Cosmetic compositions comprising a structuring agent, silicone powder and swelling agent

Information

  • Patent Grant
  • 7749524
  • Patent Number
    7,749,524
  • Date Filed
    Monday, December 22, 2003
    21 years ago
  • Date Issued
    Tuesday, July 6, 2010
    14 years ago
Abstract
Disclosed are compositions that include a structuring agent, a silicone powder and a swelling agent, other compositions further including a liquid fatty phase, methods of making the compositions, and their use on keratin material.
Description
BACKGROUND OF THE INVENTION

Many cosmetic compositions, including pigmented cosmetics such as foundations, concealers, lipsticks, mascaras, and other cosmetic and sunscreen compositions, have been developed for comfortable application and wear. However many of these compositions are difficult to apply and do not have a smooth feel upon application. Furthermore, compositions may have a tendency to be tacky, resulting in poor application and spreadability characteristics.


There is still a need, therefore, for improved longwearing cosmetic compositions with cushiony, soft and silky feel upon application.


SUMMARY OF THE INVENTION

One aspect of the present invention is directed to a cosmetic composition, comprising: a structuring agent comprising a polymer skeleton having a hydrocarbon-based repeating unit comprising at least one hetero atom; a liquid fatty phase; a silicone elastomer powder comprising a silicone elastomer core coated with a silicone resin; and a swelling agent for said powder.


Another aspect of the present invention is directed to a composition useful in the preparation of a cosmetic, comprising: a structuring agent comprising a polymer skeleton comprising a hydrocarbon-based repeating unit containing at least one hetero atom, and a silicone elastomer powder comprising a silicone elastomer core coated with a silicone resin. Methods of making the compositions covered by these aspects of the present invention are also provided.


A further aspect of the present invention is directed to a method for care, make-up or treatment of a keratin material, comprising applying to the keratin material a composition comprising a structuring agent comprising a polymer skeleton having a hydrocarbon-based repeating unit comprising at least one hetero atom; a liquid fatty phase; a silicone elastomer powder comprising a silicone elastomer core coated with a silicone resin; and a swelling agent for the powder.


In preferred embodiments of each of these aspects of the present invention, the structural agent comprises a polyamide bonded to a fatty chain via an ester group, the swelling agent comprises a dimethicone, and the silicone elastomer core comprises a polyorganosilsesquioxane which may contain pendant functionalized groups such as fluoroalkyl or phenyl groups.


The compositions of the present invention may take a variety of forms of purposes of finished products. For example, the compositions may take any number of forms, including a paste, a gel (e.g., a solid, rigid or supple gel, including an anhydrous gel such as a translucent anhydrous gel or a transparent anhydrous gel), a cream, an emulsion (an aqueous or anhydrous emulsion), a solid (e.g., a molded composition or cast as a stick (e.g., a poured or molded stick), a compact, a dish, or a powder (e.g., a loose, compact or pressed powder). In addition, while compositions of the invention are described in terms of being cosmetic compositions, to the extent that they are intended to be applied to skin, they may also be considered as dermatological compositions, particularly if they contain a drug or other active agent considered to treat or benefit skin.







DETAILED DESCRIPTION OF THE INVENTION
The Structuring Polymer

The at least one structuring agent in the compositions of the present invention are solids that are not deformable at room temperature (25° C.) and atmospheric pressure (760 mmHg). The structuring agent contributes to the overall structure of the composition. In some embodiments, the agent does not make the compositions opaque. As defined above, the at least one structuring polymer of the present invention comprises a polymer skeleton comprising at least one hydrocarbon-based repeating unit comprising at least one hetero atom. In one embodiment, the at least one structuring polymer further comprises at least one terminal fatty chain chosen from alkyl and alkenyl chains, such as of at least 4 atoms, and further such as comprising 8 to 120 carbon atoms, bonded to the polymer skeleton via at least one linking group. The terminal fatty chain may be functionalized. The at least one structuring polymer may also further comprise at least one pendant fatty chain chosen from alkyl and alkenyl chains, such as of at least 4 atoms, and further such as comprising 8 to 120 carbon atoms, bonded to any carbon or hetero atom of the polymer skeleton via at least one linking group. The pendant fatty chain may, for example, be functionalized. The at least one structuring polymer may comprise both at least one pendant fatty chain and at least one terminal fatty chain as defined above, and one or both types of chains can be functionalized.


In one embodiment, the structuring polymer comprises at least two hydrocarbon-based repeating units. As a further example, the structuring polymer comprises at least three hydrocarbon-based repeating units and as an even further example, the at least three repeating units are identical.


As used herein, “functionalized” means comprising at least one functional group. Non-limiting examples of functional groups include hydroxyl groups, ether groups, oxyalkylene groups, polyoxyalkylene groups, carboxylic acid groups, amine groups, amide groups, halogen containing groups, including fluoro and perfluoro groups, halogen atoms, ester groups, siloxane groups and polysiloxane groups.


For purposes of the invention, the expression “functionalized chain” means, for example, an alkyl chain comprising at least one functional (reactive) group chosen, for example, from those recited above. For example, in one embodiment, the hydrogen atoms of at least one alkyl chain may be substituted at least partially with fluorine atoms.


According to the invention, these chains may be linked directly to the polymer skeleton or via an ester function or a perfluoro group.


For the purposes of the invention, the term “polymer” means a compound containing at least 2 repeating units, such as, for example, a compound containing at least 3 repeating units, which may be identical.


As used herein, the expression “hydrocarbon-based repeating unit” includes a repeating unit comprising from 2 to 80 carbon atoms, such as, for example, from 2 to 60 carbon atoms. The at least one hydrocarbon-based repeating unit may also comprise oxygen atoms. The hydrocarbon-based repeating unit may be chosen from saturated and unsaturated hydrocarbon-based repeating units which in turn may be chosen from linear hydrocarbon-based repeating units, branched hydrocarbon-based repeating units and cyclic hydrocarbon-based repeating units. The at least one hydrocarbon-based repeating unit may comprise, for example, at least one hetero atom that is part of the polymer skeleton, i.e., not pendant. The at least one hetero atom may be chosen, for example, from nitrogen, sulphur, and phosphorus. For example, the at least one hetero atom may be a nitrogen atom, such as a non-pendant nitrogen atom. In another embodiment, the at least one hydrocarbon-based repeating unit may comprise at least one hetero atom with the proviso that the at least one hetero atom is not nitrogen. In another embodiment, the at least one hetero atom is combined with at least one atom chosen from oxygen and carbon to form a hetero atom group. In one embodiment, the hetero atom group comprises a carbonyl group.


The at least one repeating unit comprising at least one hetero atom may be chosen, for example, from amide groups, carbamate groups, and urea groups. In one embodiment, the at least one repeating unit comprises amide groups forming a polyamide skeleton. In another embodiment, the at least one repeating unit comprises carbamate groups and/or urea groups forming a polyurethane skeleton, a polyurea skeleton and/or a polyurethane-polyurea skeleton. The pendant chains, for example, can be linked directly to at least one of the hetero atoms of the polymer skeleton. In yet another embodiment, the at least one hydrocarbon-based repeating unit may comprise at least one hetero atom group with the proviso that the at least one hetero atom group is not an amide group. In one embodiment, the polymer skeleton comprises at least one repeating unit chosen from silicone units and oxyalkylene units, the at least one repeating unit being between the hydrocarbon-based repeating units.


In one embodiment, the compositions of the invention comprise at least one structuring polymer with nitrogen atoms, such as amide, urea, or carbamate units, such as amide units, and at least one polar oil.


In one embodiment, in the at least one structuring polymer, the percentage of the total number of fatty chains ranges from 40% to 98% relative to the total number of repeating units and fatty chains, and as a further example, from 50% to 95%. In a further embodiment wherein the polymer skeleton is a polyamide skeleton, in the at least one structuring polymer, the percentage of the total number of fatty chains ranges from 40% to 98% relative to the total number of all amide units and fatty chains, and as a further example, from 50% to 95%.


In a further embodiment, the nature and proportion of the at least one hydrocarbon-based repeating unit comprising at least one hetero atom depend on the nature of a liquid fatty phase of the composition and are, for example, similar to the nature of the fatty phase. For example, not to be limited as to theory, the more polar the hydrocarbon-based repeating units containing a hetero atom, and in high proportion, which corresponds to the presence of several hetero atoms, the greater the affinity of the at least one structuring polymer to polar oils. Conversely, the more non-polar, or even apolar, and lesser in proportion the hydrocarbon-based repeating units containing a hetero atom, the greater the affinity of the polymer for apolar oils. In another embodiment, the invention is drawn to a structured composition containing at least one liquid fatty phase structured with at least one structuring polymer, wherein the at least one structuring polymer is a polyamide comprising a polymer skeleton comprising at least one amide repeating unit and optionally at least one pendant fatty chain and/or at least one terminal chain that are optionally functionalized and comprise from 8 to 120 carbon atoms, bonded to at least one of the amide repeating units via at least one linking group. The liquid fatty phase further contains at least one organogellator for gelling the liquid fatty phase. The at least one liquid fatty phase, the at least one structuring polyamide and the at least one organogellator together form a physiologically acceptable medium.


When the structuring polymer has amide-repeating units, the pendant fatty chains may be linked to at least one of the nitrogen atoms in the amide-repeating units.


The structuring polymer, for example the polyamide polymer, may have a weight-average molecular mass of less than 100,000, such as less than 50,000. In another embodiment, the weight-average molecular mass may range from 1000 to 30,000, such as from 2000 to 20,000, further such as from 2000 to 10,000.


As discussed, the at least one structuring polymer may, for example, be chosen from polyamide polymers. A polyamide polymer may comprise, for example, a polymer skeleton that comprises at least one amide-repeating unit, i.e., a polyamide skeleton. In one embodiment, the polyamide skeleton may further comprise at least one terminal fatty chain chosen from alkyl chains, for example, alkyl chains comprising at least four carbon atoms, and alkenyl chains, for example, alkenyl chains comprising at least four carbon atoms, bonded to the at least one polyamide skeleton via at least one linking group, and/or at least one pendant fatty chain chosen from alkyl chains, for example, alkyl chains comprising at least four carbon atoms, and alkenyl chains, for example, alkenyl chains comprising at least four carbon atoms, bonded to the at least one polyamide skeleton via at least one linking group. In one embodiment, the polyamide skeleton may comprise at least one terminal fatty chain chosen from fatty chains comprising 8 to 120 carbon atoms, such as, for example, 12 to 68 carbon atoms, bonded to the at least one polyamide skeleton via at least one linking group and/or at least one pendant fatty chain chosen from fatty chains comprising 8 to 120 carbon atoms, such as, for example, 12 to 68 carbon atoms, bonded to the at least one polyamide skeleton via at least one linking group, such as bonded to any carbon or nitrogen of the polyamide skeleton via the at least one linking group. In one embodiment, the at least one linking group is chosen from single bonds and urea, urethane, thiourea, thiourethane, thioether, thioester, ester, ether and amine groups. For example, the at least one linking group is chosen from ureas, esters, and amines, and as a further example, is chosen from esters and amines. The bond is, for example, an ester bond. In one embodiment, these polymers comprise a fatty chain at each end of the polymer skeleton, such as the polyamide skeleton.


In one embodiment, due to the presence of at least one fatty chain, the polyamide polymers may be readily soluble in oils (i.e., water-immiscible liquid compounds) and thus may give macroscopically homogeneous compositions even with a high content (at least 25%) of the polyamide polymers, unlike certain polymers of the prior art that do not contain such alkyl or alkenyl chains at the end of the polyamide skeleton. As defined herein, a composition is soluble if it has a solubility of greater than 0.01 g per 100 ml of solution at 25° C.


In a further embodiment, the polyamide polymers can be chosen from polymers resulting from at least one polycondensation reaction between at least one acid chosen from dicarboxylic acids comprising at least 32 carbon atoms, such as 32 to 44 carbon atoms, and at least one amine chosen from diamines comprising at least 2 carbon atoms, such as from 2 to 36 carbon atoms, and triamines comprising at least 2 carbon atoms, such as from 2 to 36 carbon atoms. The dicarboxylic acids can, for example, be chosen from dimers of at least one fatty acid comprising at least 16 carbon atoms, such as oleic acid, linoleic acid and linolenic acid. The at least one amine can, for example, be chosen from diamines, such as ethylenediamine, hexylenediamine, hexamethylenediamine, phenylenediamine and triamines, such as ethylenetriamine.


The polyamide polymers may also be chosen from polymers comprising at least one terminal carboxylic acid group. The at least one terminal carboxylic acid group can, for example, be esterified with at least one alcohol chosen from monoalcohols comprising at least 4 carbon atoms. For example, the at least one alcohol can be chosen from monoalcohols comprising from 10 to 36 carbon atoms. In a further embodiment, the monoalcohols can comprise from 12 to 24 carbon atoms, such as from 16 to 24 carbon atoms, and for example 18 carbon atoms.


In certain embodiments, the at least one structuring polymer in the compositions of the present invention corresponds to the polyamide polymers of formula (I). Due to fatty chain(s), these polymers may be readily soluble in oils and thus lead to compositions that are macroscopically homogeneous even with a high content (at least 25%) of at least one structuring polymer. These polymers are described in U.S. Pat. No. 5,783,657:




embedded image



in which:

    • n is an integer which represents the number of amide units such that the number of ester groups present in said at least one polyamide polymer ranges from 10% to 50% of the total number of all said ester groups and all said amide groups comprised in said at least one polyamide polymer;
    • R1, which are identical or different, are each chosen from alkyl groups comprising at least 4 carbon atoms and alkenyl groups comprising at least 4 carbon atoms. In one embodiment, the alkyl group comprises from 4 to 24 carbon atoms and the alkenyl group comprises from 4 to 24 carbon atoms;
    • R2, which are identical or different, are each chosen from C4 to C42 hydrocarbon-based groups with the proviso that at least 50% of all R2 are chosen from C30 to C42 hydrocarbon-based groups;
    • R3, which are identical or different, are each chosen from organic groups comprising atoms chosen from carbon atoms, hydrogen atoms, oxygen atoms and nitrogen atoms with the proviso that R3 comprises at least 2 carbon atoms; and
    • R4, which are identical or different, are each chosen from hydrogen atoms, C1 to C10 alkyl groups and a direct bond to at least one group chosen from R3 and another R4 such that when said at least one group is chosen from another R4, the nitrogen atom to which both R3 and R4 are bonded forms part of a heterocyclic structure defined in part by R4—N—R3, with the proviso that at least 50% of all R4 are chosen from hydrogen atoms.


In one embodiment, the at least one terminal fatty chain of formula (I) is linked to the last hetero atom, in this case nitrogen, of the polyamide skeleton. In a further embodiment, the terminal chains are functionalized. In another embodiment, the ester groups of formula (I), are linked to the terminal and/or pendant fatty chains, represent from 15% to 40% of the total number of ester and amide groups, such as, for example, from 20% to 35%.


In one embodiment, n may be an integer ranging from 1 to 5, for example, an integer ranging from 3 to 5. In the present invention, R1, which are identical or different, can, for example, each be chosen from C12 to C22 alkyl groups, such as from C16 to C22 alkyl groups.


In the present invention, R2, which are identical or different, can, for example, each be chosen from C10 to C42 alkyl groups. At least 50% of all R2, which are identical or different, can, for example, each be chosen from groups comprising from 30 to 42 carbon atoms. At least 75% of all R2, which are identical or different, can, for example, each be chosen from groups comprising from 30 to 42 carbon atoms. In the two aforementioned embodiments, the remaining R2, which are identical or different, can, for example, each be chosen from C4 to C19 groups, such as C4 to C12 groups.


R3, which can be identical or different, can, for example, each be chosen from C2 to C36 hydrocarbon-based groups and polyoxyalkylene groups. In another example, R3, which can be identical or different, can each be chosen from C2 to C12 hydrocarbon-based groups. In another embodiment, R4, which can be identical or different, can each be chosen from hydrogen atoms. As used herein, hydrocarbon-based groups may be chosen from linear, cyclic and branched, and saturated and unsaturated groups. The hydrocarbon-based groups can be chosen from aliphatic and aromatic groups. In one example, the hydrocarbon-based groups are chosen from aliphatic groups. The alkyl and alkylene groups may be chosen from linear, cyclic and branched, and saturated and unsaturated groups.


In general, the pendant and terminal fatty chains may be chosen from linear, cyclic and branched, and saturated and unsaturated groups. The pendant and terminal fatty chains can be chosen from aliphatic and aromatic groups. In one example, the pendant and terminal fatty chains are chosen from aliphatic groups.


According to the invention, the structuring of the liquid fatty phase is obtained with the aid of at least one structuring polymer, such as the at least one polymer of formula (I). The at least one polyamide polymer of formula (I) may, for example, be in the form of a mixture of polymers, and this mixture may also comprise a compound of formula (I) wherein n is equal to zero, i.e., a diester.


Non-limiting examples of at least one polyamide polymer that may be used in the compositions of the present invention include the commercial products sold by Arizona Chemical under the names Uniclear 80 and Uniclear 100. These are sold, respectively, in the form of an 80% (in terms of active material) gel in a mineral oil and a 100% (in terms of active material) gel. These polymers have a softening point ranging from 88° C. to 94° C., and may be mixtures of copolymers derived from monomers of (i) C36 diacids and (ii) ethylenediamine, and have a weight-average molecular mass of about 6000. Terminal ester groups result from esterification of the remaining acid end groups with at least one alcohol chosen from cetyl alcohol and stearyl alcohol. A mixture of cetyl and stearyl alcohols is sometimes called cetylstearyl alcohol.


Other non-limiting examples of at least one polyamide polymer that may be used in the composition according to the present invention include polyamide polymers resulting from the condensation of at least one aliphatic dicarboxylic acid and at least one diamine, the carbonyl and amine groups being condensed via an amide bond. Examples of these polyamide polymers are those sold under the brand name Versamid by the companies General Mills Inc. and Henkel Corp. (Versamid 930, 744 or 1655) or by the company Olin Mathieson Chemical Corp. under the brand name Omamid, in particular Omamid S or C. These resins have a weight-average molecular mass ranging from 6000 to 9000. For further information regarding these polyamides, reference may be made to U.S. Pat. Nos. 3,645,705 and 3,148,125.


Other examples of polyamides include those sold by the company Arizona Chemicals under the references Uni-Rez (2658, 2931, 2970, 2621, 2613, 2624, 2665, 1554, 2623 and 2662) and the product sold under the reference Macromelt 6212 by the company Henkel. For further information regarding these polyamides, reference may be made to U.S. Pat. No. 5,500,209. Such polyamides display high melt viscosity characteristics. MACROMELT 6212, for example, has a high melt viscosity at 190° C. of 30-40 poise (as measured by a Brookfield Viscometer, Model RVF #3 spindle, 20 RPM).


In a further embodiment, the at least one polyamide polymer may be chosen from polyamide resins from vegetable sources. Polyamide resins from vegetable sources may be chosen from, for example, the polyamide resins disclosed in U.S. Pat. Nos. 5,783,657 and 5,998,570.


The structuring agent is typically present in the composition in an amount ranging from about 0.1% to about 80%, such as from about 2% to about 60%, further such as from about 5% to about 40%, and even further from about 5% to about 25% by weight relative to the total weight of the composition.


The at least one structuring polymer may have a softening point greater than 50° C., such as from 65° C. to 190° C., and further such as from 70° C. to 130° C., and even further such as from 80° C. to 105° C.


The Silicone Elastomer Powder

The silicone elastomer powders useful in this invention comprise particles of a globular or spherical core of cured silicone elastomer particle that, in general, have an average particle diameter from 0.1 μm to 100 μm, wherein the core is coated with a silicone resin e.g., a coating layer formed of a polyorganosilsesquioxane resin, which in general, is present in an amount of from 1 to 500 parts by weight per 100 parts by weight of the core silicone elastomer.


In certain embodiments, the silicone elastomer forming the core particles is a cured diorganopolysiloxane having linear diorganopolysiloxane segments represented by the general formula (II):

(R—Si—O)a  (II);

wherein each R is, independently from the others, an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms exemplified by alkyl groups such as methyl, ethyl, propyl and butyl groups, aryl groups such as phenyl and tolyl groups, alkenyl groups such as vinyl and allyl groups and aralkyl groups such as 2-phenylethyl and 2-phenylpropyl groups as well as those substituted hydrocarbon groups obtained by replacing a part or all of the hydrogen atoms in the above named hydrocarbon groups with substituents including halogen atoms, epoxy group, amino group, mercapto group, (meth)acryloxy group and the like such as chloromethyl and 3,3,3-trifluoropropyl groups, at least 90% by moles of the groups R being preferably methyl groups, and the subscript a is a positive integer in the range of from 5 to 5000 such as from 10 to 1000.


The coated silicone elastomer particles can be prepared by in situ hydrolysis and condensation reaction of a trialkoxy silane compound in the presence of the cured silicone elastomer particles in an aqueous dispersion so as to form the coating layer of a silicone e.g., polyorganosilsesquioxane, resin on the surface of the silicone elastomer particles. The method of preparation includes admixing an aqueous dispersion of particles of a cured silicone elastomer having an average particle diameter in the range from 0.1 μm to 100 μm with an alkaline compound and a trialkoxy silane compound represented by the general formula (III):

R′—Si(OR″)3  (III);

wherein R′ is an unsubstituted or substituted monovalent hydrocarbon group, and R″ is an alkyl group having 1 to 6 carbon atoms, at a temperature not exceeding 60° C., and under agitation. Specific examples of the preparation of such silicone elastomer coated particles are described in U.S. Pat. No. 5,538,793. Examples of commercially available silicone elastomer particles coated with polyorganosilsesquioxane are available from Shin-Etsu and include the KSP-100 series, KSP-200 series and KSP-300 series. These are spherical particles of silicone elastomer coated with silicone resin, wherein the silicone elastomer core can be unfunctionalized for the KSP-100 series, functionalized with fluoroalkyl groups for the KSP-200 and functionalized with phenyl groups in the case of the KSP-300.


Swelling Agent

Swelling agents useful in the present invention include silicone oils chosen from volatile and non-volatile, linear and cyclic polydimethylsiloxanes (PDMSs) that are liquid at room temperature (e.g., cyclomethicones and dimethicones); polydimethylsiloxanes comprising alkyl or alkoxy groups which are pendant and/or at the end of the silicone chain, the groups each containing from 2 to 24 carbon atoms; phenylsilicones such as phenyl trimethicones, phenyl dimethicones, phenyl trimethylsiloxy diphenylsiloxanes, diphenyl dimethicones, diphenyl methyldiphenyl trisiloxanes and 2-phenylethyl trimethylsiloxysilicates, and fluorinated silicones. Some low-viscosity silicone oils useful in the present invention are linear polysiloxanes consisting (except for the terminal groups) of units of formula (IV): [(R)2—Si—O] in which each of the two substituents denoted “R” independently represents a lower alkyl group (having 1 to 6 C). The degree of polymerization (number of repeating units) of these low-viscosity polysiloxanes may range for example from about 3 to 2000. These low-viscosity silicone oils can be prepared according to known methods, or bought commercially: for example series 47 Silbione oil (RHONE POULENC), series 200 oil (DOW CORNING), SF 96 oil (GENERAL ELECTRIC). The terminal groups are, for example, trimethylsilyl, dimethyl hydroxymethylsilyl or vinyl dimethylsilyl groups.


The swelling agent must be cosmetically acceptable. Aside from that criterion, the choice of swelling agent depends on the chemical nature of the silicone elastomer core. For example, silicone elastomer cores having phenyl substituents (e.g., KSP-300) may be used with swelling agents such as a phenyltrimethicone, and cores having fluoro groups (e.g., KSP-200) may be used with agents such as fluorinated silicones. On the other hand, non-functionalized silicone elastomer cores (e.g., KSP-100) may be used with non-functionalized or functionalized swelling agents. Viscosity of the swelling agent generally varies from about 5 to 100,000 cst (centistokes). Agents having a relatively high viscosity will cause relatively slow swelling of the silicone elastomer powder, and agents having low viscosity will generally cause relatively fast swelling of the elastomer powder. More than one swelling agent may be used. In general, the swelling agent is present in the cosmetic composition in an amount of from about 0.1 to about 90%, and preferably from about 0.1 to about 40% by total weight of the composition. Relative amounts of silicone elastomer powder and swelling agent are determined based on the nature of the cosmetic composition. In general, the swelling agent will cause swelling of the elastomer powder in a range from about 10% of the original volume of the powder, to about 2.5 times or more the original volume (as measured, for example, by visual observation of a phase separation of unabsorbed swelling agent and the silicone elastomer core coated with the resin, in its swollen state).


Liquid Fatty Phase

The at least one liquid fatty phase, in one embodiment, may comprise at least one oil. The at least one oil, for example, may be chosen from polar oils and apolar oils including hydrocarbon-based liquid oils and oily liquids at room temperature. In one embodiment, the compositions of the invention comprise at least one structuring polymer and at least one polar oil. The fatty phase and the nature of the oil are selected to be chemically compatible with the structuring agent.


For a liquid fatty phase structured with an apolar polymer of the hydrocarbon-based type, this fatty phase may contain more than 30%, for example more than 40% by weight, or from 50% to 100% by weight, of at least one liquid apolar, such as hydrocarbon-based, oil, relative to the total weight of the liquid fatty phase.


For example, the at least one polar oil useful in the invention may be chosen from:

    • hydrocarbon-based plant oils with a high content of triglycerides comprising fatty acid esters of glycerol in which the fatty acids may have varied chain lengths from C4 to C24, these chains possibly being chosen from linear and branched, and saturated and unsaturated chains; these oils are chosen from, for example, wheat germ oil, corn oil, sunflower oil, karite butter, castor oil, sweet almond oil, macadamia oil, apricot oil, soybean oil, cotton oil, alfalfa oil, poppy oil, pumpkin oil, sesame oil, marrow oil, rapeseed oil, avocado oil, hazelnut oil, grape seed oil, blackcurrant seed oil, evening primrose oil, millet oil, barley oil, quinoa oil, olive oil, rye oil, safflower oil, candlenut oil, passion flower oil and musk rose oil; or alternatively caprylic/capric acid triglycerides such as those sold by Stearineries Dubois or those sold under the names Miglyol 810, 812 and 818 by Dynamit Nobel;
    • synthetic oils or esters of formula R5COOR6 in which R5 is chosen from linear and branched fatty acid residues containing from 1 to 40 carbon atoms and R6 is chosen from, for example, a hydrocarbon-based chain containing from 1 to 40 carbon atoms, on condition that R5+R6≧10, such as, for example, purcellin oil (cetostearyl octanoate), isononyl isononanoate, C12-C15 alkyl benzoates, isopropyl myristate, 2-ethylhexyl palmitate, isostearyl isostearate and alkyl or polyalkyl octanoates, decanoates or ricinoleates; hydroxylated esters such as isostearyl lactate and diisostearyl malate; and pentaerythritol esters;
    • synthetic ethers containing from 10 to 40 carbon atoms;
    • C8 to C26 fatty alcohols such as oleyl alcohol; and
    • C8 to C26 fatty acids such as oleic acid, linolenic acid or linoleic acid.


The at least one apolar oil according to the invention may include a hydrocarbon chosen from linear and branched, volatile and non-volatile hydrocarbons of synthetic and mineral origin, such as volatile liquid paraffins (such as isoparaffins and isododecane) or non-volatile liquid paraffins and derivatives thereof, liquid petrolatum, liquid lanolin, polydecenes, hydrogenated polyisobutene such as Parleam®, and squalane; silicone oils, polydimethylsiloxanes and phenylsilicones that would otherwise not function herein as a swelling agent; and mixtures thereof. The structured oils, for example those structured with polyamides such as those of formula (I) or the polyurethanes or polyureas or polyurea-urethanes, may be, in one embodiment, apolar oils, such as an oil or a mixture of hydrocarbon oils chosen from those of mineral and synthetic origin, chosen from hydrocarbons such as alkanes such as Parleam® oil, isoparaffins including isododecane, and squalane, and mixtures thereof. These oils may, in one embodiment, be combined with at least one phenylsilicone oil.


The liquid fatty phase, in one embodiment, contains at least one non-volatile oil chosen from, for example, hydrocarbon-based oils of mineral, plant and synthetic origin, synthetic esters or ethers, silicone oils and mixtures thereof.


In practice, the total liquid fatty phase may be present, for example, in an amount ranging from about 0.1% to about 99% by weight relative to the total weight of the composition; further examples include ranges of from about 5.0% to about 95.5%, from about 10% to about 80%, from about 20% to about 75%, and from about 1.0% to about 60% by weight relative to the total weight of the composition.


In addition to the liquid fatty phase, the cosmetic composition may also contain an aqueous phase, in which case, the cosmetic composition will be in the form of an emulsion. In these embodiments, the composition will also contain one or more emulsifiers to facilitate formation and stability of an emulsion. Examples of aqueous emulsions include oil-in-water emulsions, water-in-oil emulsions and multiple emulsions such as oil-in-water-in-oil emulsions and water-in-oil-in-water emulsions. However, the compositions of the present invention are not limited to emulsions that contain an aqueous phase. Compositions may also be in the form of an anhydrous emulsion, (e.g., they may contain a polyol such as glycerin and propylene glycol).


Emulsifiers

Examples of organic emulsifiers include any ethoxylated surfactants known in the art such as Polysorbate-20, Laureth-7, Laureth-4, Sepigel® 305 available from SEPPIC and other similar ingredients disclosed in the International Cosmetic Ingredient Dictionary and Handbook Vol. 4 (9th ed. 2002), more particularly the emulsifiers disclosed on pages 2962-2971. Examples of organosilicone emulsifiers include cetyl dimethicone copolyol-polyglyceryl-4-isostearate-hexylaurate (ABIL® WE 09) available from Goldschmidt Chemical Corporation, Cetyl Dimethicone Copolyol (ABIL® EM 90), (ABIL® EM 97), Laurylmethicone Copolyol (5200), Cyclomethicone (and) Dimethicone Copolyol (DC 5225 C and DC 3225 C) available from GE Silicones, Cyclopentasiloxane & Dimethicone Copolyol (GE SF 1528) or any other formulation aids known to persons skilled in the art. Other fatty substances useful as formulation aids include but are not limited to, silicones in esterified or unesterified liquid form or in esterified solid form, such as behenate dimethicone; and non-silicone fatty substances including oils such as vegetable and mineral oil; animal and/or synthetic waxes such as beeswax, paraffin, rice bran wax, candelilla wax, carnauba wax and derivatives thereof; and hydrocarbon gels or bentone type gels, such as Gel SS71, Gel EA2786, Quaternium-18 Bentonite, 38 CE, Gel ISD V or Gel ISD. Other emulsifiers may include sugar derivatives such as alkylpolyglucosides or sugar esters. Also used as emulsifiers include ethoxylated stearates such as polyglyceryl-2 dipolyhydroxystearate, or polyglyceryl-10 polyhydroxystearate or PEG-30 dipolyhydroxystearate.


These substances may be included in the compositions of the present invention to affect properties such as consistency and texture.


Film-forming Polymer

One or more film-forming polymers may be present in the composition, provided that they are compatible with it (e.g., do not cause phase separation). Appropriate amounts of the film former may be determined by one of skill in the art and can vary considerably based on the application. For example, for cosmetic compositions, the film former may be used in an amount from 0.1% to 20% such as, for example, from 1% to 10% by weight, relative to the total weight of the composition.


In one embodiment, the film-forming silicone resin is chosen from silsesquioxanes and siloxysilicates. Representative examples of such silsesquioxane film formers may include Belsil PMS MK, also referred to as Resin MK, available from Wacker Chemie, KR-220L, KR-242A, or KR-251 available from SHIN-ETSU. Examples of siloxysilicate film formers may include Wacker 803 and 804 available from Wacker Silicones Corporation, G.E. 1170-002 available from General Electric, diisostearoyl trimethylolpropane siloxysilicates, such as SF 1318, available from GE Silicones. High viscosity phenylated silicone such as phenyltrimethicone available as Belsil PDM 1000 may be used as a silicone based film former.


In another embodiment the film former may be a compound obtained by the reaction of silicone moieties with ethylenically unsaturated monomers. The resulting copolymers may be graft or block copolymers comprising at least one backbone and at least one chain, wherein at least one of the at least one backbone and at least one chain is chosen from silicones. In an embodiment, the at least one copolymer is chosen from copolymers comprising at least one polar backbone and at least one non-polar chain and copolymers comprising at least one non-polar backbone and at least one polar chain, wherein at least one of the at least one backbone and at least one chain is chosen from silicones.


In an embodiment, the at least one copolymer is chosen from copolymers comprising a polymer skeleton comprising at least one non-polar, silicone backbone substituted with at least one polar, non-silicone chain and copolymers comprising a polymer skeleton comprising at least one polar, non-silicone backbone substituted with at least one non-polar, silicone chain.


In another embodiment, the at least one copolymer is chosen from copolymers comprising a polymer skeleton comprising at least one polar, silicone backbone substituted with at least one non-polar, non-silicone chain and copolymers comprising a polymer skeleton comprising at least one non-polar, non-silicone backbone substituted with at least one polar, silicone chain.


In an embodiment, the at least one polar chain comprises at least one ester group. In another embodiment, the at least one polar chain comprises at least one ester group and at least one double bond. In another embodiment, the at least one polar, non-silicone backbone is chosen from acrylate polymers, methacrylate polymers, and vinyl polymers.


In another embodiment, the at least one copolymer further comprises at least one hydrocarbon group. In an embodiment, the at least one hydrocarbon group is a terminal hydrocarbon group bonded to the polymer skeleton. In another embodiment, the at least one hydrocarbon group is a pendant hydrocarbon group bonded to the polymer skeleton. In another embodiment, the at least one hydrocarbon group is a terminal hydrocarbon group bonded to at least one chain on the polymer skeleton. In another embodiment, the hydrocarbon group is a pendant hydrocarbon group bonded to at least one chain on the polymer skeleton. Non-limiting examples of the at least one hydrocarbon group include C5-C25 alkyl groups, optionally substituted, such as C18 alkyl groups and C22 alkyl groups.


Non-limiting examples of the at least one copolymer include silicone/(meth)acrylate copolymers, such as those as described in U.S. Pat. Nos. 5,061,481, 5,219,560, and 5,262,087. Further non-limiting examples of the at least one copolymer are non-polar silicone copolymers comprising repeating units of at least one polar (meth)acrylate unit and vinyl copolymers grafted with at least one non-polar silicone chain. Non-limiting examples of such copolymers are acrylates/stearyl acrylate/dimethicone acrylates copolymers, such as those commercially available from Shin-Etsu, for example, the product sold under the tradename KP-561, and acrylates/behenyl acrylate/dimethicone acrylates copolymer, such as those commercially available from Shin-Etsu, for example, the product sold under the tradename KP-562.


Another non-limiting example of at least one copolymer suitable for use in the present invention are silicone esters comprising units of formulae (V) and (VI), disclosed in U.S. Pat. Nos. 6,045,782, 5,334,737, and 4,725,658:

RaREbSiO[4−(a+b)/2]  (V); and
R′xREySiO1/2  (VI);

wherein

    • R and R′, which may be identical or different, are each chosen from optionally substituted hydrocarbon groups;
    • a and b, which may be identical or different, are each a number ranging from 0 to 3, with the proviso that the sum of a and b is a number ranging from 1 to 3,
    • x and y, which may be identical or different, are each a number ranging from 0 to 3, with the proviso that the sum of x and y is a number ranging from 1 to 3;
    • RE, which may be identical or different, are each chosen from groups comprising at least one carboxylic ester.


      In an embodiment, RE groups are chosen from groups comprising at least one ester group formed from the reaction of at least one acid and at least one alcohol. In an embodiment, the at least one acid comprises at least two carbon atoms. In another embodiment, the at least one alcohol comprises at least ten carbon atoms. Non-limiting examples of the at least one acid include branched acids such as isostearic acid, and linear acids such as behenic acid. Non-limiting examples of the at least one alcohol include monohydric alcohols and polyhydric alcohols, such as n-propanol and branched etheralkanols such as (3,3,3-trimethylolpropoxy)propane.


Further non-limiting examples of the at least one copolymer include liquid siloxy silicates and silicone esters such as those disclosed in U.S. Pat. No. 5,334,737, such as diisostearoyl trimethylolpropane siloxysilicate and dilauroyl trimethylolpropane siloxy silicate, which are commercially available from General Electric under the tradenames SF 1318 and SF 1312, respectively.


Further non-limiting examples of the at least one copolymer include polymers comprising a backbone chosen from vinyl polymers, methacrylic polymers, and acrylic polymers and at least one chain chosen from pendant siloxane groups and pendant fluorochemical groups. Non-limiting examples of such polymers comprise at least one unit derived from at least one A monomer, at least one unit derived from at least one C monomer, at least one unit derived from D monomers, and, optionally, at least one unit derived from at least one B monomer, wherein:


A, which may be identical or different, are each chosen from free-radically-polymerizable acrylic esters of at least one alcohol chosen from 1,1-dihydroperfluoroalkanols, omega-hydridofluoroalkanols, fluoroalkylsulfonamido alcohols, cyclic fluoroalkyl alcohols, and fluoroether alcohols, and analogs of any of the foregoing at least one alcohols, and free-radically-polymerizable methacrylic esters of at least one alcohol chosen from 1,1,-dihydroperfluoroalkanols, omega-hydridofluoroalkanols, fluoroalkylsulfonamido alcohols, cyclic fluoroalkyl alcohols, and fluoroether alcohols, and analogs of any of the foregoing at least one alcohols;


B, which may be identical or different, are each chosen from reinforcing monomers which are copolymerizable with at least one A monomer;


C, which may be identical or different, are each chosen from monomers represented by formula (VII):

X(Y)nSi(R)3−mZm  (VII)

wherein

    • X is chosen from vinyl groups which are copolymerizable with at least one A monomer and at least one B monomer,
    • Y is chosen from divalent allylene groups, divalent arylene groups, divalent alkarylene groups, and divalent aralkylene groups, wherein the groups comprise from 1 to 30 carbon atoms, and further wherein the groups optionally further comprise at least one group chosen from ester groups, amide groups, urethane groups, and urea groups;
    • n is zero or 1;
    • m is a number ranging from 1 to 3;
    • R, which may be identical or different, are each chosen from hydrogen, C1-C4 alkyl groups, aryl groups, and alkoxy groups; and
    • Z, which may be identical or different, are each chosen from monovalent siloxane polymeric groups; and


D, which may be identical or different, are each chosen from free-radically-polymerizable acrylate copolymers and free-radically-polymerizable methacrylate copolymers. Such polymers and their manufacture are disclosed in U.S. Pat. Nos. 5,209,924 and 4,972,037, and WO 01/32737.


Further non-limiting examples of the at least one copolymer include polymers comprising at least one A monomer, at least one C monomer, and at least one D monomer, wherein A, which may be identical or different, are each chosen from polymerizable acrylic esters of at least one fluoroalkylsulfonamido alcohol and polymerizable methacrylic esters of at least one fluoroalkylsulfonamido alcohol, D, which may be identical or different, are each chosen from methacrylic acid esters of at least one C1-C12 linear alcohol and methacrylic acid esters of at least one C1-C12 branched alcohol, and C is as defined above in preceding paragraphs. Such polymers include polymers comprising at least one group represented by formula (VIII):




embedded image



wherein

    • a, b, and c, which may be identical or different, are each a number ranging from 1 to 100,000; and
    • the terminal groups, which may be identical or different, are each chosen from C1-C20 linear alkyl groups, C3-C20 branched chain alkyl groups, C3-C20 aryl groups, C1-C20 linear alkoxy groups, and C3-C20 branched alkoxy groups. Such polymers are disclosed in U.S. Pat. Nos. 4,972,037, 5,061,481, 5,209,924, 5,849,275, and 6,033,650. These polymers may be purchased from Minnesota Mining and Manufacturing Company under the tradenames “Silicone Plus” polymers. For example, poly(isobutyl methacrylate-co-methyl FOSEA)-g-poly(dimethylsiloxane) is sold under the tradename SA 70-5 IBMMF.


Other non-limiting examples of the at least one copolymer is silicone/acrylate graft terpolymers, for example, those represented by formula (IX):




embedded image



wherein

    • a, b, and c are present in a weight ratio of 69.9:0.1:30 respectively,
    • R and R1, which may be identical or different, are each chosen from hydrogen and C1-C6 alkyl groups; and m is a number ranging from 100-150. In an embodiment, m is chosen to provide a macromer having a molecular weight ranging from 8,000 to 12,000, such as 10,000. In another embodiment, m is a number ranging from 124-135, such as 130. Non-limiting examples of these copolymers are described in WO 01/32727 A1.


In another embodiment of the invention, the at least one copolymer comprises a backbone chosen from vinyl backbones, methacrylic backbones, and acrylic polymeric backbones and further comprises at least one pendant siloxane group. Non-limiting examples of such polymers are disclosed in U.S. Pat. Nos. 4,693,935, 4,981,903 and 4,981,902.


In an embodiment, the at least one copolymer comprises at least one A monomer, at least one C monomer, and, optionally at least one B monomer, wherein the at least one A monomer is chosen from free-radically-polymerizable vinyl monomers, free-radically-polymerizable methacrylate monomers, and free-radically-polymerizable acrylate monomers; the at least one B monomer, if present, is chosen from at least one reinforcing monomer copolymerizable with the at least one A monomer, and the at least one C monomer is chosen from monomers represented by formula (X):

X(Y)nSi(R)3−mZm  (X)

wherein:

    • X is chosen from vinyl groups which are copolymerizable with the at least one A monomer and with the at least one B monomer;
    • Y is chosen from divalent groups;
    • n is zero or 1;
    • m is a number ranging from 1 to 3;
    • R, which may be identical or different, are each chosen from hydrogen, optionally substituted C1-C10 alkyl groups, optionally substituted phenyl groups, and optionally substituted C1-C10 alkoxy groups; and
    • Z, which may be identical or different, are each chosen from monovalent siloxane polymeric groups. Non-limiting examples of A monomers include methacrylic acid esters of C1-C12 linear alcohols, methacrylic acid esters of C1-C12 of branched alcohols, styrene monomers, vinyl esters, vinyl chloride monomers, vinylidene chloride monomers, and acryloyl monomers. Non-limiting examples of B monomers include acrylic monomers comprising at least one group chosen from hydroxyl, amino, and ionic groups, and methacrylic monomers comprising at least one group chosen from hydroxyl, amino, and ionic groups. Non-limiting examples of ionic groups include quaternary ammonium groups, carboxylate salts, and sulfonic acid salts. The C monomers are as above defined above in preceding paragraphs.


In another embodiment of the invention, the at least one co-polymer is chosen from vinyl-silicone graft copolymers having the following formula and vinyl-silicone block copolymers represented by formula (XI):




embedded image



wherein

    • G5, which may be identical or different, are each chosen from alkyl groups, aryl groups, aralkyl groups, alkoxy groups, alkylamino groups, fluoroalkyl groups, hydrogen, and -ZSA groups, wherein
    • A is chosen from vinyl polymeric segments comprising at least one polymerized free-radically-polymerizable monomer, and
    • Z is chosen from divalent C1-C10 alkylene groups, divalent aralkylene groups, divalent arylene groups, and divalent alkoxylalkylene groups. In an embodiment Z is chosen from methylene groups and propylene groups.
    • G6, which may be identical or different, are each chosen from alkyl groups, aryl groups, aralkyl groups, alkoxy groups, alkylamino groups, fluoroalkyl groups, hydrogen, and -ZSA groups, as defined above;
    • G2 comprises A;
    • G4 comprises A;
    • R1, which may be identical or different, are each chosen from alkyl groups, aryl groups, aralkyl groups, alkoxy groups, alkylamino groups, fluoroalkyl groups, hydrogen, and hydroxyl. In one embodiment, R1 is chosen from C1-C4 alkyl groups, such as methyl groups, and hydroxyl.
    • R2, which may be identical or different, are each chosen from divalent C1-10 alkylene groups, divalent arylene groups, divalent aralkylene groups, and divalent alkoxyalkylene groups. In one embodiment, R2 is chosen from divalent C1-C3 alkylene groups and divalent C7-C10 aralkylene groups. In another embodiment, R2 is chosen from —CH2— groups and divalent 1,3-propylene groups.
    • R3, which may be identical or different, are each chosen from alkyl groups, aryl groups, aralkyl groups alkoxy groups, alkylamino groups, fluoroalkyl groups, hydrogen, and hydroxyl. In one embodiment, R3 is chosen from C1-C4 alkyl groups and hydroxyl. In another embodiment, R3 is chosen from methyl groups.
    • R4, which may be identical or different, are each chosen from divalent C1-C10 alkylene groups, divalent arylene groups, divalent aralkylene groups, and divalent alkoxyalkylene groups. In one embodiment, R4 is chosen from divalent C1-C3 alkylene groups and divalent C7-C10 aralkylene groups. In another embodiment, R4 is chosen from divalent —CH2— groups and divalent 1,3-propylene groups.
    • x is a number ranging from 0 to 3;
    • y is a number greater than or equal to 5. In an embodiment, y ranges from 10 to 270, and in another embodiment, y ranges from 40 to 270.
    • q is a number ranging from 0 to 3;


      Non-limiting examples of these polymers are described in U.S. Pat. No. 5,468,477. A non-limiting example of such polymers is poly(dimethylsiloxane)-g-poly(isobutyl methacrylate), which is commercially available from 3M Company under the tradename VS 70 IBM.


In an embodiment, the at least one copolymer is present in the composition in an amount ranging from 0.1% to 20% by weight relative to the total weight of the composition. In another embodiment, the at least one copolymer is present in an amount ranging from 1% to 10% by weight relative to the total weight of the composition. One of ordinary skill in the art will recognize that the at least one copolymer according to the present invention may be commercially available, and may come from suppliers in the form of a dilute solution. The amounts of the at least one copolymer disclosed herein therefore reflect the weight percent of active material.


Other film forming polymers may also be a other non silicone film formers. These non silicone film formers may be chosen from, for example, polyethylene; vinylpyrrolidone/vinyl acetate (PVP/VA) copolymers such as the Luviskol® VA grades (all ranges) from BASF® Corporation and the PVP/VA series from ISP; acrylic fluorinated emulsion film formers including Foraperle® film formers such as Foraperle® 303 D from Elf Atochem (although Foraperle® may not be appropriate for some cosmetic formulations); GANEX® copolymers such as butylated PVP, PVP/Hexadecene copolymer, PVP/Eicosene copolymer or tricontanyl; Poly(vinylpyrrolidone/diethylaminoethyl methacrylate) or PVP/Dimethylaminoethylmethacrylate copolymers such as Copolymer 845; Resin ACO-5014 (Imidized 1B/MA copolymer); other PVP based polymers and copolymers; alkyl cycloalkylacrylate copolymers (See WO 98/42298, the disclosure of which is hereby incorporated by reference); Mexomere® film formers and other allyl stearate/vinyl acetate copolymers (allyl stearate/VA copolymers); polyolprepolymers such as PPG-12/SMDI copolymer, polyolprepolymers such as PPG-1 2/SM D1 copolymer, Poly(oxy-1,2-ethanediyl), α-hydro-ω-hydroxy-polymer with 1,1′-methylene-bis-(4-isocyanatocyclohexane) available from Barnet; Avalure™ AC Polymers (Acrylates Copolymer) and Avalure™ UR polymers (Polyurethane Dispersions), available from BFGoodrich.


The film former which also may be used within the framework of the invention includes film formers having any film former chemistry known in the art such as: PVP, acrylates, and urethanes; synthetic polymers of the polycondensate type or free-radical type, or ionic type, polymers of natural origin and mixtures thereof or any other film former known within the practice of the cosmetic and pharmaceutical arts which one skilled in the art may determine to be compatible. Film formers that may be used are also disclosed in the International Cosmetic Ingredient Dictionary and Handbook Vol. 2 (7th ed. 1999), more particularly the emollients disclosed on pages 1636-1638.


Waxes

One or more waxes may be present in the compositions, once again, provided that they are compatible with the composition. As used herein, a “wax” may be any lipophilic fatty compound. Examples of waxes that may be useful in the present invention include waxes of natural origin, such as beeswax, carnauba wax, candelilla wax, ouricury wax, Japan wax, cork fiber wax, sugar cane wax, paraffin waxes, lignite wax, microcrystalline waxes, lanolin wax, montan wax and ozokerites, hydrogenated oils such as hydrogenated jojoba oil, jojoba esters, waxes of synthetic origin, such as polyethylene waxes derived from polymerization of ethylene, waxes obtained by Fischer-Tropsch synthesis, fatty acid esters and glycerides, and silicone waxes such as derivatives of poly(di)methylsiloxane. In general, the wax is present in an amount ranging from about 0.01% to about 15%, and preferably from about 0.1% to about 10% relative to the total weight of the cosmetic composition.


Sunscreens

The cosmetic compositions of this invention may also comprise sunscreens which are chemical absorbers actually absorb harmful ultraviolet radiation. It is well known that chemical absorbers are classified, depending on the type of radiation they protect against, as either UV-A or UV-B absorbers. UV-A absorbers generally absorb radiation in the 320 to 400 nm region of the ultraviolet spectrum. UV-A absorbers include anthranilates, benzophenones, and dibenzoyl methanes. UV-B absorbers generally absorb radiation in the 280 to 320 nm region of the ultraviolet spectrum. UV-B absorbers include p-aminobenzoic acid derivatives, camphor derivatives, cinnamates, and salicylates.


Classifying the chemical absorbers generally as UV-A or UV-B absorbers is accepted within the industry. However, a more precise classification is one based upon the chemical properties of the sunscreens. There are eight major classifications of sunscreen chemical properties which are discussed at length in “Sunscreens—Development, Evaluation and Regulatory Aspects,” by N. Shaath et al., 2nd. Edition, pages 269-273, Marcel Dekker, Inc. (1997).


The sunscreens useful in the present invention typically comprise chemical absorbers, but may also comprise physical blockers. Exemplary sunscreens which may be formulated into the compositions of the present invention are chemical absorbers such as p-aminobenzoic acid derivatives, anthranilates, benzophenones, camphor derivatives, cinnamic derivatives, dibenzoyl methanes (such as avobenzone also known as Parsol®1789), diphenylacrylate derivatives, salicylic derivatives, triazine derivatives, benzimidazole compounds, bis-benzoazolyl derivatives, methylene bis-(hydroxyphenylbenzotriazole) compounds, the sunscreen polymers and silicones, or mixtures thereof. These are variously described in U.S. Pat. Nos. 2,463,264, 4,367,390, 5,166,355 and 5,237,071 and in EP 863,145, EP 517,104, EP 570,838, EP 796,851, EP 775,698, EP 878,469, EP 933,376, EP 893,119, EP 669,323, GB 2,303,549, DE 1,972,184 and WO 93/04665. Also exemplary of the sunscreens which may be formulated into the compositions of this invention are physical blockers such as cerium oxides, chromium oxides, cobalt oxides, iron oxides, red petrolatum, silicone-treated titanium dioxide, titanium dioxide, zinc oxide, and/or zirconium oxide, or mixtures thereof.


A wide variety of sunscreens is described in U.S. Pat. Nos. 5,087,445 and 5,073,372, and Chapter VIII of Cosmetics and Science and Technology (1957) by Segarin et al., pages 189 et seq.


Sunscreens which may be formulated into the compositions of the instant invention are those selected from among: aminobenzoic acid, amyldimethyl PABA, cinoxate, diethanolamine p-methoxycinnamate, digalloyl trioleate, dioxybenzone, 2-ethoxyethyl p-methoxycinnamate, ethyl 4-bis(hydroxypropyl)aminobenzoate, 2-ethylhexyl-2-cyano-3,3-diphenylacrylate, ethylhexyl p-methoxycinnamate, 2-ethylhexyl salicylate, glyceryl aminobenzoate, homomenthyl salicylate, homosalate, 3-imidazol-4-ylacrylic acid and ethyl ester, methyl anthranilate, octyldimethyl PABA, 2-phenylbenzimidazole-5-sulfonic acid and salts, red petrolatum, sulisobenzone, titanium dioxide, triethanolamine salicylate, N,N,N-trimethyl-4-(2-oxoborn-3-ylidene methyl)anillinium methyl sulfate, and mixtures thereof.


Sunscreens active in the UV-A and/or UV-B range can also include:

  • p-aminobenzoic acid,
  • oxyethylene (25 mol) p-aminobenzoate,
  • 2-ethylhexyl p-dimethylaminobenzoate,
  • ethyl N-oxypropylene p-aminobenzoate,
  • glycerol p-aminobenzoate,
  • 4-isopropylbenzyl salicylate,
  • 2-ethylhexyl 4-methoxycinnamate,
  • methyl diisopropylcinnamate,
  • isoamyl 4-methoxycinnamate,
  • diethanolamine 4-methoxycinnamate,
  • 3-(4′-trimethylammunium)-benzyliden-bornan-2-one methylsulfate,
  • 2-hydroxy-4-methoxybenzophenone,
  • 2-hydroxy-4-methoxybenzophenone-5-sulfonate,
  • 2,4-dihydroxybenzophenone,
  • 2,2′,4,4′-tetrahydroxybenzophenone,
  • 2,2′-dihydroxy-4,4′dimethoxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone,
  • 2-hydroxy-4-methoxy-4′-methoxybenzophenone,
  • -(2-oxoborn-3-ylidene)-tolyl-4-sulfonic acid and soluble salts thereof,
  • 3-(4′-sulfo)benzyliden-bornan-2-one and soluble salts thereof,
  • 3-(4′methylbenzylidene)-d,l-camphor,
  • 3-benzylidene-d,l-camphor,
  • benzene 1,4-di(3-methylidene-10-camphosulfonic) acid and salts thereof (the product Mexoryl SX described in U.S. Pat. No. 4,585,597,
  • urocanic acid,
  • 2,4,6-tris[p-(2′-ethylhexyl-1′-oxycarbonyl)-anilino]-1,3,5-triazine,
  • 2-[(p-(tertiobutylamido)anilino]-4,6-bis-[(p-(2′-ethylhexyl-1′-oxycarbonyl)anilino]-1,3,5-triazine,
  • 2,4-bis{[4-(2-ethyl-hexyloxy)]-2-hydroxy]-phenyl}-6-(4-methoxy-phenyl)-1,3,5-triazine (“TINOSORB S” marketed by Ciba),
  • the polymer of N-(2 et 4)-[(2-oxoborn-3-yliden)methyl]benzyl]-acrylamide,
  • 1,4-bisbenzimidazolyl-phenylen-3,3′,5,5′-tetrasulfonic acid and salts thereof,
  • the benzalmalonate-substituted polyorganosiloxanes,
  • the benzotriazole-substituted polyorganosiloxanes (Drometrizole Trisiloxane),


dispersed 2,2′-methylene-bis-[6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol] such as that marketed under the trademark MIXXIM BB/100 by Fairmount Chemical, or micronized in dispersed form thereof such as that were marketed under the trademark TINOSORB M by Ciba Specialty Chemicals Corp. (Tarrytown, N.Y.), and


solubilized 2,2′-methylene-bis-[6-(2H-benzotriazol-2-yl)-4-(methyl)phenol] such as that marketed under the trademark MIXXIM BB/200 by Fairmount Chemical.


Typically combinations of one of more of these sunscreens are used.


The dibenzoyl methane derivatives other than avobenzone are described, for example, in FR 2,326,405, FR 2,440,933 and EP 114,607.


Other dibenzoyl methane sunscreens other than avobenzone include (whether singly or in any combination):

  • 2-methyldibenzoylmethane
  • 4-methyldibenzoylmethane
  • 4-isopropyldibenzoylmethane
  • 4-tert-butyldibenzoylmethane
  • 2,4-dimethyldibenzoylmethane
  • 2,5-dimethyldibenzoylmethane
  • 4,4′-diisopropyldibenzoylmethane
  • 4,4′-dimethoxydibenzoylmethane
  • 2-methyl-5-isopropyl-4′-methoxydibenzoylmethane
  • 2-methyl-5-tert-butyl-4′-methoxydibenzoylmethane
  • 2,4-dimethyl-4′-methoxydibenzoylmethane
  • 2,6-dimethyl-4-tert-butyl-4′-methoxydibenzoylmethane


Additional sunscreens that can be used are described in pages 2954-2955 of the International Cosmetic Ingredient Dictionary and Handbook (9th ed. 2002).


Plasticizers

Plasticizers may also be added to the compositions to improve the flexibility and cosmetic properties of the resulting formulation. Plasticizers are materials that soften synthetic polymers. They are frequently required to avoid brittleness and cracking of film formers. One skilled in the art may routinely vary the amount of plasticizer desired based on the properties desired and the application envisaged. Plasticizers useful in the practice of the invention include lecithin, polysorbates, dimethicone copolyol, glycols, citrate esters, glycerin, dimethicone, and other similar ingredients disclosed in the International Cosmetic Ingredient Dictionary and Handbook Vol. 4 (9th ed. 2002), more particularly the plasticizers disclosed on page 2927.


Other Additives

The composition of the present invention may also further comprise at least one suitable (e.g., cosmetically or dermatologically acceptable) additive commonly used in the field concerned chosen from coloring agents (e.g., pigments), antioxidants, essential oils, preserving agents, fragrances, fillers, pasty fatty substances, waxy fatty substances, neutralizing agents, lipo-soluble polymers, and cosmetically active agents and dermatological active agents such as, for example, emollients, moisturizers, vitamins and essential fatty acids. The compositions of the invention may also be optionally thickened with an aqueous-phase thickener or gelled with a gelling agent and/or containing ingredients soluble in water. In embodiments where the cosmetic compositions are colored due to the presence of at least one pigment, the pigment is preferably treated, e.g., with an amino acid. Treated pigments are known in the art. See, e.g., U.S. Pat. No. 5,843,417. For example, pigments treated with silicones are described in U.S. Pat. No. 4,574,082, and pigments treated with amino acids are described in U.S. Pat. No. 4,606,914. Treated pigments are commercially available from U.S. Cosmetics Corp., a distributor of Miyoshi Kasei (Japan) (e.g., pigments treated with a vegetable-derived amino acid such as disodium stearoyl glutamate, aluminum oxide and optionally titanium dioxide).


The invention will be further described by reference to the detailed examples. These examples are provided for purposes of illustration only, and are not intended to be limiting unless otherwise specified.


Example 1
Foundation














Phase
Trade Name
INCI Name
% w/w


















A1
Uniclear 100
Polyamide
3.00



Octyldodecanol
Octyldodecanol
3.70



Finsolv TN
C12-C15 Alkyl Benzoate
3.60



Parsol MCX
Ethylhexyl
4.00




Methoxycinnamate



Wickenol 151
Isononyl Isononanoate
7.60


A2
VEGETABLE AMINO
Amino acid-treated
12.00



ACID AND ALUMINUM
pigments



HYDROXIDE TREATED



PIGMENTS



(AVAILABLE FROM



U.S. COSMETICS



CORP.)


A3
Arlacel P135
PEG-30
2.00




Dipolyhydroxystearate


A4
Butylparaben
Butylparaben
0.30



Bentone 38V
Disteardimonium Hectorite
1.20


A5
DC 245 Fluid
Cyclopentasiloxane
5.00


A6
GANZPEARL GMX-0610
MMA Crosspolymer
2.50



CERIDUST 9205 F
PTFE
0.50



ORGASOL 2002
Nylon-12
1.00



CARDRE MICA 8
Mica
1.00



KSP-100
Vinyl Dimethicone/
3.00




Methicone Silsesquioxane




Crosspolymer


A7
PERMETHYL 99A
Isododecane
11.00


B
Water
Water
35.20



1,3-Butylene
Butylene Glycol
2.00



Glycol



Magnesium Sulfate
Magnesium Sulfate
0.60



Methylparaben
Methylparaben
0.20



Phenoxyethanol
Phenoxyethanol
0.60




Total:
100.00









Example 2
Foundation















Ingredient
% w/w



















Phase A




Structuring polymer Uniclear 100
5.00



Fatty Alcohol
3.00



Emollient Esters
7.00



PEG-30 Dihydroxystearate: Arlacel P135
2.00



Preservative
0.20



Disteardimonium Hectorite Bentone 38V
1.40



Phase B



Silicone elastomer powder KSP-100
3.60



Dimethicone DC 200 Fluid 10 Cst
8.40



Methyl Methacrylate Crosspolymer,
4.00



Ganzpearl GMX-0610



Phase C



Isododecane
16.60



Phase D



Water
29.20



Butylene Glycol
3.00



Polyquaternium-10, UCARE Polymer JR 125
0.10



Magnesium Sulfate
0.70



Water soluble preservatives
0.80



Phase E



Emollient Ester
5.00



Amino acid treated Pigments
10.00










To make this composition, phase A was heated at the temperature of 80-85° C. for about 15 minutes or until the Uniclear polymer was dissolved, while mixing to achieve uniformity. Phase B was added, while mixing under sheer to achieve good pigment dispersion. Phases C, D, E and F were added sequentially, while mixing. Phase G was then added slowly at a temperature of about 70-75° C. under homogenization, to form an emulsion. This foundation had a silky feel.


Example 3
Make-Up as a Water-in-Oil (W/O) Emulsion
















Phase
Ingredients
% W/W




















A
Structuring polymer Uniclear 100
3.00




Octyldodecanol
3.70




C12-C15 Benzoate
3.60




Ethylhexyl Methoxycinnamate
4.00




Isononyl Isononanoate
7.60




PEG-30 Dipolyhydroxystearate
2.00



B
Amino acid treated pigment
12.0



C
Dimethicone DC 200 Fluid
6.00




Vinyl dimethicone/methicone silsesquioxane
3.00




crosspolymer



D
Butylparaben
0.30




Disteardimonium Hectorite
1.20



E
Cyclopentasiloxane
5.00




Isododecane
11.00



F
Methyl methacrylate (MMA) Crosspolymer
2.50




PTFE
0.50




Nylon-12
1.00




Mica
1.00



G
Water
29.20




Butylene Glycol
2.00




Magnesium Sulfate
0.60




Methylparaben
0.20




Phenoxyethanol
0.60




Total:
100.00










To prepare this composition, phase A was heated at a temperature of 80 to 85° C. for 15 minutes or until the structuring polymer Uniclear was dissolved. Phase B was added and pigment was ground under high sheer to good dispersion. Phases C, D, E and F were added sequentially while mixing. Phase G was added slowly at a temperature of 70 to 75° C. under homogenization to form emulsion. This make up composition had a silky feel.


Example 4
Anhydrous Compact Formula
















Phase
Ingredients
% W/W




















A
Structuring polymer Uniclear 100
15.0




Octyldodecanol
10.0




C12-C15 Benzoate
16.0




Ethylhexyl Methoxycinnamate
6.0




Isononyl Isononanoate
7.0




PEG-30 Dipolyhydroxystearate
2.0



B
Pigment
12.0



C
Dimethicone DC 200 fluid
12.0




Vinyl dimethicone/methicone silsesquioxane
6.0




crosspolymer



D
Butylparaben
0.5




Disteardimonium Hectorite
0.5



E
MMA Crosspolymer
5.0




PTFE
2.0




Nylon-12
3.0




Mica
3.0










To prepare this composition, phase A was heated at a temperature of 80 to 85° C. for 15 minutes or until the structuring polymer was dissolved. Phase B was added and the pigments were ground under high sheer to good dispersion. Phases C, D and E were added sequentially, while mixing well. The resulting mixture was poured while hot, i.e., at a temperature of 80-85° C. into a compact. The compact had good application, with a silky and cushion feel.


Example 5
Pressed Powder















Ingredient
% w/w



















Phase A




Talc
54.33



Pigments
8.77



Zinc stearate
4.00



Fillers
9.20



KSP-104
10.00



Silicone elastomer DC 9506
3.00



Phase B



Structuring polymer Uniclear 100
0.67



Octyldodecanol
2.33



Preservatives
0.70



Phase C



Dimethicone (DC200 10Cst)
7.00










To prepare this composition, add phase A was added in a Teledyne Readco CBM (Containerized batch mixer) and mixed for 10 minutes at 5000 RPM. Phases B and C (pre-blended) were added to the module and blended for 10 minutes at 3,000 RPM. The completed mixture was passed through a grinding unit, followed by pressing at about 1,000 psi. This pressed powder had a cushiony feel and a silky feel upon application.


Example 6
Stick














Seq
Trade Name
INCI Name
Grams


















A1
ELEFAC 1-205
OCTYLDODECYL
22.800




NEOPENTANOATE



Wickenol 151
ISONONYL ISONONANOATE
20.300



Pripure 379
SQUALANE
4.000



Phenyltrimethicone
Phenyltrimethicone
1.000



Lameform TGI
POLYGLYCERYL-3
2.500




DIISOSTEARATE



Eutanol G
OCTYLDODECANOL
0.100


A2
Uniclear 100 VG
ETHYLENEDIAMINE/STEARYL
0.100




DIMER DILINOLEATE




COPOLYMER


A3
Dimethicone
Dimethicone
9.200



KSP-100
DIEMETHCONE/VINYL
4.00




DIMETHICONE




CROSS POLYMER


B1
(See below)
Amino Acid treated
12.000




pigments


B2

FILLERS
9.0


C
DEAWAX MH 181
Ozokerite
2.500



CIRE DE JOJOBA
HYDROGENATED JOJOBA OIL
10.000



HYDROGENEE



GRANULES



Siliconyl Beeswax
Bis-PEG-12 DIMETHICONE
2.500




BEESWAX






100.00









Natural Beige
Pigments in B1 Above
















B1
NAI-C47-051-10
TITANIUM DIOXIDE (and)
78.830



(white)
DISODIUM STEAROYL




GLUTAMATE (and)




ALUMINUM HYDROXIDE



NAI-C33-8075-10
IRON OXIDES (and) DISODIUM
5.560



(red)
STEAROYL GLTAMATE (and)




ALUMINUM HYDROXIDE



NAI-C33-134-10
IRON OXIDES (and) DISODIUM
2.630



(Black)
STEAROYL GLUTAMATE (and)




ALUMINUM HYDROXIDE



NAI-C33-8073-10
IRON OXIDES (and) DISODIUM
12.880



(yellow)
STEAROYL GLUTAMATE (and)




ALUMINUM HYDROXIDE



NAI-C43-1810-10
ULTRAMARINES (and)
0.100



(blue)
DISODIUM STEAROYL




GLUTAMATE (and)




ALUMINUM HYDROXIDE






100.00









To prepare the stick, the ingredients of A1 (except for the Wickenol 151 and Eutanol G) were mixed together in a main container, followed by adding B1 and B2 along with a dispersant (Sylversone) until good pigment dispersion was achieved. The ingredients of phase A3 were then added using a mixing blade, until a homogeneous mixture was obtained. The Wickenol 151 and Eutanol G were mixed together in a separate container, followed by the addition of phase A2, with heating to 80° C. until the mixture was transparent and free of clumping. The main container was heated to a temperature of 80° C. and the contents of the separate container added thereto, followed by the addition of the ingredients of phase C. The resultant mixture was mixed until homogeneous (completely melted), and the temperature was reduced to 70-75° C. The contents were poured into molds at 70-75° C.


Example 7
Intermediate Composition















Trade Name
Wt. %









Uniclear 100VG
60



KSP-100
15



dimethicone
25










All publications cited in the specification, both patent publications and non-patent publications, are indicative of the level of skill of those skilled in the art to which this invention pertains. All these publications are herein incorporated by reference to the same extent as if each individual publication were specifically and individually indicated as being incorporated by reference.


Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.

Claims
  • 1. A cosmetic composition comprising at least one liquid fatty phase comprising: at least one structuring agent comprising a polymer skeleton having a hydrocarbon-based repeating unit comprising at least one hetero atom; a silicone elastomer powder comprising a silicone elastomer core coated with a silicone resin; and at least one swelling agent for said powder.
  • 2. The cosmetic composition of claim 1, wherein said at least one structuring agent further comprises at least one fatty chain bonded to said polymer skeleton.
  • 3. The cosmetic composition of claim 2, wherein said at least one fatty chain is a pendant chain.
  • 4. The cosmetic composition of claim 2, wherein said at least one fatty chain is a terminal chain.
  • 5. The cosmetic composition of claim 4, wherein said at least one fatty chain is bonded to said polymer skeleton via an ester group.
  • 6. The cosmetic composition of claim 2, wherein said at least one structuring agent comprises a plurality of fatty chains, including a terminal fatty chain.
  • 7. The cosmetic composition of claim 2, wherein said at least one fatty chain is functionalized.
  • 8. The cosmetic composition of claim 1, wherein said polymer skeleton is a polyamide.
  • 9. The cosmetic composition of claim 8, wherein said at least one structuring agent is chosen from polyamide polymers of formula (I):
  • 10. The cosmetic composition of claim 1, wherein said at least one swelling agent is chosen from linear and cyclic polydimethylsiloxanes.
  • 11. The cosmetic composition of claim 10, wherein said cyclic polydimethylsiloxanes are chosen from cyclomethicones.
  • 12. The cosmetic composition of claim 10, wherein said linear polydimethylsiloxanes are chosen from dimethicones.
  • 13. The cosmetic composition of claim 1, wherein said at least one swelling agent is chosen from phenylmethicones.
  • 14. The cosmetic composition of claim 1, wherein said at least one swelling agent is chosen from fluorinated silicones.
  • 15. The cosmetic composition of claim 1, wherein said silicone resin comprises a polyorganosilsesquioxane.
  • 16. The cosmetic composition of claim 1, wherein said silicone elastomer core is unfunctionalized.
  • 17. The cosmetic composition of claim 1, wherein said silicone elastomer core contains pendant functional groups.
  • 18. The cosmetic composition of claim 17, wherein said functional groups comprise fluoroalkyl groups.
  • 19. The cosmetic composition of claim 17, wherein said functional groups comprise phenyl groups.
  • 20. The cosmetic composition of claim 1, wherein said at least one structuring agent comprises a polyamide bonded to a fatty chain via an ester group, said at least one swelling agent is chosen from dimethicones, and said silicone resin comprises a polyorganosilsesquioxane.
  • 21. The cosmetic composition of claim 1, wherein said at least one liquid fatty phase is chosen from polar oils, apolar oils, and mixtures thereof.
  • 22. The cosmetic composition of claim 1, which is in the form of an emulsion.
  • 23. The cosmetic composition of claim 22, further comprising an aqueous phase.
  • 24. The cosmetic composition of claim 22, which is anhydrous.
  • 25. The cosmetic composition of claim 1, further comprising at least one film-forming agent.
  • 26. The cosmetic composition of claim 1, further comprising at least one wax.
  • 27. The cosmetic composition of claim 1, further comprising at least one sunscreen agent.
  • 28. The cosmetic composition of claim 1, further comprising at least one emulsifier.
  • 29. The cosmetic composition of claim 1, further comprising at least one plasticizer.
  • 30. The cosmetic composition of claim 1, further comprising at least one additive.
  • 31. The cosmetic composition of claim 30, wherein the at least one additive is at least one pigment.
  • 32. The cosmetic composition of claim 31, wherein said at least one pigment is treated.
  • 33. The cosmetic composition of claim 31, wherein said at least one pigment is treated with an amino acid.
  • 34. The cosmetic composition of claim 1, which is in the form of a solid, a paste, a gel or a cream.
  • 35. The cosmetic composition of claim 1, which is in a molded form.
  • 36. The cosmetic composition of claim 1, which is in the form of a stick or dish.
  • 37. The cosmetic composition of claim 1, which is in the form of a powder.
  • 38. A method for care, make-up or treatment of a keratin material, comprising applying to the keratin material a cosmetic composition comprising an anhydrous emulsion comprising at least one liquid fatty phase comprising: at least one structuring agent comprising a polymer skeleton having a hydrocarbon-based repeating unit comprising at least one hetero atom; a silicone elastomer powder comprising a silicone elastomer core coated with a silicone resin; and at least one swelling agent for the powder.
  • 39. The method of claim 38, wherein the keratin material comprises lips.
  • 40. The method of claim 38, wherein the keratin material comprises skin.
  • 41. The method of claim 38, wherein the keratin material comprises keratinous fibers.
  • 42. The method of claim 38, wherein the at least one structuring agent is chosen from a polyamide bonded to a fatty chain via an ester group, the at least one swelling agent is chosen from dimethicones, and the silicone resin comprises a polyorganosilsesquioxane.
  • 43. The cosmetic composition of claim 1, wherein the at least one structuring agent is chosen from ethylenediamine/stearyl dimer dilinoleate copolymer.
  • 44. The method of claim 38, wherein the at least one structuring agent is chosen from ethylenediamine/stearyl dimer dilinoleate copolymer.
  • 45. A cosmetic composition comprising: at least one liquid fatty phase comprising at least one structuring agent comprising a polymer skeleton having a hydrocarbon-based repeating unit comprising at least one hetero atom; a silicone elastomer powder comprising a silicone elastomer core coated with a silicone resin; and at least one swelling agent for said powder; wherein said at least one structuring agent is chosen from polyamide polymers of formula (I):
  • 46. The cosmetic composition of claim 45, wherein said at least one swelling agent is chosen from linear and cyclic polydimethylsiloxanes.
  • 47. The cosmetic composition of claim 46, wherein said cyclic polydimethylsiloxanes are chosen from cyclomethicones.
  • 48. The cosmetic composition of claim 46, wherein said linear polydimethylsiloxanes are chosen from dimethicones.
  • 49. The cosmetic composition of claim 45, wherein said at least one swelling agent is chosen from phenylmethicones.
  • 50. The cosmetic composition of claim 45, wherein said at least one swelling agent is chosen from fluorinated silicones.
  • 51. The cosmetic composition of claim 45, wherein said silicone resin comprises a polyorganosilsesquioxane.
  • 52. The cosmetic composition of claim 45, wherein said silicone elastomer core is unfunctionalized.
  • 53. The cosmetic composition of claim 45, wherein said silicone elastomer core contains pendant functional groups.
  • 54. The cosmetic composition of claim 45, wherein said functional groups comprise fluoroalkyl groups.
  • 55. The cosmetic composition of claim 53, wherein said functional groups comprise phenyl groups.
  • 56. The cosmetic composition of claim 55, wherein said at least one structuring agent comprises a polyamide bonded to a fatty chain via an ester group, said at least one swelling agent is chosen from dimethicones, and said silicone resin comprises a polyorganosilsesquioxane.
  • 57. The cosmetic composition of claim 45, wherein said at least one liquid fatty phase is chosen from polar oils, apolar oils, and mixtures thereof.
  • 58. The cosmetic composition of claim 45, which is in the form of an emulsion.
  • 59. The cosmetic composition of claim 58, further comprising an aqueous phase.
  • 60. The cosmetic composition of claim 58, which is anhydrous.
  • 61. The cosmetic composition of claim 45, further comprising at least one film-forming agent.
  • 62. The cosmetic composition of claim 45, further comprising at least one wax.
  • 63. The cosmetic composition of claim 45, further comprising at least one sunscreen agent.
  • 64. The cosmetic composition of claim 45, further comprising at least one emulsifier.
  • 65. The cosmetic composition of claim 45, further comprising at least one plasticizer.
  • 66. The cosmetic composition of claim 45, further comprising at least one additive.
  • 67. The cosmetic composition of claim 66, wherein the at least one additive is at least one pigment.
  • 68. The cosmetic composition of claim 67, wherein said at least one pigment is treated.
  • 69. The cosmetic composition of claim 67, wherein said at least one pigment is treated with an amino acid.
  • 70. The cosmetic composition of claim 45, which is in the form of a solid, a paste, a gel or a cream.
  • 71. The cosmetic composition of claim 45, which is in a molded form.
  • 72. The cosmetic composition of claim 45, which is in the form of a stick or dish.
  • 73. The cosmetic composition of claim 45, which is in the form of a powder.
  • 74. A method for care, make-up or treatment of a keratin material, comprising applying to the keratin material a cosmetic composition comprising an anhydrous emulsion comprising: at least one liquid fatty phase comprising at least one structuring agent comprising a polymer skeleton having a hydrocarbon-based repeating unit comprising at least one hetero atom; a silicone elastomer powder comprising a silicone elastomer core coated with a silicone resin; and at least one swelling agent for the powder; wherein said at least one structuring agent is chosen from polyamide polymers of formula (I):
  • 75. The method of claim 74, wherein the keratin material comprises lips.
  • 76. The method of claim 74, wherein the keratin material comprises skin.
  • 77. The method of claim 74, wherein the keratin material comprises keratinous fibers.
  • 78. The method of claim 74, wherein the at least one structuring agent is chosen from a polyamide bonded to a fatty chain via an ester group, the at least one swelling agent is chosen from dimethicones, and the silicone resin comprises a polyorganosilsesquioxane.
  • 79. The cosmetic composition of claim 53, wherein the at least one structuring agent is chosen from ethylenediamine/stearyl dimer dilinoleate copolymer.
RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 10/618,315, filed Jul. 11, 2003, now abandoned, which is incorporated by reference.

US Referenced Citations (332)
Number Name Date Kind
2379413 Bradley Jul 1945 A
2450940 Cowan et al. Oct 1948 A
2463264 Graenacher Mar 1949 A
2662068 Floyd Dec 1953 A
2663649 Winkler Dec 1953 A
2890097 Coe Jun 1959 A
2962461 Toussaint et al. Nov 1960 A
3086914 Soloway Apr 1963 A
3141787 Goetze et al. Jul 1964 A
3148125 Strianse et al. Sep 1964 A
3156572 Carlick et al. Nov 1964 A
3157681 Fischer Nov 1964 A
3255082 Barton Jun 1966 A
3324041 Sommer et al. Jun 1967 A
3341465 Kaufman et al. Sep 1967 A
3412115 Floyd et al. Nov 1968 A
3615289 Felton Oct 1971 A
3645705 Miller et al. Feb 1972 A
3778394 Lovald et al. Dec 1973 A
3819342 Gunderman et al. Jun 1974 A
3857960 Mackles Dec 1974 A
3926655 Miles Dec 1975 A
3937811 Papantoniou et al. Feb 1976 A
3969087 Saito et al. Jul 1976 A
4049792 Elsnau Sep 1977 A
4051159 Tsoucalas et al. Sep 1977 A
4062819 Mains et al. Dec 1977 A
RE29871 Papantoniou et al. Dec 1978 E
4128436 O'Hara et al. Dec 1978 A
4137306 Rubino et al. Jan 1979 A
4148875 Barnett et al. Apr 1979 A
4150002 Drawert et al. Apr 1979 A
4247411 Vanlerberghe et al. Jan 1981 A
4275054 Sebag et al. Jun 1981 A
4275055 Nachtigal et al. Jun 1981 A
4278658 Hooper et al. Jul 1981 A
4279658 Harvey et al. Jul 1981 A
4337298 Karim et al. Jun 1982 A
4341671 Bolze et al. Jul 1982 A
4367390 Balleys et al. Jan 1983 A
4376194 Tanaka et al. Mar 1983 A
4387090 Bolich, Jr. Jun 1983 A
4438240 Tanaka et al. Mar 1984 A
4466936 Schapel Aug 1984 A
4536405 Nara et al. Aug 1985 A
4552693 Hussain et al. Nov 1985 A
4571267 Drawert et al. Feb 1986 A
4620492 Vogg et al. Nov 1986 A
4655836 Drawert et al. Apr 1987 A
4663428 Okitu et al. May 1987 A
4699779 Palinczar Oct 1987 A
4699924 Durrant et al. Oct 1987 A
4712571 Remz et al. Dec 1987 A
4724137 Hoppe et al. Feb 1988 A
4769285 Rasmussen Sep 1988 A
4806338 Smith Feb 1989 A
4806345 Bhattacharyya Feb 1989 A
4820765 Whyzmuzis Apr 1989 A
4822601 Goode et al. Apr 1989 A
4871536 Arraudeau et al. Oct 1989 A
4885709 Edgar et al. Dec 1989 A
4937069 Shin Jun 1990 A
4952245 Iwano et al. Aug 1990 A
5034219 Deshpande et al. Jul 1991 A
5061289 Clausen et al. Oct 1991 A
5069897 Orr Dec 1991 A
5073364 Giezendanner et al. Dec 1991 A
5075103 Halloran et al. Dec 1991 A
5085859 Halloran et al. Feb 1992 A
5102656 Kasat Apr 1992 A
5126136 Merat et al. Jun 1992 A
5166355 Leistner et al. Nov 1992 A
5186318 Oestreich et al. Feb 1993 A
5194260 Grollier et al. Mar 1993 A
5196260 Dirschl et al. Mar 1993 A
5223559 Arraudeau et al. Jun 1993 A
5237071 Leistner et al. Aug 1993 A
5252323 Richard et al. Oct 1993 A
5268029 Demangeon et al. Dec 1993 A
5272241 Lucarelli et al. Dec 1993 A
5290555 Guthauser et al. Mar 1994 A
5302379 Sojka Apr 1994 A
5302398 Egidio et al. Apr 1994 A
5342894 Robeson et al. Aug 1994 A
5356616 Sojka Oct 1994 A
5362482 Yoneyama et al. Nov 1994 A
5372852 Titterington et al. Dec 1994 A
5389363 Snyder et al. Feb 1995 A
5436006 Hirose et al. Jul 1995 A
5472686 Tsubaki et al. Dec 1995 A
5486431 Tuttle et al. Jan 1996 A
5489431 Ascione et al. Feb 1996 A
5500209 Ross et al. Mar 1996 A
5505937 Castrogiovanni et al. Apr 1996 A
5510452 Santhanam Apr 1996 A
5534247 Franjac et al. Jul 1996 A
5536871 Santhanam Jul 1996 A
5538718 Aul et al. Jul 1996 A
5538793 Inokuchi et al. Jul 1996 A
5540853 Trinh et al. Jul 1996 A
5585091 Pelzer et al. Dec 1996 A
5603925 Ross et al. Feb 1997 A
5605651 Balzer Feb 1997 A
5610199 Cohen et al. Mar 1997 A
5612043 Deprez et al. Mar 1997 A
5616331 Allard et al. Apr 1997 A
5618523 Zysman et al. Apr 1997 A
5620693 Piot et al. Apr 1997 A
5645632 Pavlin Jul 1997 A
5667770 Szweda et al. Sep 1997 A
5679357 Dubief et al. Oct 1997 A
5683817 Kenmochi Nov 1997 A
5695747 Forestier et al. Dec 1997 A
5702519 Nitta et al. Dec 1997 A
5708631 Takenaka et al. Jan 1998 A
5719255 Heucher et al. Feb 1998 A
5733537 Halloran et al. Mar 1998 A
5747625 Furukawa et al. May 1998 A
5750125 Lahanas et al. May 1998 A
5750127 Rokitowski May 1998 A
5750489 Garcia et al. May 1998 A
5769902 Samain Jun 1998 A
5780517 Cohen et al. Jul 1998 A
5783657 Pavlin et al. Jul 1998 A
5795565 Eteve et al. Aug 1998 A
5800816 Brieva et al. Sep 1998 A
5807968 Heinrich et al. Sep 1998 A
5825543 Ouderkirk et al. Oct 1998 A
5830444 Miguel Nov 1998 A
5830447 Hutchins et al. Nov 1998 A
5830483 Seidel et al. Nov 1998 A
5837223 Barone et al. Nov 1998 A
5849275 Calello et al. Dec 1998 A
5849278 Piot et al. Dec 1998 A
5849333 Nordhauser et al. Dec 1998 A
5849909 Richard et al. Dec 1998 A
5851517 Mougin et al. Dec 1998 A
5857903 Ramspeck et al. Jan 1999 A
5858338 Piot et al. Jan 1999 A
5866149 Piot et al. Feb 1999 A
5871758 Nagy et al. Feb 1999 A
5871764 Diaz et al. Feb 1999 A
5874069 Mendolia et al. Feb 1999 A
5882363 Spaulding et al. Mar 1999 A
5891424 Bretzler et al. Apr 1999 A
5897869 Roulier et al. Apr 1999 A
5902592 Bara et al. May 1999 A
5908631 Arnaud et al. Jun 1999 A
5911974 Brieva et al. Jun 1999 A
5919441 Mendolia et al. Jul 1999 A
5925337 Arraudeau et al. Jul 1999 A
5928660 Kobayashi et al. Jul 1999 A
5945095 Mougin et al. Aug 1999 A
5945112 Flynn et al. Aug 1999 A
5955060 Huglin et al. Sep 1999 A
5959009 Konik et al. Sep 1999 A
5961998 Arnaud et al. Oct 1999 A
5962452 Haase et al. Oct 1999 A
5965112 Brieva et al. Oct 1999 A
5972095 Graves et al. Oct 1999 A
5972354 de la Poterie et al. Oct 1999 A
5972359 Sine et al. Oct 1999 A
5976512 Huber Nov 1999 A
5976514 Guskey et al. Nov 1999 A
5981680 Petroff et al. Nov 1999 A
5985298 Brieva et al. Nov 1999 A
5993787 Sun et al. Nov 1999 A
5998570 Pavlin et al. Dec 1999 A
6001980 Borzo et al. Dec 1999 A
6004567 Marchi-Lemann et al. Dec 1999 A
6007796 Menzel et al. Dec 1999 A
6007799 Lee et al. Dec 1999 A
6010541 de la Mettrie et al. Jan 2000 A
6019962 Rabe et al. Feb 2000 A
6036947 Barone et al. Mar 2000 A
6042815 Kellner et al. Mar 2000 A
6045782 Krog et al. Apr 2000 A
6045823 Vollhardt et al. Apr 2000 A
6051216 Barr et al. Apr 2000 A
6054517 Spaulding et al. Apr 2000 A
6060072 Konik et al. May 2000 A
6063398 Gueret May 2000 A
6066328 Ribier et al. May 2000 A
6074654 Drechsler et al. Jun 2000 A
6093385 Habeck et al. Jul 2000 A
6103249 Roulier et al. Aug 2000 A
6103250 Brieva et al. Aug 2000 A
6106820 Morrissey et al. Aug 2000 A
6111055 Berger et al. Aug 2000 A
6126929 Mougin Oct 2000 A
6132745 Marchi-Lemann et al. Oct 2000 A
6156325 Farer et al. Dec 2000 A
6156804 Chevalier et al. Dec 2000 A
6159455 Habeck et al. Dec 2000 A
6165454 Patel et al. Dec 2000 A
6165971 Oppenlander et al. Dec 2000 A
6171347 Kunz Jan 2001 B1
6177523 Reich et al. Jan 2001 B1
6180117 Berthiaume et al. Jan 2001 B1
6180123 Mondet Jan 2001 B1
6190673 Guskey et al. Feb 2001 B1
6197100 Melbouci Mar 2001 B1
6203780 Arnaud et al. Mar 2001 B1
6203807 Lemann Mar 2001 B1
6214326 Dupuis Apr 2001 B1
6214329 Brieva et al. Apr 2001 B1
6221389 Cannell et al. Apr 2001 B1
6224851 Bara May 2001 B1
6242509 Berger et al. Jun 2001 B1
6251375 Bara Jun 2001 B1
6251409 Hegyi et al. Jun 2001 B1
6254876 de la Poterie et al. Jul 2001 B1
6254877 de la Poterie et al. Jul 2001 B1
6264933 Bodelin et al. Jul 2001 B1
6268466 MacQueen et al. Jul 2001 B1
6280846 Darby et al. Aug 2001 B1
6287552 Tournilhac et al. Sep 2001 B1
6299979 Neubauer et al. Oct 2001 B1
6325994 Collin et al. Dec 2001 B1
6342239 Tachibana et al. Jan 2002 B1
6348563 Fukuda et al. Feb 2002 B1
6361764 Richard et al. Mar 2002 B2
6372235 Livoreil et al. Apr 2002 B1
6376078 Inokuchi Apr 2002 B1
6383502 Dunshee et al. May 2002 B1
6387498 Coulter et al. May 2002 B1
6399080 Bara Jun 2002 B1
6399081 Nakanishi et al. Jun 2002 B1
6402408 Ferrari Jun 2002 B1
6410003 Bhatia et al. Jun 2002 B1
6419912 Lezer Jul 2002 B1
6423306 Caes et al. Jul 2002 B2
6423324 Murphy et al. Jul 2002 B1
6428773 Oko et al. Aug 2002 B1
6432391 Bara Aug 2002 B1
6447759 Noguchi et al. Sep 2002 B2
6469131 Lawson et al. Oct 2002 B2
6475500 Vatter et al. Nov 2002 B2
6479686 Nakanishi et al. Nov 2002 B2
6482400 Collin Nov 2002 B1
6489283 Afriat Dec 2002 B1
6491931 Collin Dec 2002 B1
6497861 Wang et al. Dec 2002 B1
6503521 Atis et al. Jan 2003 B1
6503522 Lawson et al. Jan 2003 B2
6506716 Delplancke et al. Jan 2003 B1
6524598 Sunkel et al. Feb 2003 B2
6545174 Habeck et al. Apr 2003 B2
6552160 Pavlin Apr 2003 B2
6607734 Afriat Aug 2003 B1
6649173 Arnaud et al. Nov 2003 B1
6656487 Afriat et al. Dec 2003 B2
6682748 De La Poterie et al. Jan 2004 B1
6689345 Jager Lezer Feb 2004 B2
6716420 Feng et al. Apr 2004 B2
6726917 Kanji et al. Apr 2004 B2
6761881 Bara Jul 2004 B2
6830610 Bruchert et al. Dec 2004 B1
6835399 Collin Dec 2004 B2
6852326 Breton Feb 2005 B2
6869594 Ferrari Mar 2005 B2
6875245 Pavlin Apr 2005 B2
6881400 Collin Apr 2005 B2
6960339 Ferrari Nov 2005 B1
6979469 Ferrari et al. Dec 2005 B2
7008619 Kanji Mar 2006 B2
7008629 Kanji Mar 2006 B2
7011523 Allred et al. Mar 2006 B2
7011823 Ferrari et al. Mar 2006 B2
7023552 Simon et al. Apr 2006 B2
7025953 Blin et al. Apr 2006 B2
7052681 Ferrari May 2006 B2
7144582 Ferrari et al. Dec 2006 B1
7276547 Pinzon et al. Oct 2007 B2
7314612 Ferrari Jan 2008 B2
7351418 Collin Apr 2008 B2
7410636 Collin Aug 2008 B2
20010014312 Nakanishi et al. Aug 2001 A1
20010014313 Roulier et al. Aug 2001 A1
20010028887 Douin et al. Oct 2001 A1
20010031280 Ferrari et al. Oct 2001 A1
20010033846 Roulier et al. Oct 2001 A1
20020010179 Richard et al. Jan 2002 A1
20020044918 Bara Apr 2002 A1
20020058053 Nakanishi et al. May 2002 A1
20020081323 Nakanishi et al. Jun 2002 A1
20020102225 Hess et al. Aug 2002 A1
20020107314 Pinzon et al. Aug 2002 A1
20020111330 Pinzon et al. Aug 2002 A1
20020114771 Nakanishi Aug 2002 A1
20020114773 Kanji et al. Aug 2002 A1
20020119171 Gruning et al. Aug 2002 A1
20020120036 Pinzon et al. Aug 2002 A1
20020122781 Pinzon et al. Sep 2002 A1
20020131947 Nakanishi Sep 2002 A1
20020141958 Maio et al. Oct 2002 A1
20020150602 Livoreil et al. Oct 2002 A1
20020159964 Nakanishi et al. Oct 2002 A1
20020168335 Collin Nov 2002 A1
20020172696 Ferrari Nov 2002 A1
20020189030 Collin Dec 2002 A1
20020192168 Blin et al. Dec 2002 A1
20030012764 Collin Jan 2003 A1
20030026772 Jager-Lezer et al. Feb 2003 A1
20030044367 Simon et al. Mar 2003 A1
20030086883 Feng et al. May 2003 A1
20030129211 Livoreil et al. Jul 2003 A9
20030147837 Cavazzuti et al. Aug 2003 A1
20030161807 Lemann Aug 2003 A1
20030161848 Ferrari et al. Aug 2003 A1
20030185780 Ferrari et al. Oct 2003 A1
20030198613 Feng et al. Oct 2003 A1
20040013625 Kanji Jan 2004 A1
20040028636 Collin Feb 2004 A1
20040042980 Kanji et al. Mar 2004 A1
20040086478 Ferrari May 2004 A1
20040091510 Feng et al. May 2004 A1
20040126401 Collin Jul 2004 A1
20040166076 Ferrari et al. Aug 2004 A1
20040166133 Cavazzuti et al. Aug 2004 A1
20040223987 Ferrari Nov 2004 A1
20040247549 Lu et al. Dec 2004 A1
20050008595 Duffournier et al. Jan 2005 A1
20050008598 Lu et al. Jan 2005 A1
20050008599 Lu et al. Jan 2005 A1
20050065261 Darlington, Jr. et al. Mar 2005 A1
20050089491 Collin Apr 2005 A1
20050089505 Collin Apr 2005 A1
20050089541 Lacoutiere Apr 2005 A1
20050118122 Simon et al. Jun 2005 A1
20050191327 Yu et al. Sep 2005 A1
20060257336 Ferrari et al. Nov 2006 A1
Foreign Referenced Citations (253)
Number Date Country
2003346 May 1990 CA
1319306 Jun 1993 CA
38 39 136 May 1990 DE
38 43 892 Jun 1990 DE
42 08 297 Sep 1993 DE
42 34 886 Apr 1994 DE
195 43 988 May 1997 DE
197 07 309 Aug 1998 DE
197 26 184 Dec 1998 DE
197 50 246 May 1999 DE
197 55 649 Jun 1999 DE
198 55 649 Jun 2000 DE
199 51 010 Apr 2001 DE
0 169 997 Feb 1986 EP
0 295 886 Dec 1988 EP
0 370 470 May 1990 EP
0 374 332 Jun 1990 EP
0 412 710 Feb 1991 EP
0 444 633 Sep 1991 EP
0 462 709 Dec 1991 EP
0 507 692 Oct 1992 EP
0 517 104 Dec 1992 EP
0 518 772 Dec 1992 EP
0 518 773 Dec 1992 EP
0 557 196 Aug 1993 EP
0 570 838 Nov 1993 EP
0 600 445 Jun 1994 EP
0 602 905 Jun 1994 EP
0 609 132 Aug 1994 EP
0 623 670 Nov 1994 EP
0 628 582 Dec 1994 EP
0 669 323 Aug 1995 EP
0 673 642 Sep 1995 EP
0 708 114 Apr 1996 EP
0 749 746 Dec 1996 EP
0 749 747 Dec 1996 EP
0 749 748 Dec 1996 EP
0 775 483 May 1997 EP
0 775 698 May 1997 EP
0 790 243 Aug 1997 EP
0 796 851 Sep 1997 EP
0 797 976 Oct 1997 EP
0 820 764 Jan 1998 EP
0 847 752 Jun 1998 EP
0 863 145 Sep 1998 EP
0 877 063 Nov 1998 EP
0 878 469 Nov 1998 EP
0 879 592 Nov 1998 EP
0 887 073 Dec 1998 EP
0 893 119 Jan 1999 EP
0 923 928 Jun 1999 EP
0 925 780 Jun 1999 EP
0 928 608 Jul 1999 EP
0 930 058 Jul 1999 EP
0 930 060 Jul 1999 EP
0 933 376 Aug 1999 EP
0 943 340 Sep 1999 EP
0 958 804 Nov 1999 EP
0 958 805 Nov 1999 EP
0 958 811 Nov 1999 EP
0 959 066 Nov 1999 EP
0 959 091 Nov 1999 EP
0 967 200 Dec 1999 EP
0 976 390 Feb 2000 EP
0 984 025 Mar 2000 EP
1 002 514 May 2000 EP
1 018 332 Jul 2000 EP
1 031 342 Aug 2000 EP
1 044 676 Oct 2000 EP
1 048 282 Nov 2000 EP
1 053 742 Nov 2000 EP
1 062 944 Dec 2000 EP
1 062 959 Dec 2000 EP
1 064 919 Jan 2001 EP
1 064 920 Jan 2001 EP
1 066 814 Jan 2001 EP
1 068 854 Jan 2001 EP
1 068 855 Jan 2001 EP
1 068 855 Jan 2001 EP
1 068 856 Jan 2001 EP
1 068 856 Jan 2001 EP
1 086 945 Mar 2001 EP
1 090 627 Apr 2001 EP
1 095 959 May 2001 EP
1 114 636 Jul 2001 EP
1 114 636 Jul 2001 EP
1 213 011 Jun 2002 EP
1 213 316 Jun 2002 EP
1 343 459 Jan 2007 EP
1 359 886 Mar 2007 EP
1 529 329 May 1968 FR
2 232 303 Jan 1975 FR
2 315 991 Jan 1977 FR
2 416 008 Aug 1979 FR
2 528 699 Jun 1983 FR
2 674 126 Sep 1992 FR
2 785 179 May 2000 FR
2 791 558 Oct 2000 FR
2 796 270 Jan 2001 FR
2 796 271 Jan 2001 FR
2 796 272 Jan 2001 FR
2 796 273 Jan 2001 FR
2 796 276 Jan 2001 FR
2 796 550 Jan 2001 FR
2 802 806 Jun 2001 FR
2 804 014 Jul 2001 FR
2 804 017 Jul 2001 FR
2 804 018 Jul 2001 FR
2 804 286 Aug 2001 FR
2 810 562 Dec 2001 FR
2 811 225 Jan 2002 FR
2 811 552 Jan 2002 FR
2 816 506 May 2002 FR
2 817 739 Jun 2002 FR
2 817 740 Jun 2002 FR
2 817 742 Jun 2002 FR
2 817 743 Jun 2002 FR
2 819 399 Jul 2002 FR
2 819 400 Jul 2002 FR
2 819 402 Jul 2002 FR
1 117 129 Jun 1968 GB
1 194 901 Jun 1970 GB
1 194 902 Jun 1970 GB
1 220 069 Jan 1971 GB
1 273 004 May 1972 GB
1 444 204 Jul 1976 GB
1 539 625 Jan 1979 GB
2 014 852 Sep 1979 GB
2 021 411 Dec 1979 GB
2 147 305 May 1985 GB
2 196 978 May 1988 GB
45-41318 Dec 1970 JP
48-38861 Jun 1973 JP
49-75740 Jul 1974 JP
5058242 May 1975 JP
52-007067 Jan 1977 JP
53043577 Apr 1978 JP
56123909 Sep 1981 JP
56166276 Dec 1981 JP
61065809 Apr 1986 JP
62061911 Mar 1987 JP
64-90110 Apr 1989 JP
2127568 May 1990 JP
02200612 Aug 1990 JP
02207014 Aug 1990 JP
2216279 Aug 1990 JP
3014683 Jan 1991 JP
04346909 Dec 1992 JP
5-17710 Jan 1993 JP
7179795 Jul 1995 JP
7-258460 Oct 1995 JP
7267827 Oct 1995 JP
8225316 Sep 1996 JP
920631 Jan 1997 JP
9-188830 Jul 1997 JP
09255560 Sep 1997 JP
09263516 Oct 1997 JP
9295922 Nov 1997 JP
10001444 Jan 1998 JP
10007527 Jan 1998 JP
10120903 May 1998 JP
10-158450 Jun 1998 JP
10-158451 Jun 1998 JP
10-175816 Jun 1998 JP
10-506643 Jun 1998 JP
10212213 Aug 1998 JP
10259344 Sep 1998 JP
11106216 Apr 1999 JP
11335228 Dec 1999 JP
11335242 Dec 1999 JP
11335254 Dec 1999 JP
2000038314 Feb 2000 JP
2000038316 Feb 2000 JP
2000038317 Feb 2000 JP
2000038321 Feb 2000 JP
2000503305 Mar 2000 JP
2000086427 Mar 2000 JP
2000086429 Mar 2000 JP
2000086438 Mar 2000 JP
20000154112 Jun 2000 JP
2001-011340 Jan 2001 JP
2001-502742 Feb 2001 JP
2001-081320 Mar 2001 JP
2001-206821 Jul 2001 JP
2002539220 Nov 2002 JP
2002-539220 Nov 2002 JP
2004-517906 Jun 2004 JP
WO 8604916 Aug 1986 WO
WO 8703783 Jul 1987 WO
WO 9112793 Sep 1991 WO
WO 9304665 Mar 1993 WO
WO 9321763 Nov 1993 WO
WO 9323008 Nov 1993 WO
WO 9418261 Aug 1994 WO
WO 9421233 Sep 1994 WO
WO 9515741 Jun 1995 WO
WO 9524887 Sep 1995 WO
WO 9533000 Dec 1995 WO
WO 9615761 May 1996 WO
WO 9638126 May 1996 WO
WO 9640044 Dec 1996 WO
WO 9717057 May 1997 WO
WO 9736573 Oct 1997 WO
WO 9817243 Apr 1998 WO
WO 9817705 Apr 1998 WO
WO 9822078 May 1998 WO
WO 9825922 Jun 1998 WO
WO 9827162 Jun 1998 WO
WO 9842298 Oct 1998 WO
WO 9847470 Oct 1998 WO
WO 9852534 Nov 1998 WO
WO 9858623 Dec 1998 WO
WO 9924002 May 1999 WO
WO 9936477 Jul 1999 WO
WO 9943297 Sep 1999 WO
WO 9966888 Dec 1999 WO
WO 0006114 Feb 2000 WO
WO 0027350 May 2000 WO
WO 0040216 Jul 2000 WO
WO 0061080 Oct 2000 WO
WO 0061081 Oct 2000 WO
WO 0074519 Dec 2000 WO
WO 0151020 Jul 2001 WO
WO 0152799 Jul 2001 WO
WO 9524887 Sep 2001 WO
WO 0197758 Dec 2001 WO
WO 0197773 Dec 2001 WO
WO 0203932 Jan 2002 WO
WO 0203935 Jan 2002 WO
WO 0203950 Jan 2002 WO
WO 0203951 Jan 2002 WO
WO 0247605 Jun 2002 WO
WO 0247606 Jun 2002 WO
WO 0247608 Jun 2002 WO
WO 0247619 Jun 2002 WO
WO 0247620 Jun 2002 WO
WO 0247622 Jun 2002 WO
WO 0247627 Jun 2002 WO
WO 0247629 Jun 2002 WO
WO 0247630 Jun 2002 WO
WO 0247658 Jun 2002 WO
WO 0249583 Jun 2002 WO
WO 0249601 Jun 2002 WO
WO 02055030 Jul 2002 WO
WO 02055031 Jul 2002 WO
WO 02056845 Jul 2002 WO
WO 02056847 Jul 2002 WO
WO 02056848 Jul 2002 WO
WO 02058642 Aug 2002 WO
WO 02092047 Nov 2002 WO
WO 02092663 Nov 2002 WO
WO 02102322 Dec 2002 WO
WO 05013887 Feb 2005 WO
Related Publications (1)
Number Date Country
20050008599 A1 Jan 2005 US
Continuations (1)
Number Date Country
Parent 10618315 Jul 2003 US
Child 10746612 US