics/directory/attrnames.html>, Feb. 17, 2004, pp. 1-2. |
Wang, Y., et al., “C4-2: Combining Link and Contents in Clustering Web Search to Improve Information Interpretation,” The University of Tokyo, 2002, pp. 1-9. |