The present application generally relates to packaging for cosmetic products, such as mascara, which comprises a container for holding a cosmetic composition and an applicator which is disposed through an opening in the container such that a portion of the applicator is brought into contact with the cosmetic composition. As the applicator is removed from the container, a wiper removes excess cosmetic composition from the applicator. The wiper of the present invention is dynamic rather than static with respect to the container and is adapted to rotate upon opening, closing, and/or rotating the cap of the container.
Conventional mascara packaging consists of a cylindrical container that contains a supply of mascara, the container having a threaded neck to which a cap and rod applicator assembly is reversibly secured by complementary threading on the cap. The rod is inserted into the container through a wiper prior to closing the cap and, as the user screws the cap onto the container, the rod only moves a short distance (i.e., the height of the threaded area) further into the container. When the user unscrews the cap and withdraws the rod, the wiper scrapes or removes excess cosmetic from the applicator element to provide a more uniform, metered dose of mascara on the applicator. The wiper conventionally consists of an annular construction of rubber or plastic in or near the neck of the container. Such mascara applicators and packaging are disclosed, for example, in U.S. Pat. No. 4,403,624 to Montgomery and U.S. Pat. No. 5,061,103 to Walsh-Smith, to name just a few.
A drawback to the conventional design is that the rod is axially centered in the container through a static wiper. Unfortunately, due to the thixotropic property of cosmetic products, the user must manually agitate the product prior to application, such as by shaking the cosmetic package. Consequently, much of the product that is inaccessible to the applicator element is wasted and may wind up hardening inside the container.
One attempt to solve this problem is disclosed in U.S. Pat. Nos. 5,700,100 and 5,172,992, both to Ackermann, which relate to a mascara packaging having a stirring element that removes mascara from the edges of the container when the cap is screwed on or off. Likewise, U.S. Pat. No. 5,074,693 to Iizuka et al. also describes a stirrer in conjunction with a mascara application for the purpose of scraping viscous cosmetic liquids from the inner surface of the container.
Another approach for bringing more of the liquid cosmetic disposed in the container into contact with the applicator has involved the provision of a flexible container which may be squeezed by the user to force the composition on to the applicator. Such a device is described in U.S. Pat. No. 7,223,035 to Engel et al.
There is a continuing need in the art for improved functional designs for cosmetic applicators which overcome one or more of the deficiencies of the conventional applicators. It is therefore an object of the invention to provide cosmetic packages which provide for dynamic movement of the applicator within the interior of the container. In particular, it is an object of the invention to provide a dynamic wiper which, when engaged with the applicator, permits the applicator element to be moved within the interior of the container when the cap of the container is screwed onto, unscrewed from, and/or rotated about the container.
In accordance with the foregoing objectives and others, the present invention provides packages for cosmetics having an applicator which engages with a dynamic wiper component in a manner such that the applicator and wiper are capable of rotating within the container when a cap of the package is rotated about the container, such as when the cap is screwed or unscrewed from the container. The rotational capabilities of the wiper permits an applicator element to agitate the composition and to provide a more uniform coating of the composition on the applicator element, thereby allowing for an enhanced user experience.
The invention provides a new package for a composition (e.g., a mascara or other cosmetic). The package includes a container for holding the composition. The package also includes a wiper that is capable of rotating with respect to the container, which has an orifice forming a passage between the exterior and interior of the container. Additionally, the package includes an applicator for removing a portion of the composition from the container and transferring it to a surface. The applicator includes a handle for gripping on one end thereof and an applicator element for holding a charge of the composition on the other end thereof. The applicator is disposed through the wiper orifice such that a portion of the applicator element is brought into contact with the composition. Accordingly, the orifice of the wiper is generally complementary in shape to the cross-sectional shape of the applicator element so that it can scrape or remove excess composition from the applicator element when the applicator element is drawn through the orifice upon removal of the applicator from the container. The package also includes a cap configured to fit over the applicator when the applicator is engaged with the wiper. The wiper is caused to rotate when the cap is rotated about the container, such as when the cap is screwed and/or unscrewed from the container, thereby moving the applicator element in a rotational motion in the interior of the container.
In certain embodiments, the cap may include threading complimentary to threading of the container such that the cap may be reversibly screwed onto the container. In other embodiments, the cap may simply engage with the container via a snap fit or the like. In yet other embodiments, the cap and container may comprise both complimentary snap fits and complimentary threading.
For example, a package is provided including a wiper disposed on a top surface of a container, partially within the interior of a container, or completely within the interior of the container. The wiper has a top surface in the shape of a generally annular disk defining an orifice therethrough. The top surface includes a plurality of alternating grooves and projections radially disposed around its circumference. The package also includes a cap that includes, on the interior thereof, a plurality of grooves and projections complementary to those of the wiper element. Accordingly, the projections of the cap engage with the grooves of the wiper and rotate the wiper as the cap is rotated about the container.
By virtue of the rotational movement of the applicator/wiper assembly, the applicator element is capable of stirring product within the interior of the container without spilling or splashing. This is particularly advantageous where the composition is pseudoplastic, having a high initial viscosity in the absence of shear, because the applicator element can recover composition adhered to the inner walls of the container which would otherwise be wasted or accessible only with vigorous shaking of the container. The dynamic wiper arrangement of the invention is also contemplated to find application with all types and configurations of applicator elements, for example with generally flat, planar, wedge, cylindrical, spherical, triangular, and other shaped applicator elements. In one case, the applicator element may have an oblong shaped cross-section and the wiper orifice will have a complementary oblong shape.
These and other aspects of the invention will be better understood by reading the following detailed description and appended claims.
The preferred embodiments of the present invention are illustrated by way of example and are not limited to the following figures:
a is a close-up view of a connection between a dynamic wiper 330 and a container 301.
All terms used herein are intended to have their ordinary meaning in the art unless otherwise provided.
The materials to be dispensed are not particularly limited and include paints, cosmetics, and adhesives, to name a few, and may be in the form of solids (e.g., powders), suspensions, emulsions, liquids, and the like. As used herein, the term liquid is intended to include very viscous materials, including non-Newtonian liquids having very high initial viscosities, as well as gels and other materials capable of being dispensed from a container onto an applicator. Particular mention may be made of cosmetics, including, without limitation, mascara, foundation, lip gloss, lip colors, hair colors, hair styling formulations, nail polishes, and the like. The viscosity of the composition is not limited and may range, for example, from about 10 cps to about 1,000,000 cps. Without intending to be limited, it is believed that the advantages of the present invention will be most fully realized when the cosmetic formulations are pseudoplastic or thixotropic, or otherwise have high viscosities at room temperature (e.g., greater than about 10,000 cps) such that they tend to adhere to the container walls in the absence of shear forces. In one preferred embodiment, the product is in the form of a mascara for application to the eyelashes.
Referring to
The package 100 is shown in a closed state, wherein a cap 110 is sealably engaged with the container 101. Typically, the cap 110 is made from a solid material, such as plastic, metal, and/or glass. The cap 110 will generally comprise threading such that it may be reversibly screwed onto complementary threading of the container 101. However, in other embodiments, the cap 110 may additionally or alternatively comprise a snap fit such that it may be snapped onto a complimentary snap fit of the container 101. Moreover, the cap 110 is configured to fit over an applicator 150 when the applicator is seated within a dynamic wiper 130 of the package 100. In this way, the cap 110 may be reversibly attached to the container to prevent the applicator 150 from inadvertently being removed from the wiper 130. When a user desires to remove the applicator 150, the cap 110 is removed from the container 101 (i.e, unscrewed and/or pulled off) and the applicator is pulled from within the container.
The dynamic wiper 130 is disposed within or on top of the container 101 and prevents the product held in the container from escaping when the applicator 150 is positioned within the orifice in the wiper 130 (e.g.,
In one embodiment, the dynamic wiper 130 is freely rotatable about a vertical axis extending from the center of the base of the container 101 through the geometric center of the dynamic wiper 130 (e.g., the “central axis”). Accordingly, when the applicator 150 is seated in the dynamic wiper 130, it may be rotated about the central axis, while still preventing the product from exiting the orifice. Moreover, such rotation occurs without spinning the applicator 150 (i.e. without slippage between the applicator 150 and the dynamic wiper 130). Rather, the applicator 150 rotates about the central axis while engaged with the dynamic wiper 130. In this way, the applicator element may be rotated within the container 101 to stir the product contained therein, without allowing the product to splash or spill. In an alternative embodiment, the applicator 150 may be spinnable within the orifice of the wiper.
Referring to
The shape of the base 252 is not important and may be of circular cross-section, semi-circular cross-section, rectangular cross-section, oblong cross section, or the like. Moreover, the applicator element 253 may be of any material and configuration capable of holding a charge of material and transferring it to the desired surface, such as a human integument, including keratin fibers (hair of the scalp, eyelashes, etc.), nails, lips, skin, or the like. The applicator element 253 may, for instance, take the form of a molded brush, a twisted wire brush, a foam pad, a flocked surface, a staked fiber brush, a comb, a plastic spatula, or any other surface which can hold and deliver the material.
As shown, the dynamic wiper 230 comprises an annular disk having an orifice 231 through its geometric center such that the applicator element 253 may be passed therethrough to access product contained within the container. The orifice 231 corresponds to the size of the applicator element 253 and base 252 of the applicator 250, such that the applicator element may be inserted through the orifice to the inside of the container. Once the applicator element 253 is seated within the orifice 231, the dynamic wiper 230 and applicator 250 prevent any product contained within the container from exiting through the orifice. In one embodiment, the wiper and/or the orifice may comprise a snap fit or friction fit to removably anchor the applicator 250 within the orifice 231. Of course, the dimensions and size of the orifice 231 will vary depending on the geometry of the applicator 250. For example, the orifice 231 will typically be rectangular when the cross-sections of the applicator element 253 and base 252 are rectangular.
In one embodiment, the dynamic wiper 230 may comprise an orifice 231 therethrough, which is located away from its geometric center (i.e., “off-center” or “offset from the center”). When the orifice 231 is off-center, the dynamic wiper 230 and seated applicator 250 are freely rotatable about a central axis of the package, however, the off-center location of the orifice 231 allows for the applicator element 253 to access more of the product in the container, specifically product located on or about the inner side walls of the container.
Although the dynamic wiper 230 is shown as a rigid structure, in one embodiment, the wiper 230 may be adapted to allow an applicator 250 seated therein to move with the wiper in multiple directions, including without limitation, vertically, horizontally, diagonally, rotationally, and any combination of such movements, as described in U.S. patent application Ser. No. 13/259,518, titled “Functional Dynamic Cosmetic Package,” filed contemporaneously herewith on Oct. 24, 2011, incorporated herein by reference in its entirety. For example, in one embodiment, the dynamic wiper may comprise a flexible material, which is typically an elastomer polymer such as synthetic or natural rubber. In another embodiment, the wiper 230 may comprise a telescoping surface to allow the wiper and applicator 250 to move in multiple directions, without slipping. Moreover, the telescoping surface of the wiper 230 may comprise either a flexible material or a rigid material, depending on the desired range of movement of the applicator element 253. In another embodiment, a plurality of interchangeable applicator elements 253 may be provided in a kit comprising the package described and claimed herein to provide the user greater flexibility in using the product.
Referring to
In any event, the inner lip 333 acts to prevent the dynamic wiper 330 from falling of the top of the container when it is placed in contact with a flange 305 located on the outer surface of the container 301. The inner lip 333 of the wiper 330 and the flange 305 of the container 301 may be connected, joined, or placed into contact with one another such that, even when the inner lip 333 exerts a force on the flange 305, the dynamic wiper is prevented from falling off of the container.
In one embodiment, the connection between the inner lip 333 of the dynamic wiper and the flange 305 of the container 301 may form a type of slip joint such that independent motion of the dynamic wiper is allowed with respect to the container 301 (e.g., horizontal, vertical, and/or rotational movement). Stated another way, although the dynamic wiper 330 is prevented from being pulled or pushed off of the container 301, the connection between the wiper and the container is such that the wiper may move in a horizontal, vertical, and/or rotational direction with respect to a stationary container.
The package is shown in a closed state, having a cap 310 screwed onto the container 301. The cap 310 comprises threading 314 such that it may be reversibly screwed onto complementary threading 307 of the container 301. Importantly, when the cap 310 is completely screwed onto the container 301, fins 311 attached to the inner surface of the cap exert a downward force on the wiper 330, causing a seal between the wiper and the container. In lieu of fins 311, the cap 310 can use any suitable method for sealing the wiper and the container, e.g., an annular bead, discontinuous lands, ribs, and the like. Therefore, when the cap is screwed or otherwise sealingly connected onto the container, there may be a space or gap between the inner lip 333 of the wiper 330 and the flange 305 of the container. However, when the cap is removed from the container, any upward force on the wiper (e.g., pulling the applicator) will cause the inner tip 333 of the wiper to catch on the flange 305 of the container.
Referring to
One or more compressible flaps 441 are formed on the top surface of the compression ring 440. In practice, the compressible flaps 441 are compressed by the bottom end of the wiper 430 when a cap (not shown) is screwed onto the container 401 or when a downward force is applied thereto. In this way, a seal is formed between the wiper 430, the compression ring 440, and the container 401, such that product may not exit the container. However, when the cap is removed from the container 401, the downward force is removed from the dynamic wiper 430, and it may again move with respect to the container.
According to one embodiment, the compressible flaps 441 are formed circumferentially along the perimeter of the compression ring 440, in another embodiment, the compressible flaps 441 are formed radially on selected spots on the ring 440. Although
Referring to
As shown, the dynamic wiper 531) comprises a scraping element 532 comprising one or more projection (e.g., edges, teeth, or the like) that engage with the applicator element and extend into the interior of a container. When the applicator is removed from the container, such as by pulling or the like, the applicator element passes through the dynamic wiper 530, and any excess product contained thereon is removed by the scraper 532 and maintained inside the container. The dimension and geometry of the scraper element 532 may vary depending on several factors, such as but not limited to, the rheology (i.e., thixotropy, pseudoplastic, or other viscosity regime) of the product and/or the shape and size of application element and/or the orifice.
Referring to
The dynamic wiper 630 is shown to comprise an upper lip 634 and a lower lip 635, which both extend out from the body of the wiper into the interior of the container 601 and towards the side walls thereof. Typically, the upper lip 634 will extend along a top surface of the body of the dynamic wiper 630, although part of the body of the wiper may extend above the top lip or even above the top surface of the container. The lower lip 635 typically extends along the lower surface of the body of the wiper 630, but a portion of the wiper body may extend below the lower lip. Although the upper lip 634 and lower lip 635 will typically be continuous structures (e.g., rims, ledges, or disks), each may alternatively comprise two or more discrete protrusions extending from the body of the wiper.
The container 601 is shown to comprise an optional upper flange 608 and a lower flange 609 that both extend from the inner walls of the container into the interior thereof. The lower flange 609 is housed entirely within the interior of the container 601, and acts to restrain the wiper 630 to movement within a fixed vertical distance. For example, the wiper 630 is restricted from moving toward the base of the container by the tower flange 609 of the container, which engages or catches the upper lip 634 of the wiper when a downward force is exerted on the wiper. The wiper is also restricted from unrestrained movement in a vertical direction toward the opening of the container by the lower flange 609 of the container, which engages or catches the lower tip 635 of the wiper.
In certain embodiments, the upper flange 608 (if included) of the container 601 restricts the dynamic wiper 630 from completely exiting the container. The upper flange 608 may engage with, restrict, or restrain the upper lip 634 of the wiper when an upward force is exerted on the wiper. The outer edge of the upper flange 609 typically defines the outer surface of the container 601, although the entire outer edge may be within the interior of the container.
Both the lower flange 609 and upper flange 608 are typically continuous structures (e.g., annular disks, rims, etc.), but either may alternatively comprise two or more discrete protrusions extending from the inner wall of the container. The lower flange 609 and upper flange 608 of the container will typically extend a distance into the interior of the container which is greater than the radius (or length) of the upper lip 634 and/or lower lip 635 of the wiper.
It will be appreciated that the dynamic wiper 630 is constrained by the upper and lower lips (634, 635) in such a way as to allow for the free rotation of the wiper relative to the container. Moreover, to the extent that the vertical movement of the wiper 630 is described as being “restricted” or “restrained,” it will be appreciated that the wiper 630 is typically not completely prevented from moving a fixed distance in an upward and/or downward direction. The amount of vertical movement will generally depend on the height and material of the lower flange 609 and/or the upper flange 608, as well as the distance between the upper lip 634 and lower lip 635 of the wiper. Although the upper and lower flanges (608, 609) typically comprise a rigid materials, one or both may be made from a flexible material to allow for greater vertical movement of the wiper 630. In an alternative embodiment the surface of the wiper 630, including the orifice 631, may be disposed below the plane of the upper lip 634 (i.e., coplanar with the lower lip 635) and the interior side wall of the wiper 630 may then be threaded in lieu of threads 607. In this embodiment, the cap has exteriorly positioned threads that engage the threads on the inside wall of the wiper 630.
During production of the package, the dynamic wiper 630 may be inserted into the container 601 such that the upper lip 634 of the wiper rests on the lower flange 609 of the container. Once the wiper 630 is in place, the upper flange 608 may be attached to the container 601 in any conventional manner. In another embodiment, the upper flange 608 may be molded into the container.
Referring to
Referring to
As shown, the outer edge of the wiper 830 is defined by one or more cutaway portions (“grooves”) 837, which may engage with corresponding projections within a cap
In an alternative embodiment, the dynamic wiper 830 may comprise one or more projections (not shown) located at its outer lip, which may engage with corresponding grooves (e.g.,
Referring to
Referring to
The interior wall of the cap 910 is shown to comprise a plurality of grooves 916 and projections 915 in an alternating configuration. The grooves 916 of the cap 910 may comprise any shape, but are configured in
Referring to
Referring to
Referring to
The interior of the cap 1110 is shown to comprise a plurality of projections 1115 located on an inner flange 1118 of the cap. The inner flange 1118 extends from the interior walls of the cap 1110 a distance into an interior space thereof. Typically, the inner flange 1118 will comprise a continuous structure (e.g., a tip, disk, etc), however, the inner flange may alternatively be a series of discrete protrusions extending inwardly from the inner wall of the cap. In any event, the projections 1115 may be dispersed on the bottom surface of the inner flange 1118.
The projections 1115 may comprise either a raised structure or an indentation of any shape, but are configured in
Referring to
At 1202, a user removes the cap by, for example, unscrewing it from the container or pulling it off of the container. As discussed in detail above, the rotation of the cap causes the dynamic wiper and the applicator housed therein to rotate with respect to the container.
When the cap is separated from the container, the applicator and wiper are still free to rotate. Accordingly, a user may rotate the applicator within the wiper by spinning the handle of applicator, while holding the container steady, or by turning the wiper while holding the container steady. Moreover, if the dynamic wiper comprises a flexible or telescoping material, the user may also move the applicator horizontally, vertically, and/or diagonally in addition to rotating the wiper. Importantly, the applicator may be manipulated white seated within the orifice of the dynamic wiper and without slipping between the applicator and the wiper, allowing for manipulation of the applicator without splashing or spilling of the product. The rotating applicator element disposed within the container (not shown) stirs the product within the container to facilitates its removal therefrom.
At 1203, the applicator is removed from the container, and the scraper element (not shown) of the wiper acts to remove excessive product from the applicator element. A user may then apply the applicator to an appropriate area to coat the surface thereof with the product. In the case of mascara, a charged applicator element may be used to apply the mascara to a user's eye lashes.
Once the application of the product is complete, the applicator may be reinserted into the container through the wiper, and the cap may be re-applied to the container. If the cap comprises screw threads, the screwing of the cap onto the container will cause the dynamic wiper to rotate in the opposite direction than when the cap was unscrewed (i.e., the direction that the cap is turned).
The invention having been described by the forgoing description of the preferred embodiment, it will be understood that the skilled artisan may make modifications and variations of these embodiments without departing from the spirit or scope of the invention as set forth in the following claims.
All patent and non-patent literature discussed above is hereby incorporated by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3311941 | Baker et al. | Apr 1967 | A |
4403624 | Montgomery | Sep 1983 | A |
5061103 | Walsh-Smith | Oct 1991 | A |
5074693 | Iizuka et al. | Dec 1991 | A |
5172992 | Ackermann | Dec 1992 | A |
5192153 | Gueret | Mar 1993 | A |
5700100 | Ackermann | Dec 1997 | A |
6773186 | Shih | Aug 2004 | B1 |
RE38698 | Joulia | Feb 2005 | E |
7223035 | Engel et al. | May 2007 | B1 |
8403580 | De Laforcade | Mar 2013 | B2 |
20030053844 | Lebras Brown et al. | Mar 2003 | A1 |
20050232681 | Gueret | Oct 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20130101333 A1 | Apr 2013 | US |