1. Field of the Invention
The current invention relates to a corrosion resistant coating of rollers for use in paper machines.
2. Description of the Related Art
During the production of paper which, in this document, is to be understood to include all cellulose containing fibrous webs, for example cardboard, nonwoven fabrics and similar, the rolls of the paper machine are subjected to process water and steam with electrolytic conductivity. In order to prevent these aggressive mediums reaching the roll cores manufactured from base metals the rolls, or respectively the roll cores, are coated with a corrosion resistant material.
As a corrosion protective coating for rolls, or respectively roll cores, galvanic hard chrome layers and hard metal layers applied by means of thermal spray coating is used. The galvanic chrome plating provides an effective corrosion protection which can be produced cost effectively. However due to toxicity of the used electroplating baths, this must be categorized as being an environmentally harmful method. Moreover, mechanical cleaning of galvanic hard chrome layers is difficult due to the brittle characteristics of chrome. A composite material of tungsten carbide hard materials embedded in a cobalt-nickel-matrix is normally used as hard metal coating layers which are applied to the surface by means of a thermal spray process, for example HVOF (high velocity oxygen fuel, high velocity flame spraying). The application of thermal hard metal spray layers occurs in several cycles, that is in several partial layers, in order to ensure the physical homogeneity of the coating.
Hard metal coatings applied in a thermal spraying process are characterized by effective corrosion protection and high abrasion resistance. Adhesion of contaminants occurring during paper production is comparatively low on hard metal surfaces, so that these can be cleaned relatively easily through doctoring. However, the production of thermal hard metal coating compared to chrome plating is very cost intensive.
At less critical locations in a paper machine, for example guide rolls for fabrics or felts, where the corrosion protective coating does not come into contact with the paper surface, the more cost-effective galvanic hard chrome plating is therefore currently used which is, however, linked to greater environmental pollution. This type of hard chrome plating can however not be doctored.
What is needed in the art is a cost effective corrosion protection which, compared to galvanic hard chrome plating, is less harmful to the environment but nevertheless effective for roll components.
The present invention provides a suitable corrosion protection achieved with a method which includes steps for the provision of a device for thermal spray coating, the provision of a stainless steel material, coating of at least part of the surface of the roll component by applying a stainless steel material using the device for thermal spray coating, and sealing the applied coating with a polymer material.
A corrosion protected roll component for a roll according to the present invention, produced cost effectively and environmentally compatible for use in a machine for the production of paper, includes a metallic base body; one thermal spray coating consisting of a stainless steel material covering at least part of the surface of the metallic base body; and a polymer sealing layer applied to the surface of the thermal stainless steel spray coating.
Since stainless steel materials for thermal spray coatings are substantially cheaper than cermet materials, or ceramic metal composites, which can be spray coated, for example hard metals, corrosion protective coatings produced therewith are also more cost effective. Sealing of the stainless steel spray coating with a polymer prevents an attack by electrolytes on defective areas of the coating material, thereby effectively preventing corrosion of the spray coating and advancing of the corrosion causing electrolytes to the base material.
In embodiments of the inventive method for application of a corrosion protective coating onto a roll component, the provided device for thermal spray coating is configured for implementation of high velocity flame spraying or laser spraying. These thermal spray methods do not cause any significant metallurgic change in the spray material, so that the metallurgic composition of thermal spray coatings produced with these methods corresponds to that of the base material used for the coating. The stainless steel material used as the base material for the coating is, for example provided in the form of a fine powder whose particles undergo a plastic deformation on impacting the surface which is to be coated, whereby very dense layers with low porosity can be produced in a simple manner.
In other embodiments of the inventive method the provided device for thermal spray coating is configured for implementation of arc spraying, whereby the coating source material is melted in an arc and is transferred with the assistance of a carrier gas to the work piece which is to be coated. Arc spraying is especially suitable for the application of well adhering layers having thicknesses greater than 200 micrometers (μm) to several millimeters (mm) on large surfaces. In the use of thermal spray methods whereby the coating material for the application is melted through the supply of electric energy, as for example in arc spraying, the stainless steel is provided, for example in wire form to simplify the supply.
In order to achieve a high corrosion resistant thermal spray layer, a stainless steel material may be used which consists of a chrome-nickel-steel having a composition according to one of the material numbers 1.4401, 1.4404, 1.4406, 1.4435, 1.4436 or 1.4440. Stainless steels with these material numbers also meet standard 316 L or respectively 316 of the American Iron and Steel Institute (AISI).
Very dense, low porosity coatings are achieved advantageously through application of the stainless steel material onto a surface of the roll component in several strokes, in other words through several, successive separate partial coats. Dense thermal coatings having a thickness of approximately 50 to 200 μm can be achieved with 4 to 6 strokes.
For use in highly stressed locations an additional coat of an additional material may be applied, covering at least a part of the surface of the thermal spray coating of stainless steel, whereby the additional material can be a carbide, boride or nitride or a composite thereof, or a composite of a metal of the 4., 5. or 6. sub-group. The coating can be applied with the same coating method as the stainless steel coating, whereby the thickness may include an additional 1 to 3 strokes. Although this does not form a closed coating on the stainless steel, it forms at least one having a compacting function ensuring increased corrosion resistance.
The polymer material for sealing the spray coating advantageously includes an epoxy resin which thoroughly wets a stainless steel surface in non-cross-linked as well as in partially cross-linked condition, thereby ensuring a solid positive material bond. Moreover, the good wettability also ensures that the resin penetrates into the recesses of the surface, filling them completely so that no hollow spaces are formed at the interface between spray coating and polymer sealing layer. In additional embodiments, the polymer material for sealing the spray coating includes a silicone polyester resin which combines good wetting of stainless steel spray layers with an anti-adhesion and dirt-repelling effect.
Generally, fillers can also be embedded into the polymer material of the sealing layer in order to achieve an improvement of the anti-adhesion and dirt-repelling properties of its surface. In embodiments thereof according to the present invention, materials may be used for the fillers which contain poly fluorinated ethylene (PEF) and, for example polytetrafluor ethylene (PTFE). The fillers in the form of particles, for example in the form of particles having average diameters in the range of between approximately 0.1 and 5 μm are embedded into the polymer base material of the sealing layer.
Instead of an epoxide resin or silicone-polyester resin with fillers containing PFE or PTFE, the polymer can also directly consist of poly fluorinated ethylene, for example polytetrafluor ethylene, or of a polymer containing such a substance. To apply polytetrafluor ethylene onto the surface of the spray coating, polytetrafluor ethylene particles having a size in the range of approximately 50 to 100 nanometers (nm) are, for example, made into a slurry and the thereby obtained suspension is applied onto the spray coating, for example with the assistance of an immersion bath, by spraying or application with a brush or another coating device. A polymer in the form of particles may be used for this, with a size distribution whereby at least 65 percent of the particles are of one or more sizes from the range of between approximately 50 and 100 nm.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate embodiments of the invention and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Referring now to the drawings, and more particularly to
As the stainless steel material for spray coating 4, a non-rusting chrome-nickel-steel having a composition according to one of the material numbers 1.4401 (designation: X5CrNiMo17-12-2), 1.4404 (designation: X2CrNiMo17-12-2), 1.4406 (designation: X2CrNiMo17-11-2), 1.4435 (designation: X2CrNiMo18-14-3), 1.4436 (designation: X3CrNiMo17-13-3) or 1.4440 (designation: X2CrNiMo19-12) may be used which are characterized by their high resistance against corrosion and acids. The cited steel types also meet standards 316 or respectively 316 L of the American Iron and Steel Institute (AISI).
For application of coating material 2 onto base body 1 of work piece 10 in the embodiment of a roll component, a thermal spray process may be used whose basic steps are shown in
The method starts at step S1 with the provision of a device for thermal spray coating. Thermal spray coating is to be understood to be a surface coating process whereby a coating material is melted down, melted on or fused and with the assistance of a gas flow is accelerated in the direction of the surface which is to be coated. The surface of the work piece which is to be coated is thereby only slightly thermally stressed. On impact onto the work piece surface the spray particles are generally flattened and connect through mechanical bonding. A crack-free coating with a homogeneous microstructure, low porosity and good adhesion to the work piece is hereby achieved. In arc spraying melting of the wire shaped spray or coating material occurs with an electric arc; in high velocity flame spraying melting of the spray material particle occurs in the fuel-oxygen-high velocity flame and in laser spraying with the laser beam. Obviously, other spray coating methods than the ones cited as examples can be used.
In step S2 of the method illustrated in
After the provision of coating device and coating material, as well as setting up of the work piece, a surface or a part of a surface of work piece 10 is coated in step S3 with the spray material using the apparatus. In order to achieve a practically pore-free or respectively dense coating the application of the spraying material occurs, for example in several strokes. The number of strokes depends on the process parameters which are set at the coating device, possibly the size of the powder particles, the distance between the work piece and the component of the device dispensing the spray material, and the desired coating thickness. Normally the number of strokes is determined by experimenting. The porosity of the spray coating can also be influenced through the process parameters of the coating process, whereby for example with high velocity flame spraying, porosities of less than 0.5% can be achieved. Porosity is hereby to be understood to be the surface percentage which, in a cross section through the tested material, is occupied by the therein contained hollow spaces.
The stainless steel spray coat applied in step S3 is sealed in step S4 with the application of a polymer material after which the corrosion protection coating process is completed in step S5 with the exception of possible post-processing refinishing of the surface.
Thermal spray coating processes are characterized by the possibility to produce coating layers having very low porosity, in other words with few hollow spaces in the coating material. The individual hollow spaces are normally not connected with each other, so that the pores do not create passages from the surface of the coating to the surface of the base work material through which a penetration of electrolytic acting substances could occur. An accordingly produced coating is therefore impervious to process water and steam which are associated with paper production.
However, under the operational conditions in a paper machine a corrosion of the spray coating can occur over the long term via defects in the coating material, for example grain boundaries and especially the inside surfaces of the coating, which are formed by the interfaces where the individual coating particles adjoin each other. In order to prevent an attack with subsequent advance of the corrosion over interfaces of this type, the coating surface is sealed with a polymer material after completion of thermal spray coating. The sealing effect is thereby not nullified by potential wear of sealing layer 3 to exposure of the upper regions of spray coating 4, since the surface of the spray coating is not ideally even but has a spatial contour, whereby the interfaces of adjoining coating particles are arranged almost exclusively in recesses.
Polymer materials suitable for providing the seal are basically all thermosetting plastics and two-component systems. Exemplary materials are such thermosetting plastics whose decomposition temperature is sufficiently far above the utilization temperature of roll components 10 that the thermosetting plastic acts elastically. Analogously suitable are thermoplastics whose glass transition temperature is so far above the utilization temperature of roll components 10 that no negative softening of the polymer can occur when utilizing spray layer 4 which is sealed with the polymer. As an approximate reference value for the minimum difference between utilization temperature and decomposition temperature or respectively glass transition temperature 20° C. can be specified. Utilization temperature is to be understood to be the operating temperature of roll component 10 during use of the blade in accordance with the present invention.
Suitable as polymers are, for example, epoxide resins and epoxide resins with filler particles embedded therein, for example consisting of poly fluorinated ethylene (PFE) and polytetrafluor ethylene (PTFE). Since epoxide resin in non-cross-linked or respectively in partially cross-linked condition displays good wetting of the coating base material, it can also penetrate into recesses of the coating surface with unfavorable aspect relationship. The viscosity of the epoxide resin can be reduced by adding solvents, for example alcohols or ketones in order to adapt the wetting to the surface contour of coating 4. The sealing process can occur with the assistance of an immersion bath, using spraying or with the assistance of coating devices, for example brushes or spatulas.
In order to form an approximately 90 μm thick spray coating with the assistance of a high velocity flame coating device, Diamond Jet Hybrid” (DJ2600) a coating material jet consistent with one of the AISI Standards 316 L is applied in one embodiment of the present invention in 4 strokes onto the surface of a steel roll core. The thus provided thermal spray coating layer is subsequently sealed with a colorless two-component system on an epoxide resin basis.
Referring now to
In a process illustrated in
Carbides, nitrides or borides as well as composites thereof, as well as composites with other metals from the 4., 5. or 6. sub-group of the periodic table of elements can be used. Tungsten carbide can be specified as an exemplary carbide material.
Although this hard metal layer does not represent a dense closed layer, it does however compress the layer beneath it due to the high density of, for example the tungsten, so that one can operate from the basis of an increased corrosion resistance.
The present invention provides a more effective, durable and cost effective corrosion protection for roll components, rolls and in particular guide rolls for use in paper machines.
While this invention has been described with respect to at least one embodiment, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2011 075 810 | May 2011 | DE | national |
This is a continuation of PCT application No. PCT/EP2012/056422, entitled “CORROSION-RESISTANT ROLLER COATING”, filed Apr. 10, 2012, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3526939 | Nikkanen | Sep 1970 | A |
3817656 | Batteux | Jun 1974 | A |
3942230 | Nalband | Mar 1976 | A |
4609577 | Long | Sep 1986 | A |
4856161 | Miihkinen | Aug 1989 | A |
5111567 | Leino et al. | May 1992 | A |
5257966 | Watanabe et al. | Nov 1993 | A |
5268045 | Clare | Dec 1993 | A |
5268405 | Ojakaar et al. | Dec 1993 | A |
5283121 | Bordner | Feb 1994 | A |
5979314 | White | Nov 1999 | A |
6623601 | Graf et al. | Sep 2003 | B2 |
20090196542 | Guenther et al. | Aug 2009 | A1 |
20120249636 | Kitabayashi | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
202012012593 | Sep 2013 | DE |
9409208 | Apr 1994 | WO |
Entry |
---|
Notice of Transfer of International Research Report and the Written Notice issued for International Searching Authority or Statement dated May 23, 2012 for International Application No. PCT/EP2012/056422 (11 pages). |
Number | Date | Country | |
---|---|---|---|
20140127526 A1 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2012/056422 | Apr 2012 | US |
Child | 14077669 | US |