This invention relates generally to corrugated pipe having an additional outer layer, and more particularly, to such a corrugated pipe for use in the drainage of soil and transportation of surface water by gravity.
Corrugated pipe that is commonly used for drainage of soil and transportation of surface water typically has a profile with sides of the corrugation that are fairly steep and a top or crest of the corrugation that is fairly flat.
There are two basic ways that pipe can fail in use: by deforming excessively or by fracturing. Stiffer material is less likely to deform but more likely to fracture under stress. Flexible material is more likely to deform but less likely to fracture under stress. Deformation is expressed as a ratio of elongation of the material to its original material length and is called “strain.” Stress causes the deformation that produces strain. The modulus, or stiffness, of a plastic is the ratio of stress divided by strain, or the amount of stress required to produce a given strain.
There are a number of ways to provide lower deformation of a pipe in use: (1) increasing pipe stiffness by using a stiffer material; (2) thickening the pipe walls; or (3) changing the wall design to increase the moment of inertia, which increases the overall stiffness of the pipe wall. Using stiffer material to make a corrugated plastic pipe is disadvantageous because the pipe must be able to deflect under load to a certain degree without cracking or buckling. A certain amount of elasticity is therefore beneficial in preventing brittle failures upon deflection.
Thickening the pipe walls is also disadvantageous because it adds material cost and increases weight to the pipe which increases shipping and handling costs. Thus, it is advantageous to find a wall design that increases the moment of inertia of the pipe, while causing a minimal increase to the weight of the pipe or the stiffness of the material used to make the pipe.
Increasing the moment of inertia of a pipe wall increases its resistance to bending. One example of a wall design that increases the moment of inertia, and therefore the stiffness, of a plastic corrugated pipe with minimal increase in pipe weight and material stiffness is illustrated in U.S. Pat. No. 6,644,357 to Goddard. In this pipe, the ratio of height of a corrugation to the width of that corrugation is less than 0.8:1.0, and the sidewall of the corrugation is inclined, with respect to the pipe's inner wall, in the range of 75-80°. This ratio allows the pipe to deflect to greater than 30% of its original diameter without exhibiting imperfections associated with structural failure.
Pipe failure can be prevented by minimizing the maximum force exerted on the pipe walls during the bending associated with deformation. If a sheet of material, such as plastic, is flexed, the outside of the resulting curve is deformed in tension, and the inside of the curve is deformed in compression. Somewhere near the middle of a solid sheet is a neutral plane called the centroid of the sheet. In the case of corrugated pipe, the “sheet ” thickness comprises corrugations to achieve economy of material. Because the “sheet ” is therefore not solid, the centroid may not be in the middle of the sheet, but rather is located at the center of the radius of gyration of the mass (i.e., the centroid is displaced toward the location of greater mass). The more offset the centroid is from the middle of the sheet thickness, the greater the maximum force will be at the surface farthest from the centroid during bending or flexure from deformation due to a longer moment arm for certain acting forces. Thus, to lower the maximum force caused by pipe wall deformation, the pipe should be designed so that the centroid is closer to the middle of the sheet thickness. The closer the centroid is to the middle of the sheet thickness, the more desirably uniform the stress distribution will be and the maximum stress upon deformation will be minimized to prevent pipe failure due to a shorter moment arms for acting forces.
In use, it is the deflection and integrity of inner wall 100 that is critical to pipe performance. Deflection of the outer wall 110 is greater than deflection of the inner wall 100 in use, but a certain amount of deflection of the outer corrugated wall 110 is acceptable because, although maintaining the integrity of the outer wall is advantageous, its integrity can be sacrificed to a certain extent without affecting pipe performance, as long as the integrity of the inner wall 100 is maintained. Thus, it is advantageous to provide some flexibility in the outer wall so that it can deflect in use without that deflection translating to the inner wall.
When a pipe is installed in a trench, the hole into which the pipe is placed must be backfilled, for example with the excavated soil. One problem that has been experienced with known corrugated pipe, is that the haunch areas of the ditch are not properly backfilled due to the extremely non-linear outer surface of the corrugated pipe. The excavated material, such as soil, cannot easily pass by the corrugated outer profile of the installed pipe to reach and fill the haunch areas. The effect of this is illustrated in prior art
It would be beneficial to provide a pipe with an exterior surface that is smoother (less non-linear) so the backfill can more easily reach and fill the haunch areas of the trench, thus limiting or prohibiting sagging of the pipe into unfilled haunch areas.
It would also be beneficial to provide alternative wall designs that increase the moment of inertia of a plastic corrugated pipe so the pipe experiences less deformation in use.
The objects and advantages of the invention may be realized and attained by means of features and combinations particularly pointed out in the appended claims.
In accordance with a preferred embodiment, the invention includes a pipe having an axially extending bore defined by a pipe wall including a corrugated outer wall having axially adjacent annular outwardly-extending crests separated by valleys. The pipe wall also includes a non-linear outer layer having adjacent concave portions and convex portions. The concave portions are aligned with the corrugation crests of the outer wall so that the convex portion of the outer layer extends outwardly between at least two corrugation crests to provide improved resistance to deformation.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate an embodiment of the invention and together with the description, serve to explain the principles of the invention.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the invention, and, together with the description, serve to explain the principles of the invention.
Reference will now be made in detail to the presently preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings.
The corrugated outer wall 320 includes corrugation crests 330 and corrugation valleys 340. On top of the corrugated outer wall 320 is an outer layer 350 of the pipe wall 300 that includes convex sections 360 and concave sections 370. The concave sections 370 of the outer layer 350 are generally aligned with the crests 330 of the corrugations. The convex sections 360 extend outwardly between adjacent crests 330 of the outer wall 320.
Two exemplary dimensional scenarios of this embodiment will now be discussed. For an eighteen inch corrugated pipe, an exemplary embodiment would include an inner wall 310 having a thickness of about 0.052 inches and an outer wall 320 having a thickness of about 0.08 inches to about 0.09 inches. The thickness of the walls may not be completely uniform. The thickness of the outer layer 350 is about 0.052 inches. The distance between the midpoint of adjacent corrugation valleys 340 is about 2.617 inches. The distance between the top of the thickness that forms the corrugation valley 340 and the top of the thickness that forms the corrugation crest 330 is about 1.3566 inches. The distance between the peak of a convex section 360 of the outer layer 350 and the peak of a concave section 370 of the outer layer 350 is about 0.25 inches. The thickness of the outer layer may not be completely uniform.
For a forty-two inch corrugated pipe, an exemplary embodiment would include an inner wall 310 having a thickness of about 0.111 inches and an outer wall 320 having a thickness of about 0.15 inches to about 0.16 inches. The thickness of the walls may not be completely uniform. The thickness of the outer layer 350 is about 0.1123 inches. The distance between the midpoint of adjacent corrugation valleys 340 is about 5.1383 inches. The distance between the top of the thickness that forms the corrugation valley 340 and the top of the thickness that forms the corrugation crest 330 is about 2.9025 inches. The distance between the peak of a convex section 360 of the outer layer 350 and the peak of a concave section 370 of the outer layer 350 (“Outer Layer Corrugation Height”) is about 0.25 inches. The thickness of the outer layer may not be completely uniform.
The following chart provides some exemplary dimensions of a greater variety of pipe sizes:
It is to be understood that these pipe dimensions are merely exemplary, and that the present invention contemplates pipe having a wide variety of dimensions.
The pipe dimensions of the embodiment illustrated in
The corrugated pipe of the present invention achieves reduced installation sensitivity due to an increased moment of inertia (i.e., stiffness) of the pipe wall that translates into increased resistance to deformation bending. In addition, because the outer layer 350, 450 is smoother or less non-linear than the corrugated outer wall, it promotes backfill filling the haunch areas of the trench.
The outer layer 350, 450 of the present invention decreases the amount of pipe wall deformation and improves pipe performance by increasing the pipe stiffness without thickening the pipe walls or using a stiffer material for the pipe walls. One way the outer layer 350, 450 accomplishes this is by moving the centroid (or radius of gyration) of the pipe wall 300, 400 closer to the midpoint of the wall thickness. This provides a more uniform stress distribution and therefore a lower maximum stress during any deformation bending.
Just as the corrugation of known corrugated pipe can be a sacrificial layer that can deflect to a certain extent to accommodate forces exhibited on the pipe in use, the outer layer 350, 450 of the present invention provides yet another sacrificial layer. Thus there are two layers that can deflect to accommodate forces exhibited on the pipe in use to prevent those forces from deforming the inner wall of the pipe.
In addition, having an arched outer layer 350, 450 atop the corrugated outer wall 320, 420 provides a series of strong and stable arches supporting the smooth inner wall.
The shape of the outer layer increases the soil bearing area of the pipe exterior, which is advantageous because the load on the pipe created by backfill is spread out over a greater exterior area of the pipe, thus reducing the load per square inch on the pipe exterior, which reduces the maximum forces on the pipe from the backfill load.
As illustrated in
This force distribution can be distinguished from prior art pipes having outer layers with their convex portions aligned with the outer wall corrugation crests, as illustrated in
An advantage of the present invention is that the outer layer can be applied to or extruded with existing corrugated pipe, so that there is no need to redesign the existing double-walled corrugated pipe.
The outer layer 350, 450 is preferably fused to the corrugated outer wall 320, 420 where the concave sections 370, 470 of the outer layer 350, 450 meet the crests 330, 430 of the corrugated out wall 320, 420. The inner and outer walls are also preferably fused together as is common in the prior art. Fusing of the inner wall to the outer wall is accomplished by extruding the outer wall onto the inner wall while the inner wall is still hot. Fusing of the outer layer to the outer wall is accomplished in the same way—by extruding the outer layer onto the outer wall while the outer wall is still hot.
The layers of pipe may alternatively be co-extruded or adhered to each other with a suitable adhesive after extrusion. The present invention contemplates a variety of methods of creating a pipe with outer layer 350, for example strapping the outer layer to the outer wall of the corrugated pipe.
In a preferred embodiment of the invention, the inner wall 310, 410, outer wall 320, 420, and outer layer 350, 450 of the pipe comprise a plastic such as high density polyethylene (HDPE) or polypropylene (PP). The pipe may alternatively comprise a variety of other materials including, for example, other plastics, metals, or composite materials. The inner wall 310, 410, outer wall 320, 420, and outer layer 350, 450 of the pipe could be comprised of different, but compatible, materials
It will be apparent to those skilled in the art that various modifications and variations can be made in the gasket of the present invention and in construction of this gasket without departing from the scope or spirit of the invention.
Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2753596 | Bailey | Jul 1956 | A |
2877150 | Wilson | Mar 1959 | A |
2888954 | Gates | Jun 1959 | A |
2931069 | McCormick | Apr 1960 | A |
3379805 | Roberts | Apr 1968 | A |
3490496 | Steams | Jan 1970 | A |
3538209 | Hegler | Nov 1970 | A |
3605232 | Hines | Sep 1971 | A |
3677676 | Hegler | Jul 1972 | A |
3725565 | Schmidt | Apr 1973 | A |
3837364 | Jenner | Sep 1974 | A |
4220181 | Nyssen | Sep 1980 | A |
4262162 | Plinke et al. | Apr 1981 | A |
4377545 | Hornbeck | Mar 1983 | A |
4415389 | Medford et al. | Nov 1983 | A |
4492551 | Hegler et al. | Jan 1985 | A |
4523613 | Fouss et al. | Jun 1985 | A |
4588546 | Feil et al. | May 1986 | A |
4756339 | Buluschek | Jul 1988 | A |
4779651 | Hegler et al. | Oct 1988 | A |
4854416 | Lalikos et al. | Aug 1989 | A |
4862924 | Kanao | Sep 1989 | A |
4900503 | Hegler et al. | Feb 1990 | A |
4906496 | Hosono et al. | Mar 1990 | A |
4970351 | Kirlin | Nov 1990 | A |
5058934 | Brannon | Oct 1991 | A |
5145545 | Winter et al. | Sep 1992 | A |
5156901 | Tanaka | Oct 1992 | A |
5256233 | Winter et al. | Oct 1993 | A |
5330600 | Lupke | Jul 1994 | A |
5346384 | Hegler et al. | Sep 1994 | A |
5391334 | Enomoto | Feb 1995 | A |
5441083 | Korsgaard | Aug 1995 | A |
5460771 | Mitchell et al. | Oct 1995 | A |
5469892 | Noone et al. | Nov 1995 | A |
5706864 | Pfleger | Jan 1998 | A |
5901754 | Elsässer et al. | May 1999 | A |
5975143 | Järvenkytä et al. | Nov 1999 | A |
5976298 | Hegler et al. | Nov 1999 | A |
6000434 | Winter et al. | Dec 1999 | A |
6016848 | Egres, Jr. | Jan 2000 | A |
6062268 | Elsässer et al. | May 2000 | A |
6186182 | Yoon | Feb 2001 | B1 |
6199592 | Siferd et al. | Mar 2001 | B1 |
6240969 | Wildermuth | Jun 2001 | B1 |
6335101 | Haeger et al. | Jan 2002 | B1 |
6399002 | Lupke et al. | Jun 2002 | B1 |
6461078 | Presby | Oct 2002 | B1 |
6491994 | Kito et al. | Dec 2002 | B1 |
6555243 | Flepp et al. | Apr 2003 | B2 |
6591871 | Smith et al. | Jul 2003 | B2 |
6607010 | Kashy | Aug 2003 | B1 |
6631741 | Katayama et al. | Oct 2003 | B2 |
6645410 | Thompson | Nov 2003 | B2 |
6787092 | Chan et al. | Sep 2004 | B2 |
6848478 | Nagai | Feb 2005 | B2 |
6933028 | Milhas | Aug 2005 | B2 |
6935378 | Ikemoto et al. | Aug 2005 | B2 |
6955780 | Herrington | Oct 2005 | B2 |
7156128 | Kanao | Jan 2007 | B1 |
20020179232 | Thompson | Dec 2002 | A1 |
20040241368 | Iwata et al. | Dec 2004 | A1 |
Number | Date | Country |
---|---|---|
1 278 734 | Sep 1968 | DE |
1 704 718 | Jul 1971 | DE |
2 042 031 | May 1972 | DE |
2 413 878 | Feb 1976 | DE |
2 403 618 | Dec 1980 | DE |
2 804 540 | Jan 1984 | DE |
0 096 957 | May 1989 | EP |
0 385 465 | Mar 1990 | EP |
0 385 465 | Mar 1990 | EP |
0 581 064 | Jul 1993 | EP |
0 726 134 | Feb 1996 | EP |
0 543 243 | Feb 1997 | EP |
0 600 214 | Mar 1998 | EP |
0 890 770 | May 1998 | EP |
0 890 770 | May 1998 | EP |
1 293 718 | Mar 2003 | EP |
0 600 214 | Apr 2006 | EP |
1 486 473 | Jun 1967 | FR |
1 148 277 | Apr 1969 | GB |
59 026224 | Feb 1984 | JP |
06 64062 | Mar 1994 | JP |
08 267128 | Oct 1996 | JP |
WO 8500140 | Jan 1985 | WO |
WO 2004094888 | Nov 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20060201567 A1 | Sep 2006 | US |