The present invention relates generally to a swaged-on connector, and, in particular, to a conductive connector for electrically tapping an inner conductor of a mine sweeping cable to provide an electrical connection to an outer conductor, and simultaneously coaxially anchoring the outer conductor to the cable.
Magnetic influence minesweeping cables create magnetic fields in the areas around the cables in order to cause magnetic influence mines deployed in a marine environment to explode prematurely, i.e., without damaging a ship. The magnetic field is typically created by a pair of exposed oppositely-charged conductors—a forward electrode and an aft electrode—that comprise parts of a cable being towed behind a minesweeping vessel. The cable typically also includes a continuous length inner conductor that is sealed from the corrosive saltwater environment, typically by a cable jacket wrapped around the cable. In one configuration, the insulated inner conductor provides electricity to the exposed aft electrode. Thus, a need has been recognized in the art to anchor an external conduct or to an environmentally-sealed, jacketed, coaxial cable without breaking the integrity of the jacket, while at the same time providing an electrical connection between an internal conductor in the cable and the external conductor.
The invention provides a compact, corrosion resistant, environmentally sealing, conductive connector for creating a water tight electrical connection between an inner conductor of a coaxial cable and an outer conductor, where the outer conductor is overlaying a peripheral section of the coaxial cable. The inner conductor and the outer conductor can be two dissimilar metals, each used for its unique properties while their negative properties are avoided. For example, aluminum is an excellent conductor and lightweight, but corrodes easily so it is kept sealed in the cable by the sealing action of the connector. Titanium has excellent resistance to corrosion, but it has low conductivity so it can only be used efficiently by keeping conductive lengths to a minimum.
The cable is insulated by a jacket, where the jacket can be composed of an insulating material such as polytetrafluoroethylene (PTFE) that is known to be very difficult to attach to, in part because it has a very low coefficient of friction. A common, well-known use of PTFE is in Teflon™, a DuPont product which is idiomatic as being a material to which nothing sticks. The invented connector enables conduction of a high electrical current between an inner conductor and an outer conductor of the cable, while maintaining a hermetic seal and structural integrity of the cable.
In an exemplary application, the connector is a fitting on a magnetic minesweeping cable developed by the United States Navy. The connector attaches the outer conductor to the cable, and provides an electrical path between the attached outer conductor and the electrically tapped inner conductor. The application requires a connector that provides a water tight seal, which is corrosion-resistant in a seawater or salt water environment, where the outer conductor comprises an electrode composed of a metallic material that is different than the inner conductor.
The connection mast remain water tight even if submerged in several hundred feet of seawater. In many applications, the cables will be stored on a winch, and the cable can be quite hot if wraps are left wound on the winch during a mine sweep. In the exemplary application, the cable can be stored outdoors before being deployed, and therefore the connector must perform under cold weather conditions as well as high temperature conditions. The cable fitted with the invented connector must also be able to handle large temperature variances such as when being shipped via air where temperatures can be below freezing, and in shipping containers in the sun that can reach in excess of 160° F.
In an exemplary embodiment of the invention, the connector includes a pair of intermediate halves of a longitudinally split open-ended cylinder, where the split open-ended cylinder has a split-cylinder length. Each intermediate half has a semi-cylindrical wall with a thicker center wall having a center length and a smaller center diameter. The thicker center wall has adjacent a pair of flanking walls, where the pair of flanking walls bookend the center wall, and each flanking wall has a flanking wall length and a flanking wall diameter. Each flanking wall diameter is greater than the diameter of the center wall, such that the flanking walls are thinner than the center wall. The pair of intermediate halves are assembled on a notched cable as the split open-ended cylinder, wherein the split open-ended cylinder is simultaneously electrically contacting two or more exposed layers of the inner conductor of the cable.
In an exemplary variation illustrated herein, the cable's inner conductor has three conductive layers. The cable jacket and each of the inner conductive layers are coaxial. The cable is prepared to establish electrical contact at a specific location on the cable. The preparation includes removing a sectional length of the cable jacket, where the sectional length is about the length of the split-cylinder length, and its removal exposes an outermost layer of the inner conductor. In a subsequent step a shorter sectional length of a center portion of the outermost layer is removed, thereby exposing a middle layer of the inner conductor, and leaving a pair of flanking sectional lengths of the exposed outermost layer. The cable preparation steps of removing the sectional length of the jacket and the shorter sectional length of the center portion of the outermost layer, circumferentially notches the cable; therein providing an electrical contact point and a mechanical stronghold on the cable.
In another subsequent step, an electrical joint compound can be applied to the exposed layers of the inner conductor and the conductors after they are manually abraded with a wire brush. The electrical joint compound in combination with abrasion generally is selected to reduce electrical resistance as the abrasion and joint compound break up and dissolves any oxides formed on the inner conductor. It also provides protection for the connection against the harmful effects of the environment.
The pair of intermediate halves is assembled in the notch, such that the center wall contacts the middle layer, the flanking walls contact the flanking sectional lengths of the exposed outermost layer. The trimmed ends of the cable jacket are substantially flush with the ends of the assembled intermediate halves. The assembly produces an electrical contact and the intersecting intermediate halves are seated in the notch of the cable, and therefore the assembled split cylinder also provides mechanical resistance to translational movement at the mechanical position. Also, the harder material of the intermediate halves relative to the inner conductors and its ability to be plated, help create a better electrical connection during the swaging process.
The cable has a core strength member, and therefore the cable jacket and the inner conductor can be trimmed without substantially reducing the strength of the cable, as the strength member provides tensile strength to the cable.
The invented conductive connector also includes an inner ring with a larger inside diameter, and a longer length than the pair of intermediate halves. The inner ring functionally bridges the notch in the cable, and is swaged onto the cable and intermediate halves, thereby providing a mechanical attachment with the jacket and an electrical connection with the pair of intermediate halves. The inner ring is an open-ended cylinder with recessed inside circumferential grooves that are proximate to the open ends of the inner ring. The inner ring has an inside diameter that is sufficiently large to allow the inner ring to slide over the cable and the split open ended cylinder. The inner ring can be swaged onto the cable jacket without affecting the integrity of the jacket. The swaged on inner ring provides a corrosion resistant seal that is substantially anchored to the cable, restraining both translational movement and rotational movement. The swaging causes the recessed circumferential grooves to emboss the jacket. Swaging is complete when the inner ring reaches a roundness within tolerance limits that produce a water tight seal, where the seal is good even at several hundred feet. The embossed jacket substantially forms an interference fit with the recessed inside circumferential grooves. Preferably, the depths of the grooves are less than the thickness of the jacket so that the embossing does not pierce the jacket when swaged. The circumferential grooves can be selected to mechanically seal against various kinds of cable jacket materials other than PTFE. Other materials include PVC, FVDC, EPDN, Santoprene™—a product of Monsanto, Pylon™ and Neoprene™—both, products of DuPont, polyesters, acrylics, and other polymeric materials. The swaging also presses the pair of intermediate halves against the inner conductor, therein forming an excellent conductive contact and frictional resistance between the cable's inner conductors and the walls of the intermediate halves. The outermost layer of the inner conductor abuts the center wall.
The invention also includes an outer ring, which is an open-ended cylinder with a length that is similar to the split cylinder length of the pair of intermediate halves. The outer ring has an inside diameter chat is large enough to slide over the inner ring and outer conductor. The outer conductor is distributed around the inner ring, substantially overlaying most of the inner ring. The outer ring is slid over the outer conductor and substantially centered on the inner ring. The outer ring is then swaged-on locking the outer conductor between the inside of the outer ring and the outside of the inner ring.
The foregoing invention will become readily apparent by referring to the following detailed description and the appended drawings in which:
The illustrated invention is a conductive connector 400. As shown in
The intermediate halves are composed of a conductive metallic material. A suitable metal is a bard aluminum, and to reduce galvanic corrosion the intermediate halves are plated in tin.
The conductive connector 400 also includes an inner ring 460 as illustrated in
The inner ring 460 is swaged on after being centered on the intermediate halves 460, which are first placed over the exposed layers 16o,16o′ of the inner conductor 16. The swaging embosses the grooves into the jacket 18, providing a watertight, corrosion resistant seal with good resistance to rotational movement and excellent resistance to translational movement. Note that the depths of the grooves 466a, 466b are selected so that the jacket 18 isn't pierced during or after the swaging process. Typically, this means that the depths of the grooves are less than the thickness of the jacket. Before swaging, an electrical joint compound 498 (see
As illustrated in
The outer ring 490 is substantially composed of a corrosion resistant metallic material, wherein a suitable material is substantially titanium.
The outer ring is slid over the outer conductor 20 and centered over the previously swaged inner ring 460. The outer ring is then swaged on, anchoring the outer conductor 20 between the outer ring 490 and the inner ring 460.
In
The removal of sectional lengths of the cable jacket and the outermost layer of the inner conductor to establish electrical contact at a specific location on the cable does not prevent conduction along the outermost layer of the inner conductor. The intermediate halves, which are composed of a conductive metallic material, connect outermost layer 16o to outermost layer 16o′ when the connector 400 is installed. Similarly, the section of cable jacket between 18 and 18′ is bridged by the inner ring.
As mentioned previously, an electrical joint compound 498 can be applied to the exposed layers of the inner conductor, and the exposed layer can be abraded as required. The electrical joint compound 498, as shown diagrammatically in
The pair of intermediate halves 410 is assembled in the notch of the S-cable 12, such that the center wall 412 contacts the middle layer 16m, the flanking walls 420a,420b contact the exposed uppermost layer 16o, 16o′, and the trimmed ends of the cable jacket 18,18′ are substantially flush with the ends 424a,424b of the assembled intermediate halves.
The completed assembly of the pair of intermediate halves 410 provides electrical contact between the intermediate halves and the inner conductor 16. The ends of the flanging walls 420a, 420b are pressed in the notch by the swaging until the assembly abuts the elements defined by the notch 405 (see
The cable has a core strength member 14, so the cable jacket 18 and the inner conductor 16 can be trimmed without substantially reducing the strength of the cable, as the strength member 14 is not touched, and the strength member provides most of the tensile strength to the cable 12.
The swaged on inner ring 460 is illustrated in
The outer ring 490 is also swaged on. The outer conductor 20, which in the exemplary application is an external electrode of a minesweeping cable, is composed of a layer of a titanium clad copper conductor wire. The outer conductor 20 is distributed around the inner ring 460, substantially overlaying most of the inner ring. The outer ring 490 is slid over outer conductor 20 and aligned with the intermediate halves 410. The outer ring 490 is swaged on, thereby locking the outer conductor 20 between the inside of the outer ring 490 and the outside of the swaged inner ring 460. Swaging is complete when the outer ring reaches a roundness within the tolerance limits. Typically, the outer conductor 20 is trimmed, removing any exposed short ends of the layer of the titanium clad copper conductor that extend out from under the outer ring 490. The cable with the connector 400 installed is shown in
It is to be understood that the foregoing description and specific embodiments are merely illustrative of the best mode of the invention and the principles thereof, and that various modifications and additions may be made to the invention by those skilled in the art, without departing from the spirit and scope of this invention, which is therefore understood to be limited only by the scope of the appended claims.
The invention described herein may be manufactured and used by or for the Government of the United States of America for Governmental purposes without the payment of any royalties.
Number | Name | Date | Kind |
---|---|---|---|
3197730 | Hargett | Jul 1965 | A |
3479445 | Jack | Nov 1969 | A |
4257658 | Hammond et al. | Mar 1981 | A |
5286921 | Fontaine et al. | Feb 1994 | A |
5312271 | Matsumoto et al. | May 1994 | A |
5527191 | Bevis et al. | Jun 1996 | A |
7588460 | Malloy et al. | Sep 2009 | B2 |
20120080419 | Bush et al. | Apr 2012 | A1 |
Number | Date | Country |
---|---|---|
3433464 | Mar 1986 | DE |
Number | Date | Country | |
---|---|---|---|
20140338967 A1 | Nov 2014 | US |