Corrosion inhibitors

Information

  • Patent Grant
  • 6555506
  • Patent Number
    6,555,506
  • Date Filed
    Thursday, November 29, 2001
    23 years ago
  • Date Issued
    Tuesday, April 29, 2003
    21 years ago
Abstract
A method of preventing corrosion in pipelines comprising draining pipeline of all residual compounds, blowing through with nitrogen and rinsing with a corrosion inhibiting rinsing agent.
Description




This invention relates to corrosion inhibitors primarily, but not exclusively, for use with oil well exploration and development pipelines. The invention relates more specifically to use with ‘coiled tubing’.




The coiled tubing is typically a flexible steel pipe several kilometers in length with an internal diameter in the region of 5 centimeters. It is supplied and used by sub-contractors who provide such services as ‘well conditioning’ and inspection to oil production and exploration companies. While carrying out these operations various solutions may be circulated through the coiled tubing, for example ‘scale dissolver’. While the exact compositions of these solutions are closely guarded secrets, each sub-contractor having their own proprietary blends. It is known that most are based on hydrochloric acid or other such corrosive compounds.




On completion of a contract, to prevent corrosion of pipes by any residual scale dissolvers etc, the pipes are rinsed. A typical procedure for rinsing and cleaning the coiled tubing is to purge with nitrogen, rinse with a caustic solution to neutralise any acidic residues in an attempt to minimise corrosion, then purge again with nitrogen. Most of the corrosion occurs between jobs.




Prior to committing a coiled tube to further contracts it is inspected and pressure tested. Although pipes are rinsed after a period of sustained use, almost invariably heavy internal corrosion caused by use of acid conditioning agents, and from bi-products of the rinsing process means that before pressure testing there is a need to clean the tube by ‘acid pickling’ to remove the corroded surface. This continuous cycle of corrosion and cleaning results in the walls of the tubing becoming thinned. The thinned walls increase the likelihood of pin holes forming and therefore leaks in the tubing during use, resulting in expensive downtime for the sub-contractor.




Although the need to find a solution to the problem of internal corrosion of coiled tubing has been recognised by the sub-contract companies, so far they have made little progress. The addition of caustic solution to neutralise the acids has proved ineffective, and may actually be accelerating the corrosion by forming sodium or potassium chlorides in situ which are known to be highly corrosive to steel. Another avenue that has been explored is the application of dry film resin bonded coatings to the internal surface of the tubing, however this has proved to be expensive and difficult to apply, therefore limiting it's use.




THE INVENTION




The present invention relates to a method of preventing corrosion in pipelines comprising draining pipeline of all residual compounds, blowing through with nitrogen and rinsing with a rinsing agent, characterised in that the rising agent is corrosion inhibiting. The rinsing agent cleans out and neutralises any acid residues and leaves a corrosion inhibiting oily film. Preferably, the pipeline is rinsed with the rinsing agent immediately after use.




Also according to the present invention, a pacifier corrosion inhibiting rinsing agent comprises an emulsifable oil and passifier materials.




In a preferred embodiment of the present invention, the corrosion inhibiting rinsing agent is biodegradable and consists of a mixture of one or more vegetable oil derived base oils, one or more emulsifiers, and one or more corrosion inhibitors.




As the product would be for use offshore, it is necessary for the corrosion inhibiting rinsing agent to be biodegradable, this would then prevent any serious harm to aquatic organisms in the event of spillage




After the use of a section of coiled tubing in a process such as well conditioning, all residual conditioning solutions are drained from the pipeline and the pipeline removed from the well assembly. The pipeline is then blown through with nitrogen and then immediately rinsed with a corrosion inhibiting rinsing agent of the present invention. This agent has the effect of neutralising any residual acidic solutions which cause corrosion of the pipeline due to the neutralising effect of the triethanolamine. Once this rinsing solution has been flushed through the pipeline the oily nature of the composition, due to the vegetable oil and methyl ester content, ‘plates out’ a protective film which adheres to the inner surface of the tube. This effect is enhanced by the use a mixed anionic/non-ionic emulsifier system which results in the oil droplets of the emulsion becoming larger, more unstable and therefore more likely to ‘plate out’ as the acidity increases.




The prior art is simply the use of a caustic rinse on the tubing, no other system to neutralise or prevent further corrosion is in use.




The corrosion inhibiting rinsing agents of the invention can be used either by flushing through the pipe as a dilute solution or by introducing and passing a “plug” of neat rinsing agent through the pipe.




The above and other features of the present invention are illustrated by the following examples of corrosion inhibiting rinsing agents in accordance with the present invention.











EXAMPLE 1




Composition 1





















Methyl tallowate




35.0% (a Methyl ester base oil)







7-10 P Blown Rape Seed Oil




35.0% (a vegetable oil)







Polydiethanolamide




10.0% (a corrosion inhibitor)







Triethanolamine




10.0% (an Amine)







Etocas 29




10.0% (Ethoxylated castor oil)













were mixed together to form Composition 1, a semi-translucent







liquid.















Testing




A 5″×3″ (127 mm×76.2 mm) mild steel panel was immersed an acid solution (16% HCl) for 5 minutes, removed and placed in a 10% solution of Composition 1 for 1 minute and then taken out.




The panel stayed clear with no sign of corrosion after 24 hours. When allowed to dry, a very light oil film was left behind.




In a comparative test using a rinse solution of 0.5% KOH solution, rusting was observed within 1 minute.




EXAMPLE 2




Composition 2


















Lubriol 929.65




58.0%






7-10 P Blown Rape Seed Oil




10.0%






Polydiethanolamide




10.0%






Triethanolamine




10.0%






Rewopol CT




 2.0% (Polyether Carboxylic Acid, a lime







scale dispersant)






De-ionised Water




 3.0%






Etocas 29




 7.0%











were mixed to form Composition 2.














Testing




Three pipe sections were immersed in an acid etch solution (16% HCl) this was followed by soaking in 10% dilutions of Composition 2 for 5 minutes. The pipes were then exposed to air.




When the pipe was allowed to dry, no corrosion was seen after 2 hours. When the pipes remained wet (at the bottom of the ‘U’ section’), a small amount of corrosion was observed.




EXAMPLE 3




Composition 3


















Fatty ester




22.5% (Epoil HL - obtainable from







Hornett Bros)






7-10P Blown Rape Seed Oil




22.5% (a vegetable oil)






Sunflower Oil




 9.0%






Polydiethanolamide




10.0%






Triethanolamine




20.0%






Tall oil fatty Acid




 2.0% (a mixture of oleic and linoleic







acids plus 22% maximum Rosin acids)






Rewopol CT




 2.0% (Polyether Carboxylic Acid, a lime







scale dispersant)






Demineralised water




10.0%






Fatty alcohol polyglycol ether




 3.0% (Emulsogen M - obtainable from







Hoechst)














The Emulsogen M was added to stabilise the formulation to form Composition 3 which gave a clear fluid.




The fatty acid ester was added to clean tank having a paddle mixer. The mixer was started and the 7-10P blown rape seed oil, sunflower oil, polydiethanolamide, triethanolamine, tall oil fatty acid and rewopol CT were added to the tank and mixed for 15 minutes. The demineralised water and fatty alcohol polyglycol ester were then added to the tank and the mixture mixed for a further 60 minutes.




Samples of Composition 3 were put in a refrigerator at 5° C. and in an oven at 40° C. and both were stable after 48 hours.




Testing




Samples of Composition 3 were emulsified at dilutions of 10:1, 20:1, 30:1 and 40:1 in water and were tested according to the IP287 Corrosion Test Procedure (The Institute of Petroleum ‘standard methods for analysis and testing of petroleum and related products’)




At dilutions of 10:1, 20:1, 30:1 the panels showed a definite pass of the test, but at 40:1 dilution only a borderline pass was achieved.




In a further test of Composition 3, a section of tubing as used in the field was immersed in a 16% hydrochloric acid solution for 4 hours (to simulate the pumping of the conditioning solution). It was then removed and immediately immersed in a 10% v/v (in tap water) solution of Composition 3 for one minute. The section of tube was then removed and left open to the atmosphere. For comparison a second section of tube was immersed in tap water for one minute, as per the current practice.




The results were as follows:
















Rinsing solution




Results











Tap water




Surface rusting observed after 5 minutes, 100%







corrosion after one hour






10% Composition 3




Surface free from corrosion after 72 hours (test







stopped)














In a further field test, a sample of Composition 3 was submitted to a coiled tubing contractor for field evaluation. Employing the “plug” method, a 20% emulsion of Composition 3 was passed through the tubing. The tubing was then sealed and stored for a period of two months. After this time, sections of tubing were cut open and inspected. The surfaces were found to free from corrosion.




Biodegradability




All of the above formulations consist of a vegetable oil derived base fluid with additives for emulsification, corrosion inhibition and alkaline reserve in which all the components are at least 90% biodegradable.




For example, in Composition 3 the fatty ester, 7-10P blown rape seed oil and sunflower oil constitute the vegetable oil derived base fluid, the triethanolamine, tall oil fatty acid and fatty alcohol polyglycol ester constitute an emulsifying agent, polydiethanolamide and triethanolamine constitute alkaline reserve and corrosion inhibitors, rewopol CT serves to prevent scum formation due to reaction of the tall oil fatty acid with calcium ions in the water




To confirm the biodegradability of these formulations, a sample of Composition


3


was tested according to method OECD


306


(ready biodegradation test as required by the Harmonised Offshore Chemical Notification Format guidelines).



Claims
  • 1. A rinsing agent comprising at least one Fatty ester, Rape Seed Oil, Sunflower Oil, Polydiethanolamine, Triethanol Amine, at least one Tall Oil Fatty Acid, at least one polyether carboxylic acid lime scale dispersant, Demineralized water and at least one Fatty alcohol polyglycol ester.
  • 2. A rinsing agent as claimed in claim 1 that is emulsifiable.
  • 3. A rinsing agent as claimed in claim 1 and wherein the rinsing agent is biodegradable.
  • 4. A rinsing agent as claimed in claim 1 further comprising at least one mixed anionic/non-ionic emulsifier.
  • 5. A rinsing agent as claimed in claim 1 wherein said oily organic ester is a methyl ester.
  • 6. A rinsing agent as claimed in claim 1 wherein said oily organic ester is methyl tallate.
  • 7. A rinsing agent as claimed in claim 1 further comprising a corrosion inhibiting material.
Priority Claims (1)
Number Date Country Kind
004299 Feb 2000 GB
Parent Case Info

This application is a Divisional of application Ser. No. 09/792,761 filed Feb. 23, 2001 now U.S. Pat. No. 6,467,492.

US Referenced Citations (22)
Number Name Date Kind
3722594 Smith et al. Mar 1973 A
3962122 Trial Jun 1976 A
4028117 Moat Jun 1977 A
4136747 Mallory et al. Jan 1979 A
4261842 Busch et al. Apr 1981 A
4460482 Wu Jul 1984 A
4536222 Settineri et al. Aug 1985 A
4543131 Purinton, Jr. Sep 1985 A
4775418 Laemmle et al. Oct 1988 A
4830827 Au et al. May 1989 A
4950411 Treybig Aug 1990 A
4950474 Hinrichsen et al. Aug 1990 A
5027901 French et al. Jul 1991 A
5346339 Himes et al. Sep 1994 A
5589138 Drechsler Dec 1996 A
5753596 Martin et al. May 1998 A
5888947 Lambert et al. Mar 1999 A
6004923 Oftring et al. Dec 1999 A
6042750 Burlew Mar 2000 A
6063447 Morand et al. May 2000 A
6146620 Janowski et al. Nov 2000 A
6281174 Haruna Aug 2001 B1
Foreign Referenced Citations (5)
Number Date Country
957910 Nov 1974 CA
0286336 Oct 1988 EP
2 040 732 Sep 1980 GB
2 064 985 Jun 1981 GB
2 222 583 Mar 1990 GB