This application incorporates herein by reference, as though recited in full, the disclosures of patent application Ser. No. 10/979,138, filed Nov. 3, 2004, having the title, “CORRUGATED SHIPPING CONTAINER SYSTEM” and provisional patent application 60/516,700 filed Nov. 3, 2003. This application claims the benefit of provisional patent application 60/708,663 filed Aug. 16, 2005, the disclosure of which is incorporated herein by reference.
None
1. Field of the Invention
The invention relates to a shipping crate formed from sheets of corrugated material, such as paper board, and in particular to a crate whose design optimizes compression strength relative to the amount of material that is use to make the crate.
2. Brief Description of the Prior Art
Shipping crates made from corrugated board are gaining popularity over wooden crates due to weight benefits as well as concerns of insects being carried in the wood. The crates are manufactured so that the flutes of the corrugated board are vertical, because it is well known that the vertically orientation can support far more weight than horizontally oriented fluting. The compression strength, or load bearing strength, of corrugated board crates is then strengthened by adding additional corrugate layers and/or by increasing the weight of the corrugated board that is used.
The need for high load bearing strength is based on the fact that crates are frequently stacked in storage and during shipment. Crates may be stacked two or three high, and instances they can be stacked four high. The bottom crate must support the weight of all of the crates above it.
A cargo carrier is typically a metal shipping container and shipping crates are generally manufactured to have dimensions such as that, in combination, they will substantially fill the 8×8×40 ft. interior space the cargo carriers. The crates can be any combination of sizes that readily combine to fill the 8×8×40 foot interior. In those instances where the interior space of the cargo transporter is other than a standard 8×8×40 feet, then the crate can be dimensioned to correspond to the interior dimension of the cargo transporter. Long distance shipping crates, and particularly crates for international shipping of goods, are predominantly designed to provide, approximately, an eight foot, by eight foot, by four foot interior space.
The container capacity is the total cubic volume (cube) a container can accommodate, or the cubic measurement of cargo. The capacity (i.e., the internal volume) is determined by multiplying the internal dimensions, that is, the product of internal length, width and height. The capacity may vary among containers of the same specified length and height.
The use of two or three layers of corrugated paper significantly increasing the crush strength. As the cost of the crate is directly related to the amount of corrugated paper that is used. the material cost of a double wall 1,300 pound paper would about two thirds the cost of a 1,300 pound triple wall corrugated paper.
A double wall corrugated has two outer layers of flat sheet material, two layers of fluted sheets and a third layer of flat sheet material between the two fluted layers. A triple wall panel has two outer layers of flat sheet material, three layers of fluted sheets and two layers of flat sheet material separating the three fluted layers. A triple wall panel thus has a flat sheet, fluted sheet, flat sheet, fluted sheet, flat sheet, in that order. As the flat sheets use less material per running foot than a fluted sheet, the triple wall has very nearly one third more material than a double wall, which is reflected in the cost. The weight of the corrugated material will also be reflected in the price. Corrugated sheet that are classified as 1,000 weight would cost double that of 500 weight corrugated.
The compression resistance of crates can be tested by using r ASTM D4169/D642. Failure of crates tested under ASTM D4169/D642, occurs when the crate compresses to any extent. The tests are all run to failure and since the tests are run in twenty pounds increments, the compression prior to failure, that is, the maximum compression strength, is twenty pounds less than compression at failure.
The present invention relates to a crate having a base, four sides, and a top cap. A first panel and a second panel form the four sides. Each of the two panels has a first, a second and a third sub-panel. The first sub-panel of the first panel is positioned to overlap, or overly the third panel of the second panel. The second sub-panel of the first panel and the second sub-panel of the second panel have substantially identical dimensions, the of the first panel and the first sub-panel of the second panel have substantially identical dimensions, and the third sub-panel of the first panel and the third sub-panel of the second panel have substantially identical dimensions. Preferably, the first sub-panel is less than one half the width of the third sub-panel but at least twenty percent of the width of the third sub-panel. Essentially, the first panel and the second panel are interchangeable.
The upper and lower ends of the crate are enclosed with end caps, and the base panel of at least double wall corrugated paper is positioned on the lower end cap. The lower or bottom end cap is positioned on the skid. The base panel has peripheral dimensions that are substantially equal to the interior dimensions of the crate. Thus, the first and second panels are held between the base panel and the lower end cap.
The crate is used in combination with a skid for shipping cargo. The cargo can be a plurality of items that are individually packaged or wrapped with a cushioning material, or a combination thereof.
Surprisingly, it has now been found that a crate made from an outer shell of vertically fluted corrugated board in combination with horizontally oriented inner panels, can provide greater compression strength than its vertical-vertical counter part. As for example, a 1100 weight triple wall layer in combination with a 500 weight double layer has a higher compression resistance than same size crates formed from two layers of 1300 weight triple wall.
It has also be found that, using the disclosed system, a crate made from the combination of 1100 weight triple wall outer layer and an inner layer of 500 weight double layer has a higher compression resistance than same size crates formed from the combination of a layer of 1300 triple wall and a 500 inner layer.
It is extremely surprising that a 1300-1300 crate (combined weight of 2600) has a compression rating in pounds of 12940, while a 1100-500-1100 (combined weight of 2700) has a compression rating of 22,690. The compression rating is in accordance with Military approved testing standard ASTM D4169/D642.
In one broad aspect of the disclosure, a shipping crate is formed from an eleven hundred or less outer layer, in combination with an eleven hundred or less inner layer.
In another broad aspect of the disclosure, a shipping crate is made from an outer layer of double wall or triple wall, in combination with a double or triple wall inner layer. The flutes in the outer layer run vertically, while the flutes in the inner layer run horizontally.
In another broad aspect of the disclosure, a shipping crate is made from two outer panels, each panel having a “U” configuration. That is, each panel has two outer subpanels and a sub-panel contiguously between the two outer panels. The panels are, in essence, mirror images of each other. The outer sub-panels on one panel overly, One of the outer panel layers of double wall or triple wall, vertically oriented corrugated, in combination with a double wall horizontally oriented corrugated inner layer.
The invention will be described in conjunction with the accompanying drawings, in which:
It is advantageous to define several terms before describing the invention. It should be appreciated that the following definitions are used throughout this application.
Where the definition of terms departs from the commonly used meaning of the term, applicant intends to utilize the definitions provided herein, unless specifically indicated otherwise.
As employed herein, the term “corrugate paper” and the term “corrugated board” are used interchangeably, and are inclusive of single, double and triple wall corrugated materials for shipping crates, as well known in the art.
As employed herein, the term “crate” refers to an enclosure of any size or shape formed from a base an end cap and a pair of panels. Typically, the base is a second end cap. A crate formed from two end caps and two J panels, or two “U” panels.
As employed herein, the term “overlap” refers to the side-by-side arrangement of a panel or sub-panel of a wall of a crate, and a sub-panel or panel of another wall of a crate. The term overlap is used interchangeably with the term “superjacent” meaning to lie over, upon, or overlying.
As employed herein, the term “J” panel refers to a panel having at least one corner turn, that is, an L shaped corner. The term is inclusive of a panel having two corner turns in the form of a “J” or a which, for simplicity, is referred to as a “U”. An inner subpanel is preferably longer than the other two panels, but the two arms of the U can be the long sides of a crate. Fold lines separate the three subpanels, and the two outer sub-panels are contiguous with the inner one or two sub-panels. A “J” crate can have two outer panels of unequal dimensions. Depending upon the dimensions of a crate, the base of the “J” can be the longer of the sidewalls of a crate. In a four-foot crate, there may be three panels of roughly the same length.
As employed herein, the term “scored” when used with respect to corrugated panels, is inclusive of an elongated crushing of the corrugated material to form a region about which subpanels can be folded to form an “L”, a “U” or a “J” shaped configuration.
As employed herein, the term “contiguous” refers to components that have been constructed integrally with an adjacent component, as for example, the subpanels of a panel having multiple parts. Contiguous subpanels are separated by score lines that facilitate the forming of corner folds and folds for storage and/or shipping of corrugated board to an assembly facility.
As employed herein, the term “single wall” refers to corrugated material that has one corrugated layer and two outer flats sheets.
As employed herein, the term “double wall” refers to corrugated material that has two corrugated layers separated by a flat sheet and two outer flats sheets.
As employed herein, the term “triple wall” refers to corrugated material that has three corrugated layers, with each layer being separated by a flat sheet and two outer flats sheets, thus providing four flat sheets and three corrugated sheets.
As employed herein, the designation of “1,300 weight paper”, indicates that 1,000 square feet of the paper from which the flutes are made and weighs 1,300 pounds. Similarly, the designation “1,100” indicates that 1000 square feet of the sheet material weighs that 1,100 pounds. It is noted that, by way of contrast, the weight of Kraft paper is based on paper weight, per 3,000 square feet.
As employed herein, the term “flute” refers to the layer of corrugated board that typically is used with two outer layers of flat sheets.
The invention relates to the design and manufacturing of cross core panel crates and a system of shipping these crates as folded corrugated panels, preferably on a skid, prior to assembly. The disclosed crates provide higher crush resistance than prior art crates at a lighter weight.
As seen in
In
Glue, or any other convenient bonding agent adheres the horizontal fluted panels 154, 144,134, to the wall panels 110 and 110R. Similarly, glue, or any other bonding agent adheres horizontal fluted panels 154R, 144R and 134R to the wall panel 110R. Additionally, glue or any other convenient bonding agent is used to adhere the overlap panel 160 to the sub-panel 150R and the overlap panel 160R to the sub-panel 150. The method of adhering the horizontal fluted panels to a wall panel and the overlap panels to the wall panels is not narrowly critical. One skilled in the art can use any convenient method of securing the horizontal sub-panels to a wall panel.
While triple wall corrugated paper is a preferred material for the wall panels, such as 110 and 110R, double wall corrugated board can also be used.
Once the panels 110 and 110R are assembled, the crate is completed as illustrated in
In order to facilitate shipping, the panels 110 are folded into four equal sections as illustrated in
An alternate embodiment of the shipping crate is illustrated in
The crate 900 in
It is recognized that materials other than corrugated paper board can be used based on current technology and future improvements in technology. Corrugated plastic is not preferred because of ecological reasons, but from a structural standpoint, corrugated plastic and paper are equivalents. Recyclable plastics are preferred to plastics that are not readily recycled.
It is highly preferable that the two corrugated wall units in the foregoing embodiments are essentially identical. This provides an economy in the manufacture of the units and an advantage in that only one type of unit needs to be stored. It also provides ease of assembling of the crate since there is minimal chance for error.
The corrugated material for the horizontal panels may be triple wall, e.g. 600, 750, 900, 1100, or 1300 weight triple wall, etc. The corrugated material can also be a double wall, e.g. 275, 350, 500, 750 weight double, etc.
Similarly, a crate can be formed from two 12 by 7 foot panels having two outer subpanels that are about 8×7 and an inner sub-panel that is about 4×7 to produce a crate that is 8×4×7 and having overlying outer panels. The long sides thus have two overlaying panels.
The panel dimensions are selected such that at least two panel units are employed to form a crate. At least one panel has two or three subpanels and no panel has more than three subpanels. That is, no panel can form more than three sides of the crate. Two panels having three subpanels can be used, or four panels with two subpanels can be used. The shortest of the three panels, can serve as a door to provide ease of access to the crate interior.
The compression resistance of crates can be tested by using r ASTM D4169/D642. Failure of crates tested under ASTM D4169/D642, occurs when the crate compresses to any extent. The tests are all run to failure and since the tests are run in twenty pounds increments, the compression prior to failure, that is, the maximum compression strength, is twenty pounds less than compression at failure.
All tests were conducted with crates having the same crate design.
DW refers to double wall corrugated.
TW refers to triple wall corrugated.
The combination of Test 1 employs material that is 27% more expensive than the material of Test 2. Nevertheless, the combination of Test 2 is 4% stronger than the combination of Test 1.
The combination of Test 2 is 18.3% more expensive than the material of Test 4. Contrary to conventional wisdom the combination of Test 4 is 4% stronger than the combination of Test 3.
The combination of Test 5 is 24.7% more expensive than the material of Test 6. Contrary to conventional wisdom the combination of Test 6 is 4% stronger than the combination of Test 5.
In tests 1 and 2 the crate panels are all vertical/vertical.
In tests 3 and 4, the triple layered corrugated is vertical.
In all tests the 500 double wall horizontal panels have flutes that are horizontally relative to the vertical flutes of the wall panels.
The tests were conducted by an independent testing laboratory.
The test results show that the horizontal/vertical fluting of tests 5 and 6 are stronger than the triple wall crates of test 1 and 2. The unusual results are attributed to the use of the horizontal fluting to keep the vertical fluting from bowing.
The use of horizontally fluted panels adhered to the vertically oriented wall panel, provides a less expense, as well as a higher crush strength crate.
The higher crush strength of the 1100 triple wall compared to 1300 triple wall is attributed to the lighter weight material being less likely to bow. The lighter weight paper seems to relax and maintain unbowed. Perhaps the 1100 was easier for the 500 DW horizontal fluting to keep from bowing. The explanation for the unusual results is presented only for guidance and general knowledge but is not a part of the inventions described herein The results are unusual, contrary to common logic, and therefore an explanation of the tests showing the reverse of what would be expected is not a limitation of the invention Other explanations may come to light in the future.
All documents, patents, journal articles and other materials cited in the present application are herein incorporated by reference.
While illustrative embodiments of the invention have been described herein, the present invention is not limited to the various preferred embodiments described herein, but includes any and all embodiments having equivalent elements, modifications, omissions, combinations (e.g., of aspects across various embodiments), adaptations and/or alterations as would be appreciated by those in the art based on the present disclosure. The limitations in the claims (e.g., including that to be later added) are to be interpreted broadly based on the language employed in the claims and not limited to examples described in the present specification or during the prosecution of the application, which examples are to be construed as non-exclusive. For example, in the present disclosure, the term “preferably” is non-exclusive and means “preferably, but not limited to.” In this disclosure and during the prosecution of this application, means-plus-function or step-plus-function limitations will only be employed where for a specific claim limitation all of the following conditions are present in that limitation: a) “means for” or “step for” is expressly recited; b) a corresponding function is expressly recited; and c) structure, material or acts that support that structure are not recited. In this disclosure and during the prosecution of this application, the terminology “present invention” or “invention” may be used as a reference to one or more aspect within the present disclosure. The language present invention or invention should not be improperly interpreted as an identification of criticality, should not be improperly interpreted as applying across all aspects or embodiments (i.e., it should be understood that the present invention has a number of aspects and embodiments), and should not be improperly interpreted as limiting the scope of the application or claims. In this disclosure and during the prosecution of this application, the terminology “embodiment” can be used to describe any aspect, feature, process or step, any combination thereof, and/or any portion thereof, etc. In some examples, various embodiments may include overlapping features. In this disclosure, the following abbreviated terminology may be employed: “e.g.” which means “for example”.
Number | Name | Date | Kind |
---|---|---|---|
1809953 | Witte | Jun 1931 | A |
1971863 | Lupton | Aug 1934 | A |
2895541 | Spivack | Jul 1959 | A |
3063615 | Bronte et al. | Nov 1962 | A |
4177895 | Shelton | Dec 1979 | A |
4341337 | Beach et al. | Jul 1982 | A |
5133460 | Shuert | Jul 1992 | A |
6138903 | Baker | Oct 2000 | A |
7163122 | Elder et al. | Jan 2007 | B2 |
7604156 | Clohessy | Oct 2009 | B2 |
Number | Date | Country | |
---|---|---|---|
20080041926 A1 | Feb 2008 | US |