1. Field of the Invention
The devices and methods disclosed herein relate to the treatment of soft and hard tissues with acoustic energy generally, including ultrasonic energy, to stimulate and facilitate repair and healing in a controlled fashion. The devices and methods also relate to systems for treating in hard and soft tissue using ultrasound, and cosmetic, medical and other applications of such devices, methods and systems.
2. Description of the Related Art
Various techniques (mechanical, chemical, light-induced, etc.) for managing hair growth and depilation are known in the art, as well as for other cosmetic treatments. For example, the use of high-intensity ultrasonic energy for treating various cutaneous and sub-cutaneous conditions has been disclosed in the following: PCT Publication WO 00/21612 entitled “A method and device for hair removal;” U.S. Pat. No. 6,544,259 entitled “Hair removal method and device;” U.S. Pat. No. 5,346,499 entitled “Depilation apparatus and method using a vibration member to affect the function of nerves in the skin;” U.S. Pat. No. 6,113,559 entitled “Method and apparatus for therapeutic treatment of skin with ultrasound;” U.S. Pat. No. 6,595,934 entitled “Methods of skin rejuvenation using high-intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions.” However, these and other existing attempts to use ultrasound for cosmetic and other purposes have not yielded practical and functional techniques that effectively generate and apply ultrasound for their intended uses.
The inventors have developed a more effective method of treating tissue using ultrasound or other acoustic energy.
One aspect of the invention is a device for treating a tissue with acoustic energy. The device can include a source of electromagnetic energy and an energy absorption medium configured to accept electromagnetic energy generated by the source. The device can also include a transduction member configured to transduce electromagnetic energy to acoustic energy and further configured to receive energy from the absorption medium. The device can also include a focusing element in communication with the transduction member and configured to focus the acoustic energy and direct the acoustic energy to a tissue during operation.
Preferred embodiments of this aspect of the invention can include one or more of the following. The transduction member can include a liquid substance configured to convert optical energy to ultrasound or it can include a solid member configured to convert the electromagnetic energy to ultrasound. The transduction member can also include a single piezoelectric element or an array of piezoelectric elements. The focusing element can be a concave surface configured to transmit the acoustic energy, can be an optical element or can be another type of structure that allows the resulting acoustic energy to be concentrated.
Another aspect of the invention is a device for treating a tissue with acoustic energy. The device can have a source of electromagnetic energy, a converter and an output. The converter can be configured to receive electromagnetic energy from the source and convert the electromagnetic energy to acoustic energy. The output can be in communication with the converter and configured to transmit the acoustic energy to a tissue.
Preferred embodiments of this aspect of the invention can include one or more of the following. The acoustic energy can be ultrasound. The converter can include a piezoelectric element, such as a piezoceramic element or other piezoelement. The piezoelectric element can be configured to focus the acoustic energy. The converter can also include an array of piezoelectric elements, and the array of piezoelectric elements can be configured to focus the acoustic energy. The device can have another type of focusing element configured to focus the acoustic energy. The focusing element can be included in the converter or in the output or in another location.
Another aspect of the invention is a device for treating a tissue with acoustic energy that includes a source of optical radiation, an absorbing member, a converter, and an output. The absorbing member can be configured to absorb energy from the source. The converter can be configured to receive the absorbed energy from the absorbing member and to convert the energy to focused ultrasonic. The output can be in communication with the converter and configured to deliver the ultrasonic energy to a tissue.
Another aspect of the invention is a method of treating tissue with acoustic energy comprising irradiating a fist medium with electromagnetic radiation; converting the electromagnetic radiation to acoustic energy; focusing the acoustic energy; and delivering the acoustic energy to a tissue to be treated.
Preferred embodiments of this aspect of the invention can include one or more of the following. The acoustic energy can be ultrasound. The acoustic energy can be focused into a single beam, or into an array of beams. The acoustic energy can be delivered to a portion of the tissue that selectively absorbs the acoustic energy.
Another aspect of the invention is a method of treating tissue with acoustic energy comprising irradiating a fist medium with electromagnetic radiation, converting the electromagnetic radiation to acoustic energy, and delivering the acoustic energy to the tissue to be treated. The acoustic energy can have at least one frequency component that is resonant with a structure in a tissue to be treated.
Preferred embodiments of this aspect of the invention can include one or more of the following. The structure in the tissue can be a portion of a hair or a portion of a hair follicle. The acoustic energy can be focused. The acoustic energy can be ultrasound.
The embodiments discussed below provide devices and methods for generating ultrasonic energy, delivering it to tissue and applying it for various cosmetic and other treatments, including (but not limited to) treatment of cellulite; improvement of skin appearance, tone, and/or texture; complete or partial removal of tattoos; and reducing the rate of hair growth or for hair removal. Some embodiments generate relatively low-power ultrasonic energy, with a lower cost energy source, and do not require cooling of the tissue being treated. Such devices present relatively few safety concerns and the performance is not dependent on the level of pigmentation in the tissue. Other embodiments have higher intensity and can benefit from cooling to protect skin or lessen the pain of such treatments (or both).
In other embodiments, treatments and devices using selective sonothermolysis are also disclosed. Some of the possible embodiments have the advantage of eliminating the need to use high-power electromagnetic radiation in a treatment device. Thus, concerns regarding energy levels, skin damage, eye safety, device cost, treating a wide range of skin pigmentations, and cooling requirements can be eliminated or reduced.
Ultrasonic energy can be delivered to hard and soft tissue using laser-based techniques. For example, sharply focused high-intensity high-frequency beams of ultrasound can be generated using a short-pulse laser. Examples of laser-based techniques for generation of high-frequency ultrasound are described in several sources, including Scruby, C. B., and Drain, L. E., Laser Ultrasonics: Techniques and Applications. Adam-Hilger, New York (1990)). Generally, the primary source in the generation of ultrasound waves is thermal expansion of the illuminated laser material. The release of thermal energy in the media is much smaller than the heat of vaporization and no phase transition is involved.
Many mechanisms and processes are involved in generating ultrasonic energy, such as evaporation of the media and phase transitions at higher densities of the laser energy. Although the process of generating ultrasonic waves is complicated, the amplitude of the generated ultrasound wave can be estimated from the following equation:
where ES(1−R) is the density of the absorbed energy, αL is the absorption coefficient, Co is the speed of sound, βT is the thermal expansion constant, and CP is the thermal capacity of the material.
To generate the optimal amplitude of the ultrasound signal for use in treating tissue, a short laser impulse can be used with a media having large absorbance, large volume expansion coefficient, and low thermal capacity. Referring to
System 10 generates ultrasound by illuminating focusing member 18 with laser 14. The laser energy absorbed by the material of focusing member 18 causes localized heating with accompanying thermal expansion. Absorption of the incident pulse energy and the associated temperature gradients induce a rapidly changing strain field. The strain field, in turn, radiates energy as elastic (ultrasonic) waves. A traveling acoustic wave thereby propagates through the member 18 and can be focused on the targeted tissue through the coupling chamber 16. The traveling acoustic wave propagates through the medium contained in coupling chamber 16, which is supplied from reservoir 12.
Preferably, system 10 is calibrated. Calibration can be accomplished using a hydrophone or Michelson interferometer. For example, ultrasound can be detected by measuring the displacement of the thin polymethylmethacrylate (“PMMA”) mirror film under the ultrasound action. In one experimental set up, one of the interferometer's laser beams was sent to the PMMA mirror and the other beam was sent to a reference mirror. Upon reflection, the two beams were recombined parallel to each other and made to interfere at the photodetector. The minimum displacement sensitivity of the interferometer used that experiment was approximately 10−10 m.
When measuring the mirror's vibration caused by ultrasound, the output of the interferometer was proportional to the ultrasonic displacement:
where P is the pressure developed in the PMMA film; ρ is the density of PMMA; c is the speed of sound (in PMMA); and dS/dt is the speed of the displacement of the PMMA surface. The displacement S can be determined by the equation:
where Vexp and Vint are the amplitudes recorded from the photodetector during a measurement and at the condition when shift of the interferometer's bands is more than λ/4.
Referring to
Referring to
In other embodiments, the laser-generated ultrasound can be generated using different configurations and different media. For example, an optical-to-acoustic converter 50 is shown in
The phenomena observed during experiments conducted using converter 50 are thought to be caused by the difference between the acoustic impedance of water and the impedance of In—Ga eutectics used (which is one order of magnitude higher than for water). Acoustic impedances of the organic media used in the experiments were close to that of water. Additionally, nonlinear relations between the generated acoustic pressure and the laser energy p=f(E)) could be detected at energies (E) of approximately 10-15 mJ in the case of In—Ga eutectics, while the relationship was is 2-3 times greater for the organic absorption media.
The optical absorbance of the eutectics is large, and local spots providing an optical shortcut could result. It is possible that cavitations in such spots would suppress the intensity of the generated acoustic waves, which would make a converter using such absorption material less efficient. Organic liquids are presently considered preferable for use as an absorbing media, for the reasons discussed above and also because the Gruneisen's coefficients of such media provide a profound thermoelastic effect, which is not required but is preferred.
In an additional experiment, converter 50 was modified to instead provide an optical-acoustic converter having a solid dried acrylic layer. To measure the geometry of the generated ultrasound waves, a wide-band high sensitive commercial hydrophone (HGL-0200, Onda corp.) and a 3-D positioning system (Velmex inc, with a 6 μm step on each slide) were used. The measured laser energy was used in the range of 0.1-0.45 J. Laser-induced acoustic signals were generated using both converters: one having an absorption medium of birch tar and the other further including the solid acrylic dye. Referring to
Referring to
Based on the data obtained from testing these two embodiments, the focal region for each optical-acoustic converter can be determined. Each converter provides sharp focused acoustic regions.
Referring to
Optical-acoustic energy converters and systems, such as those described above, can be use for the treatment of fatty tissue, especially in the human body. By applying a focused acoustic beam beneath the skin, targeted adipose tissue can be broken down by the high intensity energy. There are several mechanisms that are thought to affect the tissue being irradiated with the acoustic waves. For example, depending on acoustic frequency, ultrasound intensity, and viscosity of the medium, the acoustic wave can cause a rise in temperature that is secondary to the direct absorption of ultrasonic energy. Additional mechanical processes such as streaming, shear stressing, and cavitation can play a role when relatively higher acoustic pressures are used.
In one experiment using a converter with a solid acrylic dye layer, the application of 250 acoustic impulses at an energy of 250 mJ destroyed swine fat at a depth of 3 mm under the skin layer and having an area of approximately 0.25 mm2. Referring to
In another embodiment, a method to generate and focus ultrasound energy includes using piezoelectric elements, e.g., spherically-shaped elements. Referring to
In converter 80, optical energy is passed through lens 84 and focused onto piezoelement 88. In contrast, the optical energy in converter 90 is focused by the piezoelement 98 itself, and not a lens. In that particular embodiment, the support member 94 fixes the piezoelement 98 in the desired configuration. However, many other embodiments, including many additional configurations for converters similar to converters 80 and 90, are possible. Exemplary specifications for the piezoelements 88 and 98 are provided in Table 1.
In order to measure the acoustic pressures generated with piezoceramic transducers, the same method employing Michelson interferometer as for optical-acoustics described above was used.
Samples of swine fat having a thickness of 40 mm were insonated with a piezoceramic device using continuous 6 MHz ultrasound generated by the manufactured transducers. The fat included areas of destruction at the focal region of the transducers after samples were insonated for 10 min.
In still another embodiment employing piezoelements as part of the transducer, an array of piezoelements can be used. Another embodiment of the transducers for fat destruction are shown on the
There are many potential uses for focused or concentrated ultrasound using optical-acoustic converters or other types of transducers. Several examples are discussed below.
Such devices can be used to create controlled zones of hyperthermia and thermal damage in tissue (selective sonothermolysis). A principle similar to selective photothermolysis in photomedicine can be formulated for the ultrasound applications. Specifically, localized and controlled zone of hyperthermia and/or thermal damage can be created when:
The above-formulated principle of selective sonothermolysis can be utilized, for example, for targeting protein-rich structures embedded into tissues with lower protein content. One example of such a configuration is fibrous septa in subcutaneous tissue. Tissues reach in proteins (such as septa—connective tissue) typically demonstrate higher absorption of ultrasound than protein-poor tissues such as subcutaneous fat.
Most of the current noninvasive methods to treat cellulite, such as ingested capsules, massage combined with heat or laser treatment, etc., usually have side effects and have little to no effect or, if any effect, only a temporary effect. Embodiments of the invention can be used to focus ultrasound energy to modify the tissue structure and reduce or eliminate cellulite. The cell debris and released content will be absorbed by macrophage cells and naturally eliminated by the organism. Tissue in the treated area resorbs over time, resulting in reduced volume. Some embodiments are based on the principle of selective photothermolysis described above. The fibrous septa in the fat are thermally modified by the ultrasonic energy in order to reduce tension to the skin.
Improvement of Skin Appearance, Tone, and/or Texture
The principle of selective sonothermolysis can be used to heat denser, elastin-rich areas in the skin, stimulating new collagen production and shrinkage of the dermal interstitial matrix.
Dyes and inks can be forced deeper into tissue where they cannot be seen and where the body can be able to remove them. Due to the optical properties of skin tissue, pigment cannot be seen by the human eye below a few hundred microns in depth into the tissue. Experiments demonstrate that ultrasound applied to tissue containing tattoo pigment or other similar particles may be forced deep into the tissue and therefore make it less visible.
In one experiment, tissue containing a dye on the surface was treated with ultrasound using 75 kHz and 118 kHz sonicators from Titan. The upper layer of the treated tissue was stained with a dye and then left for several days to monitor the diffusion of the dye into the tissue. It was found that the used dye had a very low diffusivity in the fat tissue and no penetration was detected.
However, ultrasound action on the dye was apparent. Histology demonstrated that traces of the dye were observed in the fatty tissue. Samples of the fatty tissue were cut 20 minutes following treatment with low frequency ultrasound on a skin surface stained with a blue dye. The dye penetrated 1.5-2 mm into the tissue from the surface of the tissue. Diffusion rate of the blue dye into the fatty tissue depended on the duration of ultrasound insonation.
For hair removal with aid of ultrasound, a different approach is used than has been used previously. It is not efficient in practice to attempt to focus the ultrasound beam on individual hair roots. Such a technique would be time consuming, and potentially ineffective. Instead, preferably ultrasound is applied to cause a resonance absorbance by the hair complex. Ultrasound of a resonant frequency can induce damage to arrest hair growth.
Several authors have reported recently that they observed a resonance behavior in the rat vibrissae when it was driven with a piezoelectric stimulator. (See Andermann M. L., et al. Neuron, V.42, 451-463 (2004); and Neimark M. A., et al. J. Neurosci. V.23, 6499-6509 (2003), which are incorporated by reference.) Those authors also noted also that longer vibrissae displayed lower resonance frequencies that could be important observation for the practical implementation of the ultrasound energy (see the pictures below).
In some embodiments, tissue is insonated using a wide skin area. The ultrasound frequency is selected to cause a selective resonance absorption of the ultrasound energy by the hair. Examples of suitable resonance frequencies for various hair lengths are shown in FIG.
Some embodiments use ultrasonic/acoustical energy tuned to one of a resonant frequency of a hair shaft, the inner root sheath of the follicle, outer root sheath of the follicle, and the hair matrix. Operation at the resonant frequency for a period of time affects the mechanical interface between these structures, e.g., for a period of a few seconds or shorter depending on the treatment parameters. If sufficient ultrasonic energy is applied, normal mechanism of hair growth, i.e. creeping movement of inner root sheath (IRS) with respect to outer root sheath (ORS) can be compromised or completely disrupted, thus substantially slowing down or completely arresting hair growth. Since a range of hair lengths and diameters is present in the skin, the ultrasound frequency needs to be varied, either by sweeping or by using pulsed sources.
The vibration mechanism is based partially on the water content of the structures involved. The water content affects acoustic properties of the inner root sheath and the hair shaft versus the outer root sheath. The structures have the following approximate water content: Inner root sheath, Hair Shaft (predominant constituent—Keratin) 15-30% H2O; Outer root sheath, Dermis 75% H2O.
The resonant frequencies for the vibration modes of these structures can be approximated by the following equation:
Ωr=vs/d;
where Ωr is the resonant frequency; vs is the speed of sound; and d is the length of hair shaft. Other hair shaft dimensions can also be used to approximate the resonance frequency.
The hair shaft, inner sheath, outer sheath will oscillate in various directions as a function of the fundamental frequency and harmonics generated by the ultrasound device. Ultrasonic waves in solid bodies such as hair structures can be longitudinal, transversal, torsion or bending. Sound velocity and, therefore, resonant frequency are, strictly speaking, dependent on the type of wave. As a result, different frequencies can excite resonances of different types.
In operation the frequency of the acoustic energy is adjusted to one or more of the resonant frequencies of the hair shaft, inner sheath, outer sheath to induce vibrations which will cause mechanical disconnection of the structures coupling the hair shaft inner sheath, outer sheath and damaging the mechanism responsible for lifting the hair shaft.
In one embodiment, the frequency of ultrasound is swept over the range of interest. In another embodiment, an ultrasonic pulse is applied, which contains a broad range of frequencies. The distal area of the device can include a plurality of transducers sharing a single frequency/pulse generator through an energy distribution network and activated in sequence. This approach can reduce cost of the device. In preferred embodiments, there is a coupling medium providing acoustical contact between the transducer(s) and hairs. This medium can be a gel, a liquid, a film, or some other implement. Physical properties of the coupling medium should be selected in such a way as to favor coupling of ultrasonic energy into hairs and not into skin. This can be achieved due to differences in the velocities of sound (about 1700 m/s for hair and about 1500 m/s for skin). Exemplary parameters are shown in Table II.
This process advantageously requires less energy than analogous optical, thermal, or mechanical procedures. This device damages and/or destroys the mechanical connections among hair shaft inner root sheath, outer root sheath when the elastic limits of these structures are exceeded. As a consequence of the damage, the hair lifting mechanism is damaged or destroyed thereby reducing hair growth rates in the treatment area. In some embodiments, the ultrasonic member can be combined with a mechanical depilatory member to pull the hairs with damaged or disrupted IRS/ORS interface out. The members can be combined in a device, which is scanned across skin surface.
In another embodiment, an ultrasonic device for hair removal and/or permanent hair reduction is provided in a handheld device suitable for use by a consumer. Given the nature of the ultrasonic energy, such a device could be relatively safe and effective as a handheld device, and it would not present some of the safety concerns encountered with certain wavelengths of electromagnetic radiation such as eye safety or other safety issues unique to optical radiation.
In another embodiment, the resonant ultrasonic energy can affect the nerve endings in the skin and reduce pain caused by depilation. Use of vibration to mitigate pain is known in the art, but ultrasonic energy for that purpose can be more effective.
In some embodiments, electrostatic or mechanical preparation can be conducted to provide optimal positioning of the hairs prior to application of ultrasonic energy. This process and device can be useful in cosmetic applications (e.g. delaying beard growth) and also can be used to treat PFB or reduce the need for shaving. For example, hair grows at a rate about 100-200 μm per day. By reducing the lifting of the hair shaft to 100 μm per day a substantial improvement in reducing, for example, shaving-related problems or PFB problem can be achieved. By employing acoustical waveguides (e.g. horns) or other focusing devices more mechanical damage can be obtained. In addition, at higher energy levels, heating of the tissue can also provide increased damage to the hair lifting mechanism.
The device can also include a detector to determine when the energy is at a resonant frequency and is inducing vibration in one of the structures to be damaged. The detector can be, for example, a microphone or vibration sensor. The detector can be used to provide feedback to control the acoustic frequency or the energy level of the signal. When the acoustic energy is close to a resonant frequency, the mechanical oscillation and vibration of the hair shaft can be observed.
A similar concept can be used for selective heating of a hair follicle and hair removal due to thermal acoustic effects. At resonant frequencies of the hair shaft or/and inner root sheath acoustic energy can be deposited as heat in the hair follicle. This acoustic heating can be combined with selective light heating through melanin absorption. Another advantage is that the device can apply a large beam scan because focusing is not required in contrast to applications which use focused acoustic energy to cause thermal damage.
Resonant frequencies can be estimated based on the hair shaft/inner root sheath using the following equations. The speed of SOS in hair is expected to be larger than in the epidermis (1642 cm/s) but much smaller than in bone (3375 m/s). Thus, in the following cases, the following parameters were used: c=2000 and m/s=2·106 mm/s. Because the hair shaft and inner root sheath are essentially a close cylindrical cavity of finite length L, the Eigen frequencies are given by relation (1):
The ultrasonic wave equation is thought to be formulated in terms of dilatation (the dilatation is the dependent variable). The following are exemplary cases of longitudinal hair oscillations and transverse hair oscillations. The transverse wave number (the first term in (1)) is set to be 0, therefore:
For n=1 one gets:
For transverse hair oscillations:
where j1 is the zero of the appropriate Bessel function (depending on the mode), a is the hair radius. Set 1=0 to get the lowest Eigen frequency. If the side surface is clamped, then j0≈2.4 yielding:
If the side surface is free, then j0≈1.84 yielding:
The actual Eigen frequencies should be in between these limits. So a range of resonance frequency of 31 MHZ is expected.
Ultrasound can cause elevation of temperature in the medium due to its absorption. In order to localize and to visualize the profile of the focal region, it is convenient to employ a transparent gel which will become opaque when heated. The following protocol is to prepare such thermo-sensitive gel based on the polyacrylamide: dissolve 1 egg's white in 50 mL of pure distilled water; add 8.2 g of acrylamide and 0.42 g of bis-acrylamide (N,N′-methylene-bis-acrylamide); in a separate 10 mL of water dissolve 30 μL TEMED (tetramethylethylenediamide) and 0.06 g of ammonium persulfate; add 10 mL of the last prepared solution to the 50 mL previously prepared solution, mixing well and avoiding bubbles. Pour the mixture into a beaker and leave for 2-3 h at room temperature to complete polymerization. The resulting gel is transparent but it becomes opaque at temperature around 60° C. This gel can be stored in a tightly closed baker to avoid air exposure and drying the gel.
The patent, scientific and medical publications referred to herein establish knowledge that was available to those of ordinary skill in the art at the time the invention was made. The entire disclosures of the issued U.S. patents, published and pending patent applications, and other references cited herein are hereby incorporated by reference in their entirety.
All technical and scientific terms used herein, unless otherwise defined below, are intended to have the same meaning as commonly understood by one of ordinary skill in the art. References to techniques employed herein are intended to refer to the techniques as commonly understood in the art, including variations on those techniques or substitutions of equivalent or later-developed techniques which would be apparent to one of skill in the art.
As used herein, the recitation of a numerical range for a variable is intended to convey that the embodiments may be practiced using any of the values within that range, including the bounds of the range. Thus, for a variable which is inherently discrete, the variable can be equal to any integer value within the numerical range, including the end-points of the range. Similarly, for a variable which is inherently continuous, the variable can be equal to any real value within the numerical range, including the end-points of the range. As an example, and without limitation, a variable which is described as having values between 0 and 2 can take the values 0, 1 or 2 if the variable is inherently discrete, and can take the values 0.0, 0.1, 0.01, 0.001, or any other real values ≧0 and ≦2 if the variable is inherently continuous. Finally, the variable can take multiple values in the range, including any sub-range of values within the cited range.
As used herein, unless specifically indicated otherwise, the word “or” is used in the inclusive sense of “and/or” and not the exclusive sense of “either/or.”
While only certain embodiments have been described, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope as defined by the appended claims. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments described specifically herein. Such equivalents are intended to be encompassed in the scope of the appended claims.
This application claims the benefit of U.S. Provisional Application No. 60/874,606, filed Dec. 13, 2006, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60874606 | Dec 2006 | US |