Cosmetic compositions containing at least one hetero polymer and at least one film-forming silicone resin and methods of using

Information

  • Patent Grant
  • 8080257
  • Patent Number
    8,080,257
  • Date Filed
    Tuesday, December 12, 2000
    23 years ago
  • Date Issued
    Tuesday, December 20, 2011
    12 years ago
Abstract
Compositions, in one embodiment a transfer resistant cosmetic composition, which may also be pliable and comfortable to wear upon application to a substrate. The compositions comprise, more particularly, at least one structuring polymer and at least one silicone resin. The invention, in one embodiment, relates to cosmetic, dermatological, and pharmaceutical products containing this composition.
Description

The present invention relates to a composition, in one embodiment a transfer resistant cosmetic composition, which may also be at least one of pliable and comfortable to wear upon application to a substrate. The composition comprises, more particularly, at least one structuring polymer and at least one silicone resin. The invention, in one embodiment, relates to cosmetic, dermatological, and pharmaceutical products containing this composition. As used herein, the expression “at least one” means one or more and thus includes individual components as well as mixtures/combinations.


Many cosmetic compositions, including pigmented cosmetics such as foundations, concealers, lipsticks, mascaras, and other cosmetic and sunscreen compositions, have been developed for longer wear and non-transfer properties. This is accomplished by the use of compositions that form a film after application. Such compositions generally contain volatile solvents which evaporate on contact with the skin or other keratinous tissue, leaving behind a layer comprising waxes and/or resins, pigments, fillers, and actives. However, these compositions tend to be uncomfortable for the wearer as the composition remains on the skin or other keratinous tissue as a brittle or non-flexible film. Such compositions may not be either pliable or soft, and they may not be comfortable to wear. There may also be a tendency for such compositions to flake off because of poor adherence to the skin or other keratinous tissue. Furthermore, compositions may have a tendency to be tacky, resulting in poor application and spreadability characteristics.


The need therefore still remains for improved long-wearing cosmetic compositions which transfer little or not at all, i.e., “transfer-free” or transfer resistant compositions which also possess good cosmetic properties such as pliability and comfort. For example, a composition which is transfer resistant may deposit a film onto a keratinous substance which may not transfer when the keratinous substance comes into contact with, for example, skin, a cup, paper, cigarette, or a handkerchief.


To achieve at least one of these and other advantages, the present invention, in one aspect, provides a composition comprising at least one structuring polymer comprising a polymer skeleton which comprises at least one hydrocarbon-based repeating unit comprising at least one hetero atom. The composition also comprises at least one film-forming silicone resin. The present invention also relates to a method for making such a composition.


It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only, and are not restrictive of the invention.


The invention, in one aspect, provides compositions comprising at least one structuring polymer and at least one film-forming silicone resin. In one embodiment, the at least one structuring polymer and the at least one film-forming silicone resin are present in an amount effective to provide transfer resistant properties, and may also provide at least one of the following properties: pliability, softness, and wearing comfort.


One subject of the invention is cosmetic and/or dermatological compositions which are useful for the care, make-up and/or treating of at least one keratinous material which may be of suitable hardness to allow preparation of these compositions in the form of a stick or other structured form which may be stable.


As defined herein, stability is tested by placing the composition in a controlled environment chamber for 8 weeks at 25° C. In this test, the physical condition of the sample is inspected as it is placed in the chamber. The sample is then inspected again at 24 hours, 3 days, 1 week, 2 weeks, 4 weeks and 8 weeks. At each inspection, the sample is examined for abnormalities in the composition such as bending or leaning if the composition is in stick form, phase separation, melting, or syneresis. As used herein syneresis is the appearance of droplets on the surface of a composition that are visible to the naked eye. The stability is further tested by repeating the 8 week test at 4° C., 37° C., 45° C., 50° C. and under freeze-thaw conditions. A composition is considered to lack stability if in any of these tests an abnormality that impedes functioning of the composition is observed. The skilled artisan will readily recognize an abnormality that impedes functioning of a composition based on the intended application.


Structured liquid fatty phases in cosmetic or dermatological products are known in the art. As used herein, “structured” means gelled and/or rigidified. Structured liquid fatty phases may be found in solid compositions such as deodorants, balms, lip compositions, concealer products and cast foundations.


The compositions of the invention, in one embodiment, may comprise at least one liquid fatty phase. As used herein, “liquid fatty phase” means a fatty phase which is liquid at room temperature (25° C.) and at atmospheric pressure (760 mmHg) and which is composed of at least one fatty substance, such as an oil, which is liquid at room temperature and not soluble in water. If the at least one liquid fatty phase comprises two or more fatty substances, they should be mutually compatible.


Structured liquid fatty phases may make it possible to control the exudation of the liquid fatty phase from the solid compositions of which they are components including exudation in a wet or hot atmosphere or environment. Structuring of the liquid fatty phase may also limit bleeding of this phase outside of the intended area of application and especially into wrinkles and fine lines after it has been deposited, for example, on keratinous material. As used herein, “keratinous material” is meant to comprise hair, lips, skin, scalp and superficial body growths such as eyelashes, eyebrows and nails.


The invention applies not only to make-up products for at least one keratinous material such as lip compositions, lip pencils, foundations including foundations which may be cast in the form of a stick or a dish, concealer products, temporary tattoo products, eyeliners, mascara bars but also to body hygiene products such as deodorant sticks, and to care products and products for treating at least one keratinous material such as sunscreen and after-sun products which may be in stick form. The present invention may be in the form of mascara product including mascara bars, an eyeliner product, a foundation product, a lipstick product, a blush for cheeks or eyelids, a deodorant product, a make-up product for the body, a make-up-removing product, an eyeshadow product, a face powder product, a concealer product, a treating shampoo product, a hair conditioning product, a sun screen, colorant for the skin or hair, or skin care formula such as, for example, anti-pimple or shaving cut formulas. As defined herein, a deodorant product is a body hygiene product and does not relate to care, make-up, or treatment of keratin materials, including keratin fibers, skin, or lips.


For example, the composition of the present invention may be in a form chosen from a paste, a solid, a gel, and a cream. It may be an emulsion, such as an oil-in-water or water-in-oil emulsion, a multiple emulsion, such as an oil-in-water-in-oil emulsion or a water-in-oil-in-water emulsion, or a solid, rigid or supple gel, including anhydrous gels. In one embodiment, the composition of the invention is anhydrous. The composition of the invention may, for example, comprise an external or continuous fatty phase. In another embodiment, the composition of the invention is transparent or clear, including for example, a composition without pigments. The composition can also be in a form chosen from a translucent anhydrous gel and a transparent anhydrous gel. The composition can also be a molded composition or cast as a stick or a dish. The composition in one embodiment is a solid such as a molded stick or a poured stick.


Structuring Polymer


In one embodiment, the at least one structuring polymer in the composition of the invention is a solid that is not deformable at room temperature (25° C.) and atmospheric pressure (760 mmHg). In a further embodiment, the at least one structuring polymer is capable of structuring the composition without opacifying it. As defined above, the at least one structuring polymer of the present invention comprises a polymer skeleton comprising at least one hydrocarbon-based repeating unit comprising at least one hetero atom. In one embodiment, the at least one structuring polymer further comprises at least one terminal fatty chain chosen from alkyl and alkenyl chains, such as of at least 4 atoms, and further such as comprising 8 to 120 carbon atoms, bonded to the polymer skeleton via at least one linking group. The terminal fatty chain may, for example, be functionalized. The at least one structuring polymer may also further comprise at least one pendant fatty chain chosen from alkyl and alkenyl chains, such as of at least 4 atoms, and further such as comprising 8 to 120 carbon atoms, bonded to any carbon or hetero atom of the polymer skeleton via at least one linking group. The pendant fatty chain may, for example, be functionalized. The at least one structuring polymer may comprise both at least one pendant fatty chain and at least one terminal fatty chain as defined above, and one or both types of chains can be functionalized.


In one embodiment, the structuring polymer comprises at least two hydrocarbon-based repeating units. As a further example, the structuring polymer comprises at least three hydrocarbon-based repeating units and as an even further example, the at least three repeating units are identical.


As used herein, “functionalized” means comprising at least one functional group. Non-limiting examples of functional groups include hydroxyl groups, ether groups, oxyalkylene groups, polyoxyalkylene groups, carboxylic acid groups, amine groups, amide groups, halogen containing groups, including fluoro and perfluoro groups, halogen atoms, ester groups, siloxane groups and polysiloxane groups.


For purposes of the invention, the expression “functionalized chain” means, for example, an alkyl chain comprising at least one functional (reactive) group chosen, for example, from those recited above. For example, in one embodiment, the hydrogen atoms of at least one alkyl chain may be substituted at least partially with fluorine atoms.


According to the invention, these chains may be linked directly to the polymer skeleton or via an ester function or a perfluoro group.


For the purposes of the invention, the term “polymer” means a compound containing at least 2 repeating units, such as, for example, a compound containing at least 3 repeating units, which may be identical.


As used herein, the expression “hydrocarbon-based repeating unit” includes a repeating unit comprising from 2 to 80 carbon atoms, such as, for example, from 2 to 60 carbon atoms. The at least one hydrocarbon-based repeating unit may also comprise oxygen atoms. The hydrocarbon-based repeating unit may be chosen from saturated and unsaturated hydrocarbon-based repeating units which in turn may be chosen from linear hydrocarbon-based repeating units, branched hydrocarbon-based repeating units and cyclic hydrocarbon-based repeating units. The at least one hydrocarbon-based repeating unit may comprise, for example, at least one hetero atom that is part of the polymer skeleton, i.e., not pendant. The at least one hetero atom may be chosen, for example, from nitrogen, sulphur, and phosphorus. For example, the at least one hetero atom may be a nitrogen atom, such as a non-pendant nitrogen atom. In another embodiment, the at least one hydrocarbon-based repeating unit may comprise at least one hetero atom with the proviso that the at least one hetero atom is not nitrogen. In another embodiment, the at least one hetero atom is combined with at least one atom chosen from oxygen and carbon to form a hetero atom group. In one embodiment, the hetero atom group comprises a carbonyl group.


The at least one repeating unit comprising at least one hetero atom may be chosen, for example, from amide groups, carbamate groups, and urea groups. In one embodiment, the at least one repeating unit comprises amide groups forming a polyamide skeleton. In another embodiment, the at least one repeating unit comprises carbamate groups and/or urea groups forming a polyurethane skeleton, a polyurea skeleton and/or a polyurethane-polyurea skeleton. The pendant chains, for example, can be linked directly to at least one of the hetero atoms of the polymer skeleton. In yet another embodiment, the at least one hydrocarbon-based repeating unit may comprise at least one hetero atom group with the proviso that the at least one hetero atom group is not an amide group. In one embodiment, the polymer skeleton comprises at least one repeating unit chosen from silicone units and oxyalkylene units, the at least one repeating unit being between the hydrocarbon-based repeating units.


In one embodiment, the compositions of the invention comprise at least one structuring polymer with nitrogen atoms, such as amide, urea, or carbamate units, such as amide units, and at least one polar oil.


In one embodiment, in the at least one structuring polymer, the percentage of the total number of fatty chains ranges from 40% to 98% relative to the total number of repeating units and fatty chains, and as a further example, from 50% to 95%. In a further embodiment wherein the polymer skeleton is a polyamide skeleton, in the at least one structuring polymer, the percentage of the total number of fatty chains ranges from 40% to 98% relative to the total number of all amide units and fatty chains, and as a further example, from 50% to 95%.


In a further embodiment, the nature and proportion of the at least one hydrocarbon-based repeating unit comprising at least one hetero atom depends on the nature of a liquid fatty phase of the composition and is, for example, similar to the nature of the fatty phase. For example, not to be limited as to theory, the more polar the hydrocarbon-based repeating units containing a hetero atom, and in high proportion, which corresponds to the presence of several hetero atoms, the greater the affinity of the at least one structuring polymer to polar oils. Conversely, the more non-polar, or even apolar, and lesser in proportion the hydrocarbon-based repeating units containing a hetero atom, the greater the affinity of the polymer for apolar oils.


In another embodiment, the invention is drawn to a structured composition containing at least one liquid fatty phase structured with at least one structuring polymer, wherein the at least one structuring polymer is a polyamide comprising a polymer skeleton comprising at least one amide repeating unit and optionally at least one pendant fatty chain and/or at least one terminal chain that are optionally functionalized and comprise from 8 to 120 carbon atoms, bonded to at least one of the amide repeating units via at least one linking group. The liquid fatty phase further contains at least one organogellator for gelling the liquid fatty phase. The at least one liquid fatty phase, the at least one structuring polyamide and the at least one organogellator together form a physiologically acceptable medium.


When the structuring polymer has amide repeating units, the pendant fatty chains may be linked to at least one of the nitrogen atoms in the amide repeating units.


The structuring polymer, for example the polyamide polymer, may have a weight-average molecular mass of less than 100,000, such as less than 50,000. In another embodiment, the weight-average molecular mass may range from 1000 to 30,000, such as from 2000 to 20,000, further such as from 2000 to 10,000.


As discussed, the at least one structuring polymer may, for example, be chosen from polyamide polymers. A polyamide polymer may comprise, for example, a polymer skeleton which comprises at least one amide repeating unit, i.e., a polyamide skeleton. In one embodiment, the polyamide skeleton may further comprise at least one terminal fatty chain chosen from alkyl chains, for example, alkyl chains comprising at least four carbon atoms, and alkenyl chains, for example, alkenyl chains comprising at least four carbon atoms, bonded to the at least one polyamide skeleton via at least one linking group, and/or at least one pendant fatty chain chosen from alkyl chains, for example, alkyl chains comprising at least four carbon atoms, and alkenyl chains, for example, alkenyl chains comprising at least four carbon atoms, bonded to the at least one polyamide skeleton via at least one linking group. In one embodiment, the polyamide skeleton may comprise at least one terminal fatty chain chosen from fatty chains comprising 8 to 120 carbon atoms, such as, for example, 12 to 68 carbon atoms, bonded to the at least one polyamide skeleton via at least one linking group and/or at least one pendant fatty chain chosen from fatty chains comprising 8 to 120 carbon atoms, such as, for example, 12 to 68 carbon atoms, bonded to the at least one polyamide skeleton via at least one linking group, such as bonded to any carbon or nitrogen of the polyamide skeleton via the at least one linking group. In one embodiment, the at least one linking group is chosen from single bonds and urea, urethane, thiourea, thiourethane, thioether, thioester, ester, ether and amine groups. For example, the at least one linking group is chosen from ureas, esters, and amines, and as a further example, is chosen from esters and amines. The bond is, for example, an ester bond. In one embodiment, these polymers comprise a fatty chain at each end of the polymer skeleton, such as the polyamide skeleton.


In one embodiment, due to the presence of at least one chain, the polyamide polymers may be readily soluble in oils (i.e., water-immiscible liquid compounds) and thus may give macroscopically homogeneous compositions even with a high content (at least 25%) of the polyamide polymers, unlike certain polymers of the prior art that do not contain such alkyl or alkenyl chains at the end of the polyamide skeleton. As defined herein, a composition is soluble if it has a solubility of greater than 0.01 g per 100 ml of solution at 25° C.


In a further embodiment, the polyamide polymers can be chosen from polymers resulting from at least one polycondensation reaction between at least one acid chosen from dicarboxylic acids comprising at least 32 carbon atoms, such as 32 to 44 carbon atoms, and at least one amine chosen from diamines comprising at least 2 carbon atoms, such as from 2 to 36 carbon atoms, and triamines comprising at least 2 carbon atoms, such as from 2 to 36 carbon atoms. The dicarboxylic acids can, for example, be chosen from dimers of at least one fatty acid comprising at least 16 carbon atoms, such as oleic acid, linoleic acid and linolenic acid. The at least one amine can, for example, be chosen from diamines, such as ethylenediamine, hexylenediamine, hexamethylenediamine, phenylenediamine and triamines, such as ethylenetriamine.


The polyamide polymers may also be chosen from polymers comprising at least one terminal carboxylic acid group. The at least one terminal carboxylic acid group can, for example, be esterified with at least one alcohol chosen from monoalcohols comprising at least 4 carbon atoms. For example, the at least one alcohol can be chosen from monoalcohols comprising from 10 to 36 carbon atoms. In a further embodiment, the monoalcohols can comprise from 12 to 24 carbon atoms, such as from 16 to 24 carbon atoms, and for example 18 carbon atoms.


In one embodiment, the at least one polyamide polymer may be chosen from those described in U.S. Pat. No. 5,783,657, the disclosure of which is incorporated herein by reference, which are polymers of formula (I):




embedded image



in which:

    • n is an integer which represents the number of amide units such that the number of ester groups present in said at least one polyamide polymer ranges from 10% to 50% of the total number of all said ester groups and all said amide groups comprised in said at least one polyamide polymer;
    • R1, which are identical or different, are each chosen from alkyl groups comprising at least 4 carbon atoms and alkenyl groups comprising at least 4 carbon atoms. In one embodiment, the alkyl group comprises from 4 to 24 carbon atoms and the alkenyl group comprises from 4 to 24 carbon atoms;
    • R2, which are identical or different, are each chosen from C4 to C42 hydrocarbon-based groups with the proviso that at least 50% of all R2 are chosen from C30 to C42 hydrocarbon-based groups;
    • R3, which are identical or different, are each chosen from organic groups comprising atoms chosen from carbon atoms, hydrogen atoms, oxygen atoms and nitrogen atoms with the proviso that R3 comprises at least 2 carbon atoms; and
    • R4, which are identical or different, are each chosen from hydrogen atoms, C1 to C10 alkyl groups and a direct bond to at least one group chosen from R3 and another R4 such that when said at least one group is chosen from another R4, the nitrogen atom to which both R3 and R4 are bonded forms part of a heterocyclic structure defined in part by R4—N—R3, with the proviso that at least 50% of all R4 are chosen from hydrogen atoms.


In one embodiment, the at least one terminal fatty chain of formula (I) is linked to the last hetero atom, in this case nitrogen, of the polyamide skeleton. In a further embodiment, the terminal chains are functionalized. In another embodiment, the ester groups of formula (I), are linked to the terminal and/or pendant fatty chains, represent from 15% to 40% of the total number of ester and amide groups, such as, for example, from 20% to 35%.


In one embodiment, n may be an integer ranging from 1 to 5, for example, an integer ranging from 3 to 5. In the present invention, R1, which are identical or different, can, for example, each be chosen from C12 to C22 alkyl groups, such as from C16 to C22 alkyl groups.


In the present invention, R2, which are identical or different, can, for example, each be chosen from C10 to C42 alkyl groups. At least 50% of all R2, which are identical or different, can, for example, each be chosen from groups comprising from 30 to 42 carbon atoms. At least 75% of all R2, which are identical or different, can, for example, each be chosen from groups comprising from 30 to 42 carbon atoms. In the two aforementioned embodiments, the remaining R2, which are identical or different, can, for example, each be chosen from C4 to C19 groups, such as C4 to C12 groups


R3, which can be identical or different, can, for example, each be chosen from C2 to C36 hydrocarbon-based groups and polyoxyalkylene groups. In another example, R3, which can be identical or different, can each, for example, be chosen from C2 to C12 hydrocarbon-based groups. In another embodiment, R4, which can be identical or different, can each be chosen from hydrogen atoms. As used herein, hydrocarbon-based groups may be chosen from linear, cyclic and branched, and saturated and unsaturated groups. The hydrocarbon-based groups can be chosen from aliphatic and aromatic groups. In one example, the hydrocarbon-based groups are chosen from aliphatic groups. The alkyl and alkylene groups may be chosen from linear, cyclic and branched, and saturated and unsaturated groups.


In general, the pendant and terminal fatty chains may be chosen from linear, cyclic and branched, and saturated and unsaturated groups. The pendant and terminal fatty chains can be chosen from aliphatic and aromatic groups. In one example, the pendant and terminal fatty chains are chosen from aliphatic groups.


According to the invention, the structuring of the liquid fatty phase is obtained with the aid of at least one structuring polymer, such as the at least one polymer of formula (I). The at least one polyamide polymer of formula (I) may, for example, be in the form of a mixture of polymers, and this mixture may also comprise a compound of formula (I) wherein n is equal to zero, i.e., a diester.


Non-limiting examples of at least one polyamide polymer which may be used in the composition according to the present invention include the commercial products sold by Arizona Chemical under the names Uniclear 80 and Uniclear 100. These are sold, respectively, in the form of an 80% (in terms of active material) gel in a mineral oil and a 100% (in terms of active material) gel. These polymers have a softening point ranging from 88° C. to 94° C., and may be mixtures of copolymers derived from monomers of (i) C36 diacids and (ii) ethylenediamine, and have a weight-average molecular mass of about 6000. Terminal ester groups result from esterification of the remaining acid end groups with at least one alcohol chosen from cetyl alcohol and stearyl alcohol. A mixture of cetyl and stearyl alcohols is sometimes called cetylstearyl alcohol.


Other non-limiting examples of at least one polyamide polymer which may be used in the composition according to the present invention include polyamide polymers resulting from the condensation of at least one aliphatic dicarboxylic acid and at least one diamine, the carbonyl and amine groups being condensed via an amide bond. Examples of these polyamide polymers are those sold under the brand name Versamid by the companies General Mills Inc. and Henkel Corp. (Versamid 930, 744 or 1655) or by the company Olin Mathieson Chemical Corp. under the brand name Onamid, in particular Onamid S or C. These resins have a weight-average molecular mass ranging from 6000 to 9000. For further information regarding these polyamides, reference may be made to U.S. Pat. Nos. 3,645,705 and 3,148,125, the disclosures of which are hereby incorporated by reference.


Other examples of polyamides include those sold by the company Arizona Chemical under the references Uni-Rez (2658, 2931, 2970, 2621, 2613, 2624, 2665, 1554, 2623 and 2662) and the product sold under the reference Macromelt 6212 by the company Henkel. For further information regarding these polyamides, reference may be made to U.S. Pat. No. 5,500,209, the disclosure of which is hereby incorporated by reference. Such polyamides display high melt viscosity characteristics. MACROMELT 6212, for example, has a high melt viscosity at 190° C. of 30-40 poise (as measured by a Brookfield Viscometer, Model RVF #3 spindle, 20 RPM).


In a further embodiment, the at least one polyamide polymer may be chosen from polyamide resins from vegetable sources. Polyamide resins from vegetable sources may be chosen from, for example, the polyamide resins of U.S. Pat. Nos. 5,783,657 and 5,998,570, the disclosures of which are herein incorporated by reference.


In one embodiment, the at least one polyamide polymer may be present in the composition in an amount ranging, for example, from 0.5% to 80%, such as from 2% to 60%, further such as from 5% to 40%, by weight relative to the total weight of the composition. In a further embodiment the at least one polyamide polymer may be present in the composition in an amount ranging, for example, from 5% to 25% by weight relative to the total weight of the composition.


In one embodiment, the at least one structuring polymer in the composition according to the invention corresponds to the polyamide polymers of formula (I). Due to fatty chain(s), these polymers may be readily soluble in oils and thus lead to compositions that are macroscopically homogeneous even with a high content (at least 25%) of at least one structuring polymer.


The at least one structuring polymer may have a softening point greater than 50° C., such as from 65° C. to 190° C., and further such as from 70° C. to 130° C., and even further such as from 80° C. to 105° C.


Film-Forming Silicone Resin


The at least one film-forming silicone resin of the compositions may be chosen from any silicone resin that has film forming properties. In one embodiment, the at least one film-forming silicone resin is chosen from silsesquioxanes and siloxysilicates.


The use of silicone polymers or derivatives as film-forming agents in cosmetic compositions is known in the art. See, e.g., U.S. Pat. Nos. 5,965,112; 5,800,816; 5,911,974; and 5,959,009, the disclosures of which are incorporated by reference herein. Silicone resin nomenclature is known in the art as “MDTQ” nomenclature, whereby a silicone resin is described according to the various monomeric siloxane repeating units which make up the polymer. Each letter of “MDTQ” denotes a different type of unit. The symbol M denotes the monofunctional unit (CH3)3SiO1/2. The unit is considered monofunctional because the silicone atom only shares one oxygen for the formation of the chain.


The “M” unit can be represented as:




embedded image



At least one of the methyl groups can be replaced, e.g., to give a unit with formula [R(CH3)2]SiO1/2, as represented in the following structure:




embedded image



where R is other than a methyl group.


The symbol D denotes the difunctional unit (CH3)2SiO2/2 where two of the available bonds from the silicone atom are used for binding to oxygen for the formation of the polymeric chain. The “D” unit, which is the major building block of dimethicone oils, can be represented as:




embedded image


The symbol T denotes the trifunctional unit, (CH3)SiO3/2 and can be represented as




embedded image


As in the M unit, any methyl group could be replaced in D or T with a group R which is other than methyl. Finally, the symbol Q denotes a quadrifunctional unit SiO4/2 and can be represented as:




embedded image


The number of different silicones which can be manufactured is staggering. It would be clear to one skilled in the art that the properties of each of the silicones will vary depending on the type of monomer, the type of substitution, the size of the polymeric chain, and the degree of cross linking or size of the side chain. Different properties are attained depending on whether the backbone is a silicone chain with carbon-based side chains or whether the backbone is carbon-based with silicone side chains.


As described above, the at least one film-forming silicone resin may be chosen from siloxysilicates and silsesquioxanes. Any siloxysilicates or silsesquioxanes that function as a film-former are within the practice of the invention. In one embodiment, the at least one film-forming silicone resin is chosen from substituted siloxysilicates and silsesquioxanes. A substituted siloxysilicate or a substituted silsesquioxane may be, for example, a siloxysilicate or a silsesquioxane where a methyl group has been substituted with a longer carbon chain such as an ethane, propane, or butane. The carbon chain may be saturated or unsaturated.


In one embodiment, the at least one film-forming silicone resin is chosen from siloxysilicates such as trimethylsiloxysilicates, which are represented by the following formula: [(CH3)3—Si—O]x—(SiO4/2)y (MQ Units) where x and y can have values ranging from 50 to 80. In a further embodiment, a siloxysilicate may be chosen from any combination of M and Q units, such as, for example, [(R)3—Si—O]x—(SiO4/2)y, where R is chosen from a methyl group and longer carbon chains.


In a further embodiment, the film-forming silicone resin is chosen from silsesquioxanes that are represented by the following formula: (CH3SiO3/2)x (T Units) where x has a value of up to several thousand and the CH3 may be replaced by an R, as described above for T units. In one embodiment, the silsesquioxane is chosen from polymethylsilsesquioxanes, which are silsesquioxanes that do not have a substituent replacing the methyl group. The polymethylsilsesquioxanes useful in the present invention are film-formers and can, for example, have about 500 or less T units, such as from about 50 to about 500 T units. In another embodiment, they have a melting point from about 40° C. to about 80° C. These silicone resins are soluble or dispersible in volatile silicones or other organic liquids.


Not all polymethylsilsesquioxanes are film-formers. For example, the highly polymerized polymethylsilsesquioxanes (T Resins), such as Tospearl™ from Toshiba or KMP590 from Shin-Etsu are highly insoluble and therefore are not effective film-formers. The molecular weight of these polymethylsilsesquioxanes is difficult to determine and they generally contain a thousand or more T units.


Other suitable polymethylsilsesquioxanes useful in accordance with the present invention include Belsil PMS MK, also referred to as Resin MK, available from Wacker Chemie. This polymethylsilsesquioxane is a polymer primarily formed of polymerized repeating units of CH3SiO3/2 (T units) and which can also contain up to about 1% (by weight or by mole) of (CH3)2SiO2/2 (D units). It is believed that the polymers are in a “cage” and “ladder” configuration as exemplified in the figure below. The weight-average molecular weight of the “cage” unit has been calculated to be 536. The majority of the polymer is in the “ladder” configuration, where the ends are capped with ethoxy (CH3CH2O) groups. The weight percent of ethoxy present is about 4.5% and the mole percent is about 7% (silicone units). Since this functionality can react with water, a small and variable amount of SiOH can also be present. The weight-average molecular weight can be, for example, from about 500 to about 50,000, such as about 10,000.




embedded image


Polymethylsilsesquioxanes suitable for use in the present invention also include KR-220L available from SHIN-ETSU. The structure of KR-220L is made up of mostly silicone T-units (CH3SiO3/2) with Si—OH or silanol end units. There are no D units. Other polymethylsilsesquioxanes that can be useful in the practice of the invention include KR-242A, which has a structure of about 98% methyl T units and about 2% dimethyl D units with Si—OH or silanol end units, and KR-251, which has a structure of about 88% methyl T units and about 12% dimethyl D units with Si—OH or silanol end units, both of which are available from SHIN-ETSU.


In a further embodiment, the at least one film-forming silicone resin is chosen from combinations of M, D, T, and Q units comprising at least two units chosen from M, D, T, and Q and that satisfy the relationship RnSiO(4-n)/2 wherein n is a value ranging from 1.0 to 1.50. Some resins of this type are disclosed in U.S. Pat. No. 6,074,654, the disclosure of which is incorporated by reference herein. R may be a methyl group or any carbon chain as long as the silicone resin retains its film forming properties. (Up to 5%, of silanol or alkoxy functionality may also be present in the resin structure as a result of processing.) The at least one film-forming silicone resins may be solid at about 25° C. and may have a molecular weight ranging from 1000 to 10000 grams/mole.


In a further embodiment, the at least one film-forming silicone resin comprises repeating M units and Q units. The ratio of M units to Q units may be, for example, 0.7:1. The at least one film-forming silicone resin may be chosen from Wacker 803 and 804 available from Wacker Silicones Corporation and G.E. 1170-002 from General Electric.


In a further embodiment, the at least one film-forming silicone resin is a copolymer wherein at least one unit of the copolymer is chosen from M, D, T, and Q silicone units and at least one additional unit of the copolymer is chosen from an ester. The at least one film-forming silicone resin may be chosen from, for example, diisostearoyl trimethylolpropane siloxysilicates, such as SF 1318, available from GE Silicones.


In one embodiment, the at least one film-forming silicone resin is present in the composition in an amount ranging from 0.5% to 20% by weight relative to the total weight of the composition, such as, for example 1% to 10%.


The compositions according to the present invention can additionally comprise at least one additional film-former. The at least one additional film-former may improve, for example, smoothness or spreadability, water-resistance, transfer resistance properties, or other cosmetic or pharmaceutical properties desired by one of skill in the art. The at least one additional film former may be chosen from, for example, polyethylene; vinylpyrrolidone/vinyl acetate (PVP/VA) copolymers such as the Luviskol® VA grades (all ranges) from BASF® Corporation and the PVP/VA series from ISP; acrylic fluorinated emulsion film formers including Foraperle® film formers such as Foraperle® 303 D from Elf Atochem (although Foraperle® may not be appropriate for some cosmetic formulations); GANEX® copolymers such as butylated PVP, PVP/Hexadecene copolymer, PVP/Eicosene copolymer or tricontanyl; Poly(vinylpyrrolidone/diethylaminoethyl methacrylate) or PVP/Dimethylaminoethylmethacrylate copolymers such as Copolymer 845; Resin ACO-5014 (Imidized IB/MA copolymer); other PVP based polymers and copolymers; alkyl cycloalkylacrylate copolymers (See WO 98/42298, the disclosure of which is hereby incorporated by reference); Mexomere® film formers and other allyl stearate/vinyl acetate copolymers (allyl stearate/VA copolymers); polyolprepolymers such as PPG-12/SMDI copolymer, polyolprepolymers such as PPG-1 2/SM DI copolymer, Poly(oxy-1,2-ethanediyl), α-hydro-ω-hydroxy-polymer with 1,1′-methylene-bis-(4-isocyanatocyclohexane) available from Barnet; Avalure™ AC Polymers (Acrylates Copolymer) and Avalure™ UR polymers (Polyurethane Dispersions), available from BFGoodrich.


The at least one additional film former which also may be used within the framework of the invention includes film formers having any film former chemistry known in the art such as: PVP, acrylates, and urethanes; synthetic polymers of the polycondensate type or free-radical type, or ionic type, polymers of natural origin and mixtures thereof or any other film former known within the practice of the cosmetic and pharmaceutical arts which one skilled in the art may determine to be compatible.


An appropriate concentration of the at least one additional film former may be determined by one of skill in the art and can vary considerably based on the application. For example, for cosmetic compositions, at least one additional film former may be used in an amount from 0.1% to 20% such as, for example, from 1% to 10% by weight, relative to the total weight of the composition.


The concentrations of the at least one film-forming silicone resin and of the at least one structuring polymer may be chosen according to the desired hardness and desired stability of the compositions and according to the specific application envisaged. The respective concentrations of the at least one structuring polymer and of the at least one solid substance can be such that a disintegrable solid which does not flow under its own weight is obtained.


Depending on the intended application, such as a stick, hardness of the composition may also be considered. The hardness of a composition may, for example, be expressed in grams (g). The composition of the present invention may, for example, have a hardness ranging from 20 g to 2000 g, such as from 20 g to 900 g, and further such as from 20 g to 600 g.


This hardness is measured in one of two ways. A first test for hardness is according to a method of penetrating a probe into said composition and in particular using a texture analyzer (for example TA-XT2 from Rhéo) equipped with an ebonite cylinder of height 25 mm and diameter 8 mm. The hardness measurement is carried out at 20° C. at the center of 5 samples of said composition. The cylinder is introduced into each sample of composition at a pre-speed of 2 mm/s and then at a speed of 0.5 mm/s and finally at a post-speed of 2 mm/s, the total displacement being 1 mm. The recorded hardness value is that of the maximum peak observed. The measurement error is ±50 g.


The second test for hardness is the “cheese wire” method, which involves cutting an 8.1 mm tube of composition and measuring its hardness at 20° C. using a DFGHS 2 tensile testing machine from Indelco-Chatillon Co. at a speed of 100 mm/minute. The hardness value from this method is expressed in grams as the shear force required to cut a stick under the above conditions. According to this method, the hardness of compositions according to the present invention which may be in stick form may, for example, range from 30 g to 300 g, such as from 30 g to 250 g, and further such as from 30 g to200g.


The hardness of the composition of the present invention may be such that the compositions are self-supporting and can easily disintegrate to form a satisfactory deposit on a keratinous material. In addition, this hardness may impart good impact strength to the inventive compositions which may be molded or cast, for example, in stick or dish form.


The skilled artisan may choose to evaluate a composition using at least one of the tests for hardness outlined above based on the application envisaged and the hardness desired. If one obtains an acceptable hardness value, in view of the intended application, from at least one of these hardness tests, the composition falls within the scope of the invention.


According to the present invention, the compositions in stick form may also possess the properties of deformable, flexible elastic solids and may also have noteworthy elastic softness upon application to a keratinous material. The compositions in stick form of the prior art do not have this elasticity and flexibility.


The at least one structuring polymer has an affinity with the fatty phase and in particular with a chemical portion of one of the oils forming the liquid fatty phase of the composition so that physical links with the oils, such as hydrogen bonds are formed.


Liquid Fatty Phase


The at least one liquid fatty phase, in one embodiment, may comprise at least one oil. The at least one oil, for example, may be chosen from polar oils and apolar oils including hydrocarbon-based liquid oils and oily liquids at room temperature. In one embodiment, the compositions of the invention comprise at least one structuring polymer and at least one polar oil. The polar oils of the invention, for example, may be added to the apolar oils, the apolar oils acting in particular as co-solvent for the polar oils.


According to the invention, the structuring of the at least one liquid fatty phase may, for example, be obtained with the aid of at least one polymer of formula (I). In general, the polymers of formula (I) may be in the form of mixtures of polymers, these mixtures also possibly containing a synthetic product corresponding to a compound of formula (I) in which n is 0, i.e., a diester.


The liquid fatty phase of the composition may contain more than 30%, for example, more than 40%, of liquid oil(s) containing a group similar to that of the units containing a hetero atom of the structuring polymer, and for example from 50% to 100%. In one embodiment, the liquid fatty phase structured with a polyamide-type skeleton contains a high quantity, i.e., greater than 30%, for example greater than 40% relative to the total weight of the liquid fatty phase, or from 50% to 100%, of at least one apolar, such as hydrocarbon-based, oil. For the purposes of the invention, the expression “hydrocarbon-based oil” means an oil essentially comprising carbon and hydrogen atoms, optionally with at least one group chosen from hydroxyl, ester, carboxyl, and ether groups.


For a liquid fatty phase structured with a polymer containing a partially silicone-based skeleton, this fatty phase may contain more than 30%, for example, more than 40%, relative to the total weight of the liquid fatty phase and, for example, from 50% to 100%, of at least one silicone-based liquid oil, relative to the total weight of the liquid fatty phase.


For a liquid fatty phase structured with an apolar polymer of the hydrocarbon-based type, this fatty phase may contain more than 30%, for example more than 40% by weight, or from 50% to 100% by weight, of at least one liquid apolar, such as hydrocarbon-based, oil, relative to the total weight of the liquid fatty phase.


For example, the at least one polar oil useful in the invention may be chosen from:

    • hydrocarbon-based plant oils with a high content of triglycerides comprising fatty acid esters of glycerol in which the fatty acids may have varied chain lengths from C4 to C24, these chains possibly being chosen from linear and branched, and saturated and unsaturated chains; these oils are chosen from, for example, wheat germ oil, corn oil, sunflower oil, karite butter, castor oil, sweet almond oil, macadamia oil, apricot oil, soybean oil, cotton oil, alfalfa oil, poppy oil, pumpkin oil, sesame oil, marrow oil, rapeseed oil, avocado oil, hazelnut oil, grape seed oil, blackcurrant seed oil, evening primrose oil, millet oil, barley oil, quinoa oil, olive oil, rye oil, safflower oil, candlenut oil, passion flower oil and musk rose oil; or alternatively caprylic/capric acid triglycerides such as those sold by Stearineries Dubois or those sold under the names Miglyol 810, 812 and 818 by Dynamit Nobel;
    • synthetic oils or esters of formula R5COOR6 in which R5 is chosen from linear and branched fatty acid residues containing from 1 to 40 carbon atoms and R6 is chosen from, for example, a hydrocarbon-based chain containing from 1 to 40 carbon atoms, on condition that R5+R6≧10, such as, for example, purcellin oil (cetostearyl octanoate), isononyl isononanoate, C12-C15 alkyl benzoates, isopropyl myristate, 2-ethylhexyl palmitate, isostearyl isostearate and alkyl or polyalkyl octanoates, decanoates or ricinoleates; hydroxylated esters such as isostearyl lactate and diisostearyl malate; and pentaerythritol esters;
    • synthetic ethers containing from 10 to 40 carbon atoms;
    • C8 to C26 fatty alcohols such as oleyl alcohol; and
    • C8 to C26 fatty acids such as oleic acid, linolenic acid or linoleic acid.


The at least one apolar oil according to the invention is chosen from, for example, silicone oils chosen from volatile and non-volatile, linear and cyclic polydimethylsiloxanes (PDMSs) that are liquid at room temperature; polydimethylsiloxanes comprising alkyl or alkoxy groups which are pendant and/or at the end of the silicone chain, the groups each containing from 2 to 24 carbon atoms; phenylsilicones such as phenyl trimethicones, phenyl dimethicones, phenyl trimethylsiloxy diphenylsiloxanes, diphenyl dimethicones, diphenyl methyldiphenyl trisiloxanes and 2-phenylethyl trimethylsiloxysilicates; hydrocarbons chosen from linear and branched, volatile and non-volatile hydrocarbons of synthetic and mineral origin, such as volatile liquid paraffins (such as isoparaffins and isododecane) or non-volatile liquid paraffins and derivatives thereof, liquid petrolatum, liquid lanolin, polydecenes, hydrogenated polyisobutene such as Parleam®, and squalane; and mixtures thereof. The structured oils, for example those structured with polyamides such as those of formula (I) or the polyurethanes or polyureas or polyurea-urethanes, may be, in one embodiment, apolar oils, such as an oil or a mixture of hydrocarbon oils chosen from those of mineral and synthetic origin, chosen from hydrocarbons such as alkanes such as Parleam® oil, isoparaffins including isododecane, and squalane, and mixtures thereof. These oils may, in one embodiment, be combined with at least one phenylsilicone oil.

    • The liquid fatty phase, in one embodiment, contains at least one non-volatile oil chosen from, for example, hydrocarbon-based oils of mineral, plant and synthetic origin, synthetic esters or ethers, silicone oils and mixtures thereof.


In practice, the total liquid fatty phase may be present, for example, in an amount ranging from 1% to 99% by weight relative to the total weight of the composition; further examples include ranges of 5 to 95.5%, 10% to 80% and 20% to 75%.


For the purposes of the invention, the expression “volatile solvent or oil” means any non-aqueous medium capable of evaporating on contact with the skin or the lips in less than one hour at room temperature and atmospheric pressure. The volatile solvent(s) of the invention is(are) organic solvents, such as volatile cosmetic oils that are liquid at room temperature, having a non-zero vapor pressure, at room temperature and atmospheric pressure, ranging in particular from 10−2 to 300 mmHg and, for example, greater than 0.3 mmHg. The expression “non-volatile oil” means an oil which remains on the skin or the lips at room temperature and atmospheric pressure for at least several hours, such as those having a vapor pressure of less than 10−2 mmHg.


According to the invention, these volatile solvents may facilitate the staying power or long wearing properties of the composition on the skin, the lips or superficial body growths. The solvents can be chosen from hydrocarbon-based solvents, silicone solvents optionally comprising alkyl or alkoxy groups that are pendant or at the end of a silicone chain, and a mixture of these solvents.


The volatile oil(s), in one embodiment, is present in an amount ranging from 0% to 95.5% relative to the total weight of the composition, such as from 2% to 75% or, for example, from 10% to 45%. This amount will be adapted by a person skilled in the art according to the desired staying power or long wearing properties.


The at least one liquid fatty phase of the compositions of the invention may further comprises a dispersion of lipid vesicles. The compositions of the invention may also, for example, be in the form of a fluid anhydrous gel, a rigid anhydrous gel, a fluid simple emulsion, a fluid multiple emulsion, a rigid simple emulsion or a rigid multiple emulsion. The simple emulsion or multiple emulsion may comprise a continuous phase chosen from an aqueous phase optionally containing dispersed lipid vesicles or oil droplets, or a fatty phase optionally containing dispersed lipid vesicles or water droplets. In one embodiment, the composition has a continuous oily phase or fatty phase and is more specifically an anhydrous composition, for example, a stick or dish form. An anhydrous composition is one that has less than 10% water by weight, such as, for example, less than 5% by weight.


The compositions of the invention may further comprise at least one additional fatty material. The at least one additional fatty material may, for example, be chosen from gums, fatty materials pasty at ambient temperature, and resins.


The composition of the present invention may also further comprise at least one suitable additive commonly used in the field concerned chosen from coloring agents, antioxidants, essential oils, preserving agents, fragrances, fillers, pasty fatty substances, waxy fatty substances, neutralizing agents, liposoluble polymers, and cosmetically active agents and dermatological active agents such as, for example, emollients, moisturizers, vitamins, essential fatty acids and sunscreens. The compositions of the invention may also further comprise water optionally thickened with an aqueous-phase thickener or gelled with a gelling agent and/or containing ingredients soluble in water.


In one embodiment, the at least one suitable additive is chosen from a wax. As used herein, a “wax” may be any lipophilic fatty compound. Non-limiting examples of such waxes include waxes of natural origin, such as beeswax, carnauba wax, candelilla wax, ouricury wax, Japan wax, cork fiber wax, sugar cane wax, paraffin waxes, lignite wax, microcrystalline waxes, lanolin wax, montan wax and ozokerites, hydrogenated oils such as hydrogenated jojoba oil, jojoba esters, waxes of synthetic origin, such as polyethylene waxes derived from polymerization of ethylene, waxes obtained by Fischer-Tropsch synthesis, fatty acid esters and glycerides, and silicone waxes such as derivatives of poly(di)methylsiloxane. The wax, in one embodiment, is present in an amount ranging from 0.5% to 15% relative to the total weight of the composition, such as from 0.1% to 10%.


Another embodiment of the invention relates to a skin lip, or keratinous fiber care or make-up composition comprising a structured composition containing at least one liquid fatty phase structured with at least one structuring polymer comprising a polymer skeleton comprising at least one hydrocarbon-based repeating unit comprising at least one hetero atom and at least one film-forming silicone resin.


Additionally, an embodiment of the invention relates to a skin, lip, or keratinous fiber care or make-up composition comprising a structured composition containing at least one liquid fatty phase structured with at least one structuring polymer comprising a polymer skeleton comprising at least one hydrocarbon-based repeating unit comprising at least one hetero atom, at least one film-forming silicone resin, and at least one coloring agent.


Additionally, an embodiment of the invention relates to a method of making up skin, lips, or keratinous fibers or caring for skin, lips, or keratinous fibers comprising applying to said skin, lips, or keratinous fibers a structured composition containing at least one liquid fatty phase structured with at least one structuring polymer comprising a polymer skeleton comprising at least one hydrocarbon-based repeating unit comprising at least one hetero atom and at least one film-forming silicone resin.


Needless to say, the person skilled in the art will take care to select the optional additional additives and the amount thereof such that not all of the possible advantageous properties of the composition according to the invention are, or are substantially, adversely affected by the addition(s) envisaged.


The transfer resistance of a composition may be evaluated by a transfer resistance test. A composition is applied to the clean, bare skin of a group of subjects as a smooth, thin layer, such as a 1″×1″ square in size. The composition is allowed to air dry for 5 minutes and using a facial tissue or other cloth or sponge and medium pressure the area is wiped as if attempting to wipe the product off of the skin. The subjects are then asked to evaluate the results. Positive results are described as the presence of a makeup film that could not be easily removed without soap and water. For example, the results may be rated on a scale of 1 to 5 with 5 being the best and 1 being the worst.


The packaging and application device for any subject of the invention may be chosen and manufactured by persons skilled in the art on the basis of their general knowledge, and adapted according to the nature of the composition to be packaged. Indeed, the type of device to be used can be in particular linked to the consistency of the composition, in particular to its viscosity; it can also depend on the nature of the constituents present in the composition, such as the presence of volatile compounds.


The present invention is also directed to a cosmetic process for caring for, making up or treating a keratinous material, such as that of a human being, and further such as human skin, lips, or keratinous fibers, comprising the application to a keratinous material of a cosmetic composition comprising at least one polyamide polymer comprising a polyamide skeleton. The polyamide skeleton comprises at least one end group with at least one chain chosen from alkyl chains comprising at least four carbon atoms and alkenyl chains comprising at least four carbon atoms, bonded to the at least one polyamide skeleton via at least one linking group. The polyamide skeleton may further comprise at least one pendant group with at least one chain chosen from alkyl chains comprising at least four carbon atoms and alkenyl chains comprising at least four carbon atoms, bonded to any carbon or nitrogen of the polyamide skeleton via at least one linking group. The composition also comprises at least one film-forming silicone resin.


In another embodiment, the present invention is directed to a process of making a cosmetic composition in the form of a physiologically acceptable composition comprising including in said composition at least one polyamide polymer comprising a polyamide skeleton. The polyamide skeleton comprises at least one end group with at least one chain chosen from alkyl chains comprising at least four carbon atoms and alkenyl chains comprising at least four carbon atoms, bonded to the at least one polyamide skeleton via at least one linking group. The polyamide skeleton may further comprise at least one pendant group with at least one chain chosen from alkyl chains comprising at least four carbon atoms and alkenyl chains comprising at least four carbon atoms, bonded to any carbon or nitrogen of the polyamide skeleton via at least one linking group. The composition also comprises at least one film-forming silicone resin.


Another embodiment of the invention relates to a lipstick composition in stick form comprising at least one continuous liquid fatty phase, at least one film-forming silicone resin and at least one non-waxy structuring polymer having a weight-average molecular mass of less than 100 000, the continuous liquid fatty phase, the at least one film-forming silicone resin for the fatty phase and the at least one non-waxy structuring polymer being present in the composition.


The invention will be illustrated by, but is not intended to be limited to, the following examples.







EXAMPLE 1
Transfer Resistant Mascara

A transfer resistant mascara was prepared by mixing the following ingredients.














PHASE
INCI NAME
w/w %

















A
Isododecane
41.97



Alkyl Silicone Resin
7.00



with Alkyl Groups (MK Resin)




Isododecane Gel
16.50



(Versagel MD 870)




Quaternium 18 Hectorite
4.00



Black Iron Oxide
5.00


B
Propylene Carbonate
1.32


C
Paraffin
3.00



Carnauba Wax
5.20



Beeswax
7.00



Synthetic Beeswax
4.00



Uniclear 100
5.00



Phenoxyethanol
0.01










Phases A, B, and C were each prepared separately by mixing together the ingredients of each phase. The three phases were then combined and the resulting mascara was found to have transfer resistant properties upon application to eye lashes.


EXAMPLE 2
Transfer Resistant Mascara

A transfer resistant mascara was prepared from the following ingredients.














PHASE
INCI NAME
w/w %

















A
Isododecane
40.4



Trimethylsiloxysilicate
7.0



Isododecane with
14.0



a) styrene-ethylene/butylene-styrene




 triblock copolymer, and
1.24



b) styrene-ethylene/propylene




 radial copolymer
1.24



Disteardimonium Hectorite
5.5



Iron Oxides
5.0


B
Propylene Carbonate
1.8


C
Allyl stearate/VA copolymer
5.0



Waxes
6.8



Preservatives
0.01



Uniclear 100
2.00









Phase A was mixed with a homogenizer for 20 minutes at room temperature and then heated to 65° C. for 15 minutes. In a separate beaker, phase C was combined with propeller mixing and heated to 85-90° C. Once phase A and phase C reached their respective temperatures, phase C was added to phase A. The batch was homogenized for 5 minutes while maintaining the heat at 80-85° C. and phase B was added. The mixture was homogenized for 30 minutes at 80-85° C. and then removed from the homogenizer and cooled to 30-35° C. using sweep mixing. The ingredients were combined and the resulting mascara was found to have transfer resistant properties upon application to eye lashes.


The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects as illustrative only and not restrictive. The scope of the invention is, therefore, indicated by the appended claims, rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims
  • 1. A cosmetic composition comprising: at least one liquid fatty phase in said cosmetic composition which comprises: (i) at least one structuring polymer chosen from ethylenediamine/stearyl dimer dilinoleate copolymer and ethylenediamine/stearyl dimer tallate copolymer; and(ii) at least one film-forming silicone resin.
  • 2. A cosmetic composition comprising: at least one liquid fatty phase which comprises:(i) at least one structuring polymer chosen from ethylenediamine/stearyl dimer dilinoleate copolymer and ethylenediamine/stearyl dimer tallate copolymer; and(ii) at least one film-forming silicone resin.
  • 3. A method comprising applying a cosmetic composition to a keratin material, said cosmetic composition comprising: at least one liquid fatty phase which comprises: (i) at least one structuring polymer chosen from ethylenediamine/stearyl dimer dilinoleate copolymer and ethylenediamine/stearyl dimer tallate copolymer; and(ii) at least one film-forming silicone resin.
  • 4. A method for making a cosmetic composition in the form of a physiologically acceptable composition comprising including in said composition at least one liquid fatty phase which comprises: (i) at least one structuring polymer chosen from ethylenediamine/stearyl dimer dilinoleate copolymer and ethylenediamine/stearyl dimer tallate copolymer; and(ii) at least one film-forming silicone resin.
US Referenced Citations (335)
Number Name Date Kind
2379413 Bradley Jul 1945 A
2450940 Cowan et al. Oct 1948 A
2463264 Graenacher Mar 1949 A
2662068 Floyd Dec 1953 A
2663649 Winkler Dec 1953 A
2890097 Coe Jun 1959 A
2962461 Toussaint et al. Nov 1960 A
3086914 Soloway Apr 1963 A
3141787 Goetze et al. Jul 1964 A
3148125 Strianse et al. Sep 1964 A
3156572 Carlick et al. Nov 1964 A
3157681 Fischer Nov 1964 A
3255082 Barton Jun 1966 A
3324041 Sommer et al. Jun 1967 A
3341465 Kaufman et al. Sep 1967 A
3412115 Floyd et al. Nov 1968 A
3615289 Felton Oct 1971 A
3645705 Miller et al. Feb 1972 A
3778394 Lovald et al. Dec 1973 A
3819342 Gunderman et al. Jun 1974 A
3857960 Mackles Dec 1974 A
3926655 Miles Dec 1975 A
3937811 Papantoniou et al. Feb 1976 A
3969087 Saito et al. Jul 1976 A
4049792 Elsnau Sep 1977 A
4051159 Tsoucalas et al. Sep 1977 A
4062819 Mains et al. Dec 1977 A
RE29871 Papantoniou et al. Dec 1978 E
4128436 O'Hara et al. Dec 1978 A
4137306 Rubino et al. Jan 1979 A
4148875 Barnett et al. Apr 1979 A
4150002 Drawert et al. Apr 1979 A
4247411 Vanlerberghe et al. Jan 1981 A
4275054 Sebag et al. Jun 1981 A
4275055 Nachtigal et al. Jun 1981 A
4279658 Harvey et al. Jul 1981 A
4337298 Karim et al. Jun 1982 A
4341671 Bolze et al. Jul 1982 A
4376194 Tanaka et al. Mar 1983 A
4387090 Bolich, Jr. Jun 1983 A
4438240 Tanaka et al. Mar 1984 A
4466936 Schapel Aug 1984 A
4536405 Nara et al. Aug 1985 A
4552693 Hussain et al. Nov 1985 A
4571267 Drawert et al. Feb 1986 A
4620492 Vogg et al. Nov 1986 A
4655836 Drawert et al. Apr 1987 A
4663428 Okitu et al. May 1987 A
4699779 Palinczar Oct 1987 A
4699924 Durrant et al. Oct 1987 A
4712571 Remz et al. Dec 1987 A
4724137 Hoppe et al. Feb 1988 A
4769285 Rasmussen Sep 1988 A
4806338 Smith Feb 1989 A
4806345 Bhattacharyya Feb 1989 A
4820765 Whyzmuzis Apr 1989 A
4822601 Goode et al. Apr 1989 A
4871536 Arraudeau et al. Oct 1989 A
4937069 Shin Jun 1990 A
4952245 Iwano et al. Aug 1990 A
5034219 Deshpande et al. Jul 1991 A
5061289 Clausen et al. Oct 1991 A
5069897 Orr Dec 1991 A
5073364 Giezendanner et al. Dec 1991 A
5075103 Halloran et al. Dec 1991 A
5085859 Halloran et al. Feb 1992 A
5102656 Kasat Apr 1992 A
5126136 Merat et al. Jun 1992 A
5166355 Leistner et al. Nov 1992 A
5186318 Oestreich et al. Feb 1993 A
5194260 Grollier et al. Mar 1993 A
5196260 Dirshl et al. Mar 1993 A
5223559 Arraudeau et al. Jun 1993 A
5237071 Leistner et al. Aug 1993 A
5252323 Richard et al. Oct 1993 A
5268029 Demangeon et al. Dec 1993 A
5272241 Lucarelli et al. Dec 1993 A
5290555 Guthauser et al. Mar 1994 A
5302379 Sojka Apr 1994 A
5302398 Egidio et al. Apr 1994 A
5342894 Robeson et al. Aug 1994 A
5356616 Sojka Oct 1994 A
5362482 Yoneyama et al. Nov 1994 A
5372852 Titterington et al. Dec 1994 A
5389363 Snyder et al. Feb 1995 A
5436006 Hirose et al. Jul 1995 A
5472686 Tsubaki et al. Dec 1995 A
5486431 Tuttle et al. Jan 1996 A
5489431 Ascione et al. Feb 1996 A
5500209 Ross et al. Mar 1996 A
5505937 Castrogiovanni et al. Apr 1996 A
5510452 Santhanam Apr 1996 A
5534247 Franjac et al. Jul 1996 A
5536871 Santhanam Jul 1996 A
5538718 Aul et al. Jul 1996 A
5538793 Inokuchi et al. Jul 1996 A
5540853 Trinh et al. Jul 1996 A
5585091 Pelzer et al. Dec 1996 A
5603925 Ross et al. Feb 1997 A
5605651 Balzer Feb 1997 A
5610199 Cohen et al. Mar 1997 A
5612043 Deprez et al. Mar 1997 A
5616331 Allard et al. Apr 1997 A
5618523 Zysman et al. Apr 1997 A
5620693 Piot et al. Apr 1997 A
5645632 Pavlin Jul 1997 A
5667770 Szweda et al. Sep 1997 A
5679357 Dubief et al. Oct 1997 A
5683817 Kenmochi Nov 1997 A
5695747 Forestier et al. Dec 1997 A
5702519 Nitta et al. Dec 1997 A
5708631 Takenaka et al. Jan 1998 A
5719255 Heucher et al. Feb 1998 A
5733537 Halloran et al. Mar 1998 A
5747625 Furukawa et al. May 1998 A
5750125 Lahanas et al. May 1998 A
5750127 Rokitowski May 1998 A
5750489 Garcia et al. May 1998 A
5769902 Samain Jun 1998 A
5780517 Cohen et al. Jul 1998 A
5783657 Pavlin et al. Jul 1998 A
5795565 Eteve et al. Aug 1998 A
5800816 Brieva et al. Sep 1998 A
5807968 Heinrich et al. Sep 1998 A
5825543 Ouderkirk et al. Oct 1998 A
5830444 Miguel Nov 1998 A
5830447 Hutchins et al. Nov 1998 A
5830483 Seidel et al. Nov 1998 A
5837223 Barone et al. Nov 1998 A
5849275 Calello et al. Dec 1998 A
5849278 Piot et al. Dec 1998 A
5849333 Nordhauser et al. Dec 1998 A
5849909 Richard et al. Dec 1998 A
5851517 Mougin et al. Dec 1998 A
5857903 Ramspeck et al. Jan 1999 A
5858338 Piot et al. Jan 1999 A
5866149 Piot et al. Feb 1999 A
5871758 Nagy et al. Feb 1999 A
5871764 Diaz et al. Feb 1999 A
5874069 Mendolia et al. Feb 1999 A
5882363 Spaulding et al. Mar 1999 A
5891424 Bretzler et al. Apr 1999 A
5897869 Roulier et al. Apr 1999 A
5902592 Bara et al. May 1999 A
5908631 Arnaud et al. Jun 1999 A
5911974 Brieva et al. Jun 1999 A
5919441 Mendolia et al. Jul 1999 A
5925337 Arraudeau et al. Jul 1999 A
5928660 Kabayashi et al. Jul 1999 A
5945085 Salas et al. Aug 1999 A
5945095 Mougin et al. Aug 1999 A
5945112 Flynn et al. Aug 1999 A
5955060 Huglin et al. Sep 1999 A
5959009 Konik et al. Sep 1999 A
5961998 Arnaud et al. Oct 1999 A
5962452 Haase et al. Oct 1999 A
5965112 Brieva et al. Oct 1999 A
5972095 Graves et al. Oct 1999 A
5972354 de la Poterie et al. Oct 1999 A
5972359 Sine et al. Oct 1999 A
5976512 Huber Nov 1999 A
5976514 Guskey et al. Nov 1999 A
5981680 Petroff et al. Nov 1999 A
5985298 Brieva et al. Nov 1999 A
5993787 Sun et al. Nov 1999 A
5998570 Pavlin et al. Dec 1999 A
6001980 Borzo et al. Dec 1999 A
6004567 Marchi-Lemann et al. Dec 1999 A
6007796 Menzel et al. Dec 1999 A
6007799 Lee et al. Dec 1999 A
6010541 de la Mettrie et al. Jan 2000 A
6019962 Rabe et al. Feb 2000 A
6036947 Barone et al. Mar 2000 A
6042815 Kellner et al. Mar 2000 A
6045782 Krog et al. Apr 2000 A
6045823 Vollhardt et al. Apr 2000 A
6051216 Barr et al. Apr 2000 A
6054517 Spaulding et al. Apr 2000 A
6060072 Konik et al. May 2000 A
6063398 Gueret May 2000 A
6066328 Ribier et al. May 2000 A
6074654 Drechsler et al. Jun 2000 A
6093385 Habeck et al. Jul 2000 A
6103249 Roulier et al. Aug 2000 A
6103250 Brieva et al. Aug 2000 A
6106820 Morrissey et al. Aug 2000 A
6111055 Berger et al. Aug 2000 A
6126929 Mougin Oct 2000 A
6132745 Marchi-lemann et al. Oct 2000 A
6156325 Farer et al. Dec 2000 A
6156804 Chevalier et al. Dec 2000 A
6159455 Habeck et al. Dec 2000 A
6165454 Patel et al. Dec 2000 A
6165971 Oppenlander et al. Dec 2000 A
6171347 Kunz Jan 2001 B1
6177523 Reich et al. Jan 2001 B1
6180117 Berthiaume et al. Jan 2001 B1
6180123 Mondet Jan 2001 B1
6190673 Guskey et al. Feb 2001 B1
6197100 Melbouchi Mar 2001 B1
6203780 Arnaud et al. Mar 2001 B1
6203807 Lemann Mar 2001 B1
6214326 Dupuis Apr 2001 B1
6214329 Brieva et al. Apr 2001 B1
6221389 Cannell et al. Apr 2001 B1
6224851 Bara May 2001 B1
6242509 Berger et al. Jun 2001 B1
6251375 Bara Jun 2001 B1
6251409 Hegyi et al. Jun 2001 B1
6254876 de la Poterie et al. Jul 2001 B1
6254877 de la Poterie et al. Jul 2001 B1
6264933 Bodelin et al. Jul 2001 B1
6268466 MacQueen et al. Jul 2001 B1
6280846 Darby et al. Aug 2001 B1
6287552 Tournilhac et al. Sep 2001 B1
6299979 Neubauer et al. Oct 2001 B1
6325994 Collin et al. Dec 2001 B1
6342239 Tachibana et al. Jan 2002 B1
6348563 Fukuda et al. Feb 2002 B1
6361764 Richard et al. Mar 2002 B2
6372235 Livoreil et al. Apr 2002 B1
6376078 Inokuchi Apr 2002 B1
6383502 Dunshee et al. May 2002 B1
6387498 Coulter et al. May 2002 B1
6399080 Bara Jun 2002 B1
6399081 Nakanishi et al. Jun 2002 B1
6402408 Ferrari Jun 2002 B1
6410003 Bhatia et al. Jun 2002 B1
6419912 Lezer Jul 2002 B1
6423306 Caes et al. Jul 2002 B2
6423324 Murphy et al. Jul 2002 B1
6428773 Oko et al. Aug 2002 B1
6432391 Bara Aug 2002 B1
6447759 Noguchi et al. Sep 2002 B2
6469131 Lawson et al. Oct 2002 B2
6475500 Vatter et al. Nov 2002 B2
6479686 Nakanishi et al. Nov 2002 B2
6482400 Collin Nov 2002 B1
6489283 Afriat Dec 2002 B1
6491931 Collin Dec 2002 B1
6497861 Wang et al. Dec 2002 B1
6503521 Atis et al. Jan 2003 B1
6503522 Lawson et al. Jan 2003 B2
6506716 Delplancke et al. Jan 2003 B1
6524598 Sunkel et al. Feb 2003 B2
6545174 Habeck et al. Apr 2003 B2
6552160 Pavlin Apr 2003 B2
6585962 Philippe et al. Jul 2003 B2
6607734 Afriat Aug 2003 B1
6649173 Arnaud et al. Nov 2003 B1
6656487 Afriat et al. Dec 2003 B2
6682748 De La Poterie et al. Jan 2004 B1
6689345 Jager Lezer Feb 2004 B2
6716420 Feng et al. Apr 2004 B2
6726917 Kanji et al. Apr 2004 B2
6749173 Heiling Jun 2004 B2
6761881 Bara Jul 2004 B2
6830610 Bruchert et al. Dec 2004 B1
6835399 Collin Dec 2004 B2
6852326 Breton Feb 2005 B2
6869594 Ferrari Mar 2005 B2
6875245 Pavlin Apr 2005 B2
6881400 Collin Apr 2005 B2
6960339 Ferrari Nov 2005 B1
6979469 Ferrari et al. Dec 2005 B2
7008619 Kanji Mar 2006 B2
7008629 Kanji Mar 2006 B2
7011523 Allred et al. Mar 2006 B2
7011823 Ferrari et al. Mar 2006 B2
7023552 Simon et al. Apr 2006 B2
7025953 Blin et al. Apr 2006 B2
7052681 Ferrari May 2006 B2
7144582 Ferrari et al. Dec 2006 B1
7276547 Pinzon et al. Oct 2007 B2
7314612 Ferrari Jan 2008 B2
7351418 Collin Apr 2008 B2
7410636 Collin Aug 2008 B2
20010014312 Nakanishi et al. Aug 2001 A1
20010014313 Roulier et al. Aug 2001 A1
20010028887 Douin et al. Oct 2001 A1
20010031280 Ferrari et al. Oct 2001 A1
20010033846 Roulier et al. Oct 2001 A1
20010036914 Philippe et al. Nov 2001 A1
20020010179 Richard et al. Jan 2002 A1
20020044918 Bara Apr 2002 A1
20020058053 Nakanishi et al. May 2002 A1
20020081323 Nakanishi et al. Jun 2002 A1
20020102225 Hess et al. Aug 2002 A1
20020107314 Pinzon et al. Aug 2002 A1
20020111330 Pinzon et al. Aug 2002 A1
20020114771 Nakanishi Aug 2002 A1
20020114773 Kanji et al. Aug 2002 A1
20020119171 Gruning et al. Aug 2002 A1
20020120036 Pinzon et al. Aug 2002 A1
20020122781 Pinzon et al. Sep 2002 A1
20020131947 Nakanishi Sep 2002 A1
20020141958 Maio et al. Oct 2002 A1
20020150602 Livoreil et al. Oct 2002 A1
20020159964 Nakanishi et al. Oct 2002 A1
20020168335 Collin Nov 2002 A1
20020172696 Ferrari Nov 2002 A1
20020189030 Collin Dec 2002 A1
20020192168 Blin et al. Dec 2002 A1
20030012764 Collin Jan 2003 A1
20030026772 Jager-Lezer et al. Feb 2003 A1
20030044367 Simon et al. Mar 2003 A1
20030086883 Feng et al. May 2003 A1
20030129211 Livoreil et al. Jul 2003 A9
20030147837 Cavazzuti et al. Aug 2003 A1
20030161807 Lemann Aug 2003 A1
20030161848 Ferrari et al. Aug 2003 A1
20030185780 Ferrari et al. Oct 2003 A1
20030198613 Feng et al. Oct 2003 A1
20040013625 Kanji Jan 2004 A1
20040028636 Collin Feb 2004 A1
20040042980 Kanji et al. Mar 2004 A1
20040086478 Ferrari May 2004 A1
20040091510 Feng et al. May 2004 A1
20040126401 Collin Jul 2004 A1
20040156813 Ferrari Aug 2004 A2
20040166076 Ferrari et al. Aug 2004 A1
20040166133 Cavazzuti et al. Aug 2004 A1
20040223987 Ferrari Nov 2004 A1
20040247549 Lu et al. Dec 2004 A1
20050008595 Duffournier et al. Jan 2005 A1
20050008598 Lu et al. Jan 2005 A1
20050008599 Lu et al. Jan 2005 A1
20050019285 Lee et al. Jan 2005 A1
20050065261 Darlington, Jr. et al. Mar 2005 A1
20050089491 Collin Apr 2005 A1
20050089505 Collin Apr 2005 A1
20050089541 Lacoutiere Apr 2005 A1
20050118122 Simon et al. Jun 2005 A1
20050191327 Yu et al. Sep 2005 A1
20060257336 Ferrari et al. Nov 2006 A1
Foreign Referenced Citations (276)
Number Date Country
1319306 Jun 1988 CA
2003346 May 1990 CA
1319306 Jun 1993 CA
38 39 136 May 1990 DE
38 43 892 Jun 1990 DE
38 43 892 Jun 1990 DE
42 08 297 Sep 1993 DE
42 08 297 Sep 1993 DE
42 34 886 Apr 1994 DE
42 34 886 Apr 1994 DE
195 43 988 May 1997 DE
195 43 988 May 1997 DE
197 07 309 Aug 1998 DE
197 26 184 Dec 1998 DE
197 50 246 May 1999 DE
198 55 649 Jun 2000 DE
199 51 010 Apr 2001 DE
199 51 010 Apr 2001 DE
0 169 997 Feb 1986 EP
0 295 886 Dec 1988 EP
0 295 886 Dec 1988 EP
0 370 470 May 1990 EP
0 370 470 May 1990 EP
0 374 332 Jun 1990 EP
0 412 710 Feb 1991 EP
0 412 710 Feb 1991 EP
0 444 633 Sep 1991 EP
0 462 709 Dec 1991 EP
0 507 692 Oct 1992 EP
0 517 104 Dec 1992 EP
0 518 772 Dec 1992 EP
0 518 773 Dec 1992 EP
0 557 196 Aug 1993 EP
0 570 838 Nov 1993 EP
0 600 445 Jun 1994 EP
0 602 905 Jun 1994 EP
0 609 132 Aug 1994 EP
0 623 670 Nov 1994 EP
0 628 582 Dec 1994 EP
0 669 323 Aug 1995 EP
0 673 642 Sep 1995 EP
0 708 114 Apr 1996 EP
0 749 746 Dec 1996 EP
0 749 747 Dec 1996 EP
0 749 748 Dec 1996 EP
0 749 748 Dec 1996 EP
0 775 483 May 1997 EP
0 775 698 May 1997 EP
0 790 243 Aug 1997 EP
0 796 851 Sep 1997 EP
0 797 976 Oct 1997 EP
0 820 764 Jan 1998 EP
0 847 752 Jun 1998 EP
0 863 145 Sep 1998 EP
0 877 063 Nov 1998 EP
0 878 469 Nov 1998 EP
0 879 592 Nov 1998 EP
0 887 073 Dec 1998 EP
0 893 119 Jan 1999 EP
0 923 928 Jun 1999 EP
0 925 780 Jun 1999 EP
0 928 608 Jul 1999 EP
0 930 058 Jul 1999 EP
0 930 060 Jul 1999 EP
0 933 376 Aug 1999 EP
0 943 340 Sep 1999 EP
0 958 804 Nov 1999 EP
0 958 805 Nov 1999 EP
0 958 811 Nov 1999 EP
0 959 066 Nov 1999 EP
0 959 091 Nov 1999 EP
0 967 200 Dec 1999 EP
0 976 390 Feb 2000 EP
0 984 025 Mar 2000 EP
1 002 514 May 2000 EP
1 018 332 Jul 2000 EP
1 031 342 Aug 2000 EP
1 044 676 Oct 2000 EP
1 048 282 Nov 2000 EP
1 053 742 Nov 2000 EP
1 062 944 Dec 2000 EP
1 062 959 Dec 2000 EP
1 064 919 Jan 2001 EP
1 064 920 Jan 2001 EP
1 066 814 Jan 2001 EP
1 068 854 Jan 2001 EP
1 068 855 Jan 2001 EP
1 068 855 Jan 2001 EP
1 068 856 Jan 2001 EP
1 068 856 Jan 2001 EP
1 086 945 Mar 2001 EP
1 090 627 Apr 2001 EP
1 095 959 May 2001 EP
1 114 636 Jul 2001 EP
1 114 636 Jul 2001 EP
1 213 011 Jun 2002 EP
1 213 316 Jun 2002 EP
1 382 322 Jan 2004 EP
1 477 154 Nov 2004 EP
1 343 459 Jan 2007 EP
1 359 886 Mar 2007 EP
1 529 329 May 1968 FR
2 232 303 Mar 1975 FR
2 315 991 Jan 1977 FR
2 416 008 Aug 1979 FR
2 528 699 Dec 1983 FR
2 659 011 Sep 1991 FR
2 674 126 Sep 1992 FR
2 785 179 May 2000 FR
2 791 558 Oct 2000 FR
2 796 270 Jan 2001 FR
2 796 271 Jan 2001 FR
2 796 272 Jan 2001 FR
2 796 273 Jan 2001 FR
2 796 276 Jan 2001 FR
2 796 550 Jan 2001 FR
2 802 806 Jun 2001 FR
2 804 014 Jul 2001 FR
2 804 017 Jul 2001 FR
2 804 018 Jul 2001 FR
2 804 286 Aug 2001 FR
2 810 562 Dec 2001 FR
2 811 225 Jan 2002 FR
2 811 552 Jan 2002 FR
2 816 506 May 2002 FR
2 817 739 Jun 2002 FR
2 817 740 Jun 2002 FR
2 817 742 Jun 2002 FR
2 817 743 Jun 2002 FR
2 819 399 Jul 2002 FR
2 819 400 Jul 2002 FR
2 819 402 Jul 2002 FR
2 848 822 Jun 2004 FR
1 117 129 Jun 1968 GB
1 194 901 Jun 1970 GB
1 194 902 Jun 1970 GB
1 220 069 Jan 1971 GB
1 273 004 May 1972 GB
1 444 204 Jul 1976 GB
1 539 625 Jan 1979 GB
2 014 852 Sep 1979 GB
2 021 411 Dec 1979 GB
2 147 305 May 1985 GB
2 196 978 May 1988 GB
45-41318 Dec 1970 JP
48-38861 Nov 1973 JP
49-75740 Jul 1974 JP
5058242 May 1975 JP
52-007067 Feb 1977 JP
53043577 Apr 1978 JP
56123909 Sep 1981 JP
56166276 Dec 1981 JP
61065809 Apr 1986 JP
62061911 Mar 1987 JP
62061911 Mar 1987 JP
10 67618 Mar 1989 JP
64-90110 Apr 1989 JP
2127568 May 1990 JP
02200612 Aug 1990 JP
02-207014 Aug 1990 JP
2216279 Aug 1990 JP
3014683 Jan 1991 JP
4 230312 Aug 1992 JP
04230312 Aug 1992 JP
04346909 Dec 1992 JP
5-17710 Jan 1993 JP
6 299075 Oct 1994 JP
7-89826 Apr 1995 JP
7179795 Jul 1995 JP
7-258460 Oct 1995 JP
7267827 Oct 1995 JP
8225316 Sep 1996 JP
920631 Jan 1997 JP
09-020631 Jan 1997 JP
9-188830 Jul 1997 JP
09255560 Sep 1997 JP
09-263516 Oct 1997 JP
9295922 Nov 1997 JP
10-001444 Jan 1998 JP
10007527 Jan 1998 JP
10-007527 Jan 1998 JP
10120903 May 1998 JP
10-158450 Jun 1998 JP
10-158451 Jun 1998 JP
10-175816 Jun 1998 JP
10-506643 Jun 1998 JP
10212213 Aug 1998 JP
10251118 Sep 1998 JP
10-251118 Sep 1998 JP
10259344 Sep 1998 JP
10-306012 Nov 1998 JP
11106216 Apr 1999 JP
11 236314 Aug 1999 JP
11335228 Dec 1999 JP
11335242 Dec 1999 JP
11335254 Dec 1999 JP
2000038314 Feb 2000 JP
2000038316 Feb 2000 JP
2000038317 Feb 2000 JP
2000038321 Feb 2000 JP
2000-503305 Mar 2000 JP
2000086427 Mar 2000 JP
2000086429 Mar 2000 JP
2000086438 Mar 2000 JP
2000-0154112 Jun 2000 JP
2001-011340 Jan 2001 JP
2001-502742 Feb 2001 JP
2001-081320 Mar 2001 JP
2001-206821 Jul 2001 JP
2002-539220 Nov 2002 JP
2004-517906 Jun 2004 JP
WO 8604916 Aug 1986 WO
WO 8703783 Jul 1987 WO
WO 9112793 Sep 1991 WO
WO 9304665 Mar 1993 WO
WO 9321763 Nov 1993 WO
WO 9323008 Nov 1993 WO
WO 9418261 Aug 1994 WO
WO 9421233 Sep 1994 WO
WO 9515741 Jun 1995 WO
WO 9524887 Sep 1995 WO
WO 9533000 Dec 1995 WO
WO 9615761 May 1996 WO
WO 9638126 May 1996 WO
WO 9640044 Dec 1996 WO
WO 9717057 May 1997 WO
WO 9736573 Oct 1997 WO
WO 9817243 Apr 1998 WO
WO 9817705 Apr 1998 WO
WO 9822078 May 1998 WO
WO 9825922 Jun 1998 WO
WO 9827162 Jun 1998 WO
WO 9842298 Oct 1998 WO
WO 9847470 Oct 1998 WO
WO 9852534 Nov 1998 WO
WO 9858623 Dec 1998 WO
WO 9924002 May 1999 WO
WO 9936477 Jul 1999 WO
WO 9943297 Sep 1999 WO
WO 9966888 Dec 1999 WO
WO 0006114 Feb 2000 WO
WO 0027350 May 2000 WO
WO 0040216 Jul 2000 WO
WO 0061080 Oct 2000 WO
WO 0061081 Oct 2000 WO
WO 0074519 Dec 2000 WO
WO 0151020 Jul 2001 WO
WO 0152799 Jul 2001 WO
WO 0197758 Dec 2001 WO
WO 0197773 Dec 2001 WO
WO 0197773 Dec 2001 WO
WO 0203932 Jan 2002 WO
WO 0203935 Jan 2002 WO
WO 0203950 Jan 2002 WO
WO 0203951 Jan 2002 WO
WO 0247605 Jun 2002 WO
WO 0247608 Jun 2002 WO
WO 0247619 Jun 2002 WO
WO 0247620 Jun 2002 WO
WO 0247622 Jun 2002 WO
WO 0247627 Jun 2002 WO
WO 0247629 Jun 2002 WO
WO 0247630 Jun 2002 WO
WO 0247658 Jun 2002 WO
WO 0249583 Jun 2002 WO
WO 0249601 Jun 2002 WO
WO 02055030 Jul 2002 WO
WO 02055031 Jul 2002 WO
WO 02056845 Jul 2002 WO
WO 02056847 Jul 2002 WO
WO 02056848 Jul 2002 WO
WO 02058642 Aug 2002 WO
WO 02092047 Nov 2002 WO
WO 02092663 Nov 2002 WO
WO 02102322 Dec 2002 WO
WO 2005013887 Feb 2005 WO
Related Publications (1)
Number Date Country
20020114773 A1 Aug 2002 US