The present invention relates to improvements in protection against corrosion for steel and cast or ductile iron pipes intended for underground installation. Specifically the present invention relates to an improved method of protecting such pipes and to a pipeline or pipe length protected in accordance with the present invention.
There are a number of known methods and arrangements for protecting such pipelines, each of which has certain advantages and also certain disadvantages. One known method involves bonded coating of the pipeline lengths typically with an epoxy coating material such as coal tar epoxy. A somewhat similar alternative might be to extrude a polyethylene or polypropylene coating over the pipe surface. To be effective, the coating, over its life must be completely free from pin holes, cracks or other similar damage and must also be capable of resisting deterioration that might cause such damage. Such defects, should they occur, cause concentration cells that tend to accelerate corrosion attack in their vicinity. Such bonded coatings are normally factory applied distant from the intended pipeline site and handling or mishandling during transport to the pipeline installation site increasing the risk of such defects occurring and even if noticed, such defects are difficult and time consuming to adequately repair at the pipeline installation site.
Cathodic pipeline protection systems are a potential second form of protection for underground pipelines subject to corrosion. The two basic types of cathodic protection systems, sacrificial-anode and impressed-current systems, involve installing anodes that are intended to corrode rather than the pipeline. Both systems require electrical continuity of the pipeline to ensure complete protection. In addition to cathodic pipeline protection, the pipeline might also be coated or encased with a dielectric material, or bonded coating, to reduce the amount of current required to provide protection. Cathodic pipeline protection systems are not particularly useful where the pipeline lengths are formed by electrically discontinuous rubber gasketed joints or where numerous valves, fittings and service connections exist along the pipeline length. Moreover cathodic protection systems are quite expensive to install and moreover, have an ongoing operational cost.
A third possible method is to utilise polyethylene encasement of the pipeline, typically utilising on site a reasonably loose fitting polyethylene sleeve to surround the pipeline. Such a system is quite low cost and even with small pin holes or similar defects, does not normally set up local galvanic corrosion cells. Also, once the pipeline has been buried, the polyethylene sleeve is pressed against the pipe wall providing a uniform environment for the pipe which may allow a small amount of ground water ingress but which does not necessarily result in excessive corrosion. The polyethylene sleeve also shields the pipe from low-level stray direct current. This system may not, in all situations, provide the degree of protection required and construction conditions, in some applications may also prevent this method being utilised.
The objective of the present invention is to provide an improved method of protecting steel and cast or ductile iron pipes against corrosion in underground applications and a pipe length or pipeline so protected.
Accordingly, the present invention provides a method of protecting metal, preferably a steel or iron, pipeline length intended for installation underground against corrosion, said method involving winding at least one plastics material film web under pressure in a plurality of overlapping spiral windings whereby said film web or webs adhere to one another to form a barrier layer arranged to prevent moisture penetrating from an outer surface of said barrier layer to an outer surface of said pipeline length.
Preferred features of the present invention may be as defined in claims 2 to 17 annexed hereto, the subject matter of these claims being hereby made part of the disclosure of this specification.
The present invention anticipates providing a pipeline length made in accordance with the method outlined above.
In accordance with a second aspect, the present invention also provides a metal, preferably a steel or iron (typically cast or ductile iron), pipeline length having at least one plastics material film web wound under pressure in a plurality of overlapping spiral windings onto an outer surface of said pipeline length to form a barrier layer adapted, in use, to prevent ground moisture penetrating from an outer surface of said barrier layer to the outer surface of said pipeline length.
Preferred features of this further aspect may be as defined in claims 20 to 22 annexed hereto, the subject matter of which claims are hereby incorporated into the disclosure of this specification by this reference thereto.
The present invention provides a system where a reliable barrier layer can be created on the pipeline length that is capable of preventing any ingress of ground moisture into the zone between the barrier layer and the pipeline outer surface itself. In a preferred embodiment, the barrier layer may be made from polyethylene film layers that will resist pin hole or other similar defects, however, even should they occur, galvanic corrosion cells should not be created. In a still further preferred arrangement, providing the additional protective layer as described will allow the protective barrier layer materials to be protected during transport (if needed) and during installation, thereby improving the corrosion resistance performance of the proposed system.
Several preferred embodiments of the present invention will now be described with reference to the accompanying drawings in which:
The film web layers might be built up in the barrier layer 17 to achieve a desired performance characteristic by repeated passages of the pipeline length 10 past the rolls 12, 15 either in a forward direction or forward and reverse directions and the speed of movement of the pipeline length past the rolls 12, 15 may be adjusted to vary the pitch of the spiral windings 20.
Preferably, the film webs 14, 16 are polyethylene or more particularly, low density polyethylene that will adhere to itself or to other surfaces. Additives may be included in the formulation of the plastics material to improve its ability to adhere to itself or to previously applied film web surfaces. Other additives might also be included to improve resistance to degradation over time. In an alternative, co-extruded film webs might be used where the outer layers of the film web are polyethylene and at least one inner layer is an oxygen barrier layer formed by evoh, nylon or the like.
In one preferred embodiment, the film webs 14, 16 might be linear low density polyethylene that has been stretched beyond its yield point to increase its length and decrease its thickness which has then been partially relaxed to retain a degree of elastic deformation in its stored condition. Use of this type of film web material will allow the film web to be applied to the pipe under pressure and once applied, the film web will continue to constrict to apply further pressure to the pipeline length.
The barrier layer 17 might be applied at the pipeline installation site or alternatively at a factory remote from the installation site and transported to the installation site. In either case, it might also be considered desirable to provide further mechanical protection for the barrier layer 17. This might be achieved by providing further layers of plastics material film web that is wound onto the pipeline length over the barrier layer with much less pressure than the webs forming the barrier layer 17 to build up a protective layer 21 of greater thickness than the barrier layer. Conveniently a plurality of air pockets might be included between the webs forming the protective layer 21 to increase the cushioning and protective effect of the layer 21. The film web or webs forming the protective layer 21 might be the same as or different to those forming the barrier layer 17, however, it is desirable that they at least partially adhere to one another at least localised regions such that the outer protective layer remains as a coherent protective covering during transport (if needed) and pipeline installation.
Steel or ductile/cast iron pipeline lengths are normally joined to form the desired pipeline by welding or by the use of elastomeric sealing rings with appropriate cooperating mechanical connection means to join the lengths together. Such joins in the pipeline lengths might be protected in a similar manner to existing systems, for example by the use of sleeves overlying the joint region that might be heat shrunk into place. If conditions allow, the joint regions might be over wound with plastics film web in a similar manner to the pipeline length itself. Any other known method of protecting the join regions might also be used. If further protection is desired a loose polyethylene sleeve might be used to encase the whole pipeline that has been protected by the use of a barrier layer 17 as discussed in the foregoing.
Number | Date | Country | Kind |
---|---|---|---|
2004904365 | Aug 2004 | AU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/AU2005/001133 | 8/1/2005 | WO | 00 | 8/29/2008 |