This application is a national stage of, and claims priority to, Patent Cooperation Treaty Application No. PCT/EP2016/066345, filed on Jul. 8, 2016, which application claims priority to German Application No. DE 10 2015 111 571.9, filed on Jul. 16, 2015, which applications are hereby incorporated herein by reference in their entireties.
The disclosure relates to a method for producing a corrugated fin element for a heating register or for another heating device, through which corrugated fin element a flow can pass to a corrugated fin element produced according to such a method, and to a heating register or the like comprising a plurality of such corrugated fins.
For the use in motor vehicles, especially with consumption-optimized internal combustion engines, electrical heating devices for heating airflows are frequently used. Such heating devices are usable for high voltage and low voltage applications in automotive engineering, but also in industrial engineering, for instance, in the case of control cabinet heating, auxiliary heating for low-energy houses, etc.
The basic structure of such heating devices is, for instance, disclosed in EP 0 350 528 B1 of the applicant. Accordingly, the heating device has several heating stages which are controllable depending on the heating power to be triggered, and which consist essentially of two radiator elements having heating elements, preferably PTC (positive temperature coefficient) heating elements disposed in between. These radiator elements are designed as corrugated fins which are bent in a meandering pattern from a metal strip, wherein the individual corrugated fins are in mutual contact with each other in the regions adjoining their legs.
EP 2 022 293 B1 illustrates corrugated fin elements in which the corrugated fins are soldered to one another for increasing the stiffness.
From EP 1 327 834 B1 it is known to crimp the corrugated fin elements with contact sheets disposed at the apexes of the corrugated fins, for stiffening the corrugated fin elements such that the handling of the per se flexible corrugated fin elements is distinctly improved.
In DE 10 2013 108 357 A1 corrugated fin elements are described in which, for increasing the stiffness, the apexes of the corrugated fins are impacted with a pressing force transversely to the longitudinal extension of the corrugated fin element, so that these apexes are “flattened”. Additionally, swages may be formed in the legs of the corrugated fins which join the apexes.
Pursuant to EP 2 022 293 B1 another possibility consists in soldering a contact sheet or the like with the apexes of the corrugated fins. Alternatively, it is also known to connect the corrugated fins with the contact sheet by gluing.
In these examples the apexes of the corrugated fins are either in lateral contact with each other or are arranged at a very small distance to each other. These small distances between the corrugated fins of a corrugated fin element, however, lead to an increased loss of pressure during through-flow and to a resulting reduction of the flow rate of the air and to increased noise generation of the heating.
In principle, the loss of pressure can be reduced in that the apexes are spaced apart from each other. Such corrugated fin elements with widely spaced corrugated fins have, however, the disadvantage that, after bending, they are even more flexible than the elements with a small apex distance and that, furthermore, due to the distinctly increased length the space requirement is great when the crude metal strip is bent in a meandering pattern. Likewise, it is possible to reduce the loss of pressure by forming zones which are flown through without corrugated fin elements. Such solutions with a bypass have, however, the disadvantage that the distribution of air is no longer homogeneous.
As compared with this it is an object of the disclosure to provide a method which facilitates the production of a corrugated fin element which can be flown through with little loss of pressure. The further object underlying the disclosure is to provide a corrugated fin element with reduced flow-through cross-section, and a heating register designed with at least one corrugated fin element of this kind.
This object is solved with respect to example methods, with respect to example corrugated fin elements, and with respect to example heating registers according to this disclosure.
Other advantageous further developments of the invention are the subject matter of the sub-claims.
In accordance with the disclosure, for producing a corrugated fin element first of all a corrugated fin basic element is produced which has basically a conventional structure, so that the apexes of the individual corrugated fins either are in contact with each other or are arranged at a small distance to each other. A corrugated fin basic element of this kind basically does not differ from the initially described conventional corrugated fin elements. The corrugated fin basic element can also be referred to herein as a base element.
Following the production of this basic element, its end sections are then impacted with a tensile force in the longitudinal direction of the corrugated fin element, so that a widening of the corrugated fin element takes place such that the distance between the apexes is increased by plastic deformation (bending up) and the total length of the corrugated fin element thus increases correspondingly. The resulting shallower positioning of the corrugated fins results in a distinct reduction of the flow resistance during flow-through, on the one hand. On the other hand, it turned out surprisingly that a very uniform, reproducible wave structure can be formed by the bending up of the basic elements.
Accordingly, the flow-through resistance is reduced with little manufacturing effort by a corrugated fin element produced in accordance with such a method.
A heating register designed with a corrugated fin element of this kind is, with a simple construction, superior to conventional solutions due to the optimized flow rate and the reduced noise generation.
The stability of the corrugated fin elements and the heat exchange transversely to the flow-through direction can be improved by the forming of swages.
In a variant of an embodiment of this kind, a plurality of swages is disposed side by side.
In one example, the widening takes place such that, after the deformation, the distance between the apexes comprises a multiple of the apex width, preferably of the apex width of the basic element.
The stability of the corrugated fin element can be further improved if the corrugated fin element or the basic element is impacted with a pressing force before or after unfolding. This pressing force is chosen such that the apexes (basic element or corrugated fin element) are plastically flattened or “leveled”.
This “leveling” may thus take place after the forming of the basic element or after the unfolding. Basically, this leveling may also be renounced.
A preferred example will be explained in detail in the following by means of schematic drawings. There show:
It is to be understood that, instead of the PTC resistance elements 12, also heating elements of different construction may be used.
Pursuant to the illustration in
As may be taken from the enlarged detailed illustration pursuant to
With respect to further details, reference is made to DE 10 2013 108 357 A1 for reasons of simplification.
The basic element 20 formed this way with alternatingly contacting corrugated fins 22, 24 is then—as illustrated in
Following this flattening, the basic element 20 is impacted with a tensile force F pursuant to the illustration in
It has turned out surprisingly that the method according to the disclosure, i.e. first of all producing a basic element 20 with an almost conventional structure and then widening this basic element 20, provides a corrugated fin element 18 which can be produced with high precision with a predetermined apex distance D. A corrugated fin element 18 of this kind stands out by a comparatively great stiffness while being very easy to produce.
It has further turned out that the leveling eliminates the risk of drawing in, in which, for instance, the upper apex 26 arranged in
The method in accordance with the disclosure may be performed with basic elements cut into lengths, but also with a basic element strand formed as an “endless tape”, in which case cutting into lengths will then take place in a further processing step.
In deviation from the above-described proceeding it is also possible, as indicated in dashes in
By means of the leveling it is, apart from the stiffening, also achieved that a good contact face for adjoining elements, such as PTC resistance elements 12 or contact sheets, is provided.
Alternatively it is also possible to completely omit the process step of leveling.
The disclosure relates to a method for producing a corrugated fin element for a heating register or for another heating device, through which corrugated fin element a flow can pass, to a corrugated fin element produced according to such a method, and to a heating register designed with such corrugated fin elements, wherein the corrugated fin elements are produced by unfolding.
Number | Date | Country | Kind |
---|---|---|---|
10 2015 111 571 | Jul 2015 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/066345 | 7/8/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/009254 | 1/19/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2035403 | Przyborowski | Mar 1936 | A |
3673846 | Levington et al. | Jul 1972 | A |
20050167088 | Paulman | Aug 2005 | A1 |
20070215286 | Kaneda | Sep 2007 | A1 |
20080047696 | Sperandei | Feb 2008 | A1 |
20130075071 | Yabe et al. | Mar 2013 | A1 |
Number | Date | Country |
---|---|---|
358 773 | Dec 1961 | CH |
102 10 579 | Oct 2002 | DE |
10 2009 059 283 | Jun 2011 | DE |
10 2012 205 916 | Oct 2013 | DE |
10 2012 106 157 | Jan 2014 | DE |
10 2013 108357 | Feb 2015 | DE |
0 350 528 | Apr 1992 | EP |
1 327 834 | Oct 2004 | EP |
2 022 293 | Feb 2009 | EP |
2832464 | Feb 2015 | EP |
1 535 781 | Dec 1978 | GB |
60221133 | Nov 1985 | JP |
01034521 | Feb 1989 | JP |
2014176885 | Sep 2014 | JP |
WO-2005080018 | Sep 2005 | WO |
Entry |
---|
German Patent and Trademark Office Search Report for German Application No. DE 10 2015 111 571.9 dated Jun. 20, 2016 (English translation; 12 pages). |
International Search Report and Written Opinion dated Oct. 20, 2016 for PCT/EP2016/066345 (11 pages; with English translation). |
International Preliminary Report on Patentability Written Opinion for PCT/EP2016/066345 dated Oct. 20, 2016 (7 pages). |
Number | Date | Country | |
---|---|---|---|
20180200779 A1 | Jul 2018 | US |