The present invention relates to a method for the preparation of kraft pulp with increased pulping yield from lignin-containing cellulosic material using polysulfide cooking liquor.
In conventional kraft cooking implemented in the 1960-1970-ies in continuous digesters was the total charge of white liquor added to the top of the digester. It soon emerged that the high alkali concentrations established at high cooking temperatures was detrimental for pulp viscosity.
Cooking methods was therefore developed in order to reduce the detrimental high alkali peak concentrations at start of the cook, and thus was split charges of alkali during the cook implemented in cooking methods such as MCC, EMCC, ITC and Lo-Solids cooking.
Other cooking methods was implemented using black liquor impregnation ahead of cooking stages where residual alkali in the black liquor was used to neutralize the wood acidity and to impregnate the chips with alkaline sulfide. One such cooking method sold by Valmet is Compact Cooking where black liquor with relatively high residual alkali level is withdrawn from earlier phases of the cook and charged to a preceding impregnation stage.
One aspect of alkali consumption during the cooking process, i.e. including impregnation, is that a large part of the alkali consumption is due to the initial neutralization of the wood, and as much as 50-75% of the total alkali consumption is occurring during the neutralization and alkali impregnation process. Hence, a lot of alkali is needed to be charged to the initial alkalization. This establish a cumbersome problem as high alkali concentrations had been found to be detrimental for pulp viscosity when charged to top of digesters in conventional cooking. One solution to meet the high alkali consumption and necessity to reduce alkali concentration at start of the cooking process was to charge large volumes of alkali treatment liquors, preferably black liquor having a residual alkali content, but having low alkali concentration, which resulted in presence of relatively large amount of total alkali per kg of wood material but still at low alkali concentration.
IN U.S. Pat. No. 7,270,725 (=EP1458927) Valmet disclosed a pretreatment stage using polysulfide cooking liquor ahead of black liquor treatment. In this process was the polysulfide treatment liquor drained after the pretreatment stage and before starting the black liquor treatment. The polysulfide treatment stage was also preferably kept short with treatment time in the range 2-10 minutes.
In a recent granted US patent, U.S. Pat. No. 7,828,930, International Paper, is shown an example of a kraft cooking process where 100% of the cooking liquor, in form of polysulfide liquor also named as orange liquor, is charged to top of digester and start of an impregnation stage. Here is also the temperature raised from 60° C. to 120° C. at start of the polysulfide treatment stage. However, as shown in example 1 is a liquor to wood ratio of about 3.5 established in the top of the digester by adding a proper amount of water. This order of liquor/wood ratio is often perceived as a standard liquor/wood ratio in continuous cooking necessary for a steady process. According to this proposal is a part of the residual polysulfide treatment liquor at relative high alkali concentration withdrawn and replaced with cooking liquor at relative low alkali concentration at start of the cooking stage, and the withdrawn residual polysulfide treatment liquor is added at later stages of the cook.
In Valmet's recent application WO2013032377 is disclosed a most beneficial method for a polysulfide kraft cooking process. The principles with a low temperature first impregnation stage with polysulfide cooking liquor at low liquor-to-wood ratio in the range 2.0 to 3.2 are disclosed. All the advantages with such conditions are disclosed and are included by reference also to the present invention which fully utilize these conditions. However, the system disclosed in WO2013032377 use a pressurized impregnation vessel preceded by a sluice feeder which may led to higher temperatures in the impregnation vessel for the polysulfide impregnation.
One model to describe cooking conditions is the H-factor. H-factor is a kinetic model for the rate of delignification in kraft pulping. It is a single variable model combining temperature (T) and time (t) and assuming that the delignification is one single reaction. If the activation energy is assumed to correspond to 134 kJ/mol the H-factor could be determined by;
H=∫0t exp (43.2−16115/T) dT
This one single reaction model is described in Gullichsen, Johan; Fogelholm, Carl.Johan (2000), “Chemical Pulping”, Papermaking Science and technology 6A, Tappi Publications, pp. 291-292, and is used throughout the pulping community to define cooking references, and will be used in this patent to define conditions of the cook. There is also an online H-factor calculator, using the single reaction model as outlined above, available at internet at http://www.knowpulp.com/english/demo/english/pulping/cooking/1 process/1 principle/h-tekijan laskenta.htm, where one could calculate the H-factor for any given stage of the cook, i.e. during heat up (typically during impregnation) as well as during cooking (at full cooking temperature), and the total H-factor established in those stages.
This low H-factor is also disclosed in WO2013032377, and with the H-factor model used as disclosed above, following H-factors apply for respective retention time and temperatures (Time*Temp=H);
60*90=0; 60*100=1; 60*110=3, 60*120=9
90*90=0; 90*100=1; 90*110=5; 90*120=13
120*90=1; 120*100=2; 120*110=6; 120*120=18
Even though slightly different H-factors, or different activation energy than 134 kJ/mol, may apply during the cook, i.e. during initial-, bulk- and final delignification respectively is the same H-factor used for the entire cook, including impregnation and heat up phases for comparative studies, which also is the case in a number of scientific studies published. There are also different H-factors for different wood species, especially between annual plant, hardwood and softwood, but for this patent application is the above identified H-factor, using an activation energy of 134 kJ/mol, used as the base reference for all kinds of wood and all phases of the cook. The H-factor is the best parameter to define process parameters for delignification activity. Hence, an H-factor of 1 is indicating almost no delignification, in cooking processes most often requiring a total H-factor of about 300-1500, and typically about 700 for fully bleached qualities, indicating that only some single digit of percent of total delignification work has been obtained at a H-factor of 1. If a H-factor of only 300 is necessary for the final pulp, as could be the case in high yield cooks, a H-factor of 1 is only indicating that 1/300 of total delignification work is obtained during impregnation, i.e. less than 0.4%.
There has thus been an ongoing development of cooking methods where both alkali concentrations at start of cook is reduced, and increased yield from the cooking process is sought for using among others addition of polysulfide cooking liquor that stabilize the carbohydrates.
The invention is based upon an improved and simplified impregnation process that guarantees that low temperature conditions are established in the polysulfide impregnation process, while reducing the necessary equipment for the process. There is thus no need to install a high pressure feeding system and a top separator in the impregnation vessel as for example shown in WO2013032377 outlining the principles with low temperature impregnation at low liquid-to-wood ratio. According to the inventive process is also the heat economy of the entire cooking process improved as the polysulfide impregnation process is kept at as high temperature as possible, utilizing the heat value in the polysulfide as well as decreasing the heating needs in subsequent cooking process that needs to raise the temperature to full cooking temperature.
The invention fully utilize the process conditions as outlined in WO2013032377, but as far lower investment costs, utilizing the ImpBin™ concept from black liquor impregnation systems in Compact Cooking™ systems all systems developed and sold by Valmet AB.
The Compact Cooking and ImpBin concepts are disclosed in Chemical Pulping Part 1, Fibre Chemistry and Technology, Second edition, 2011, pages 350-356, and use an atmospheric impregnation vessel for combined steaming and impregnation, but with addition of hot black liquor flashing off steam for the necessary steaming of chips. With the inventive process is however the risk for emission of malodorous gases reduced to a minimum as no non condensable sulfur gases such as metyl mercaptans are contained in the impregnation liquid used.
Thus the ImpBin concept may thus be modified from cold top control of steam heating, to hot top, i.e. steam blow through in top of impregnation vessel such that a cleaner grade of turpentine may be extracted from the vented gases. The cold top control of the impregnation vessel in conventional black liquor impregnation using an ImpBin is disclosed on page 356 in said book Chemical Pulping Part 1, second edition.
One object of the present invention is to provide for a method for the preparation of kraft pulp with increased pulping yield from lignin-containing cellulosic material using polysulfide cooking liquor, comprising:
With this process is the process system simplified considerably, as the first vessel is used both as a steaming vessel for the cellulose material as well as a thorough impregnation of the cellulose material with polysulfide cooking liquor. There is no need to install an expensive high pressure feeding system and associated top separator in top of first vessel, as instead a simple conveyor belt may feed the cellulose material to the top and using a low pressure sluice feeder for feeding the cellulose material into the top of the first vessel. As the vessel is atmospheric is the temperature maintained at about 100° C. in liquor surface and no uncontrolled increase of temperature could be established due to exothermic reactions or excessive charges of hotter liquors in bottom of vessel, as all over temperatures results in water evaporating from the liquor surface, i.e. a self-controlling system. The only temperature increase that is developed is preferably the temperature increase due to exothermic reactions that may increase the temperature in the liquor corresponding to the boiling temperature at the existing static head in the vessel. Thus, 10 meter below the liquid level the liquid may assume a temperature of about 120° C., and 20 meter below the liquid level the temperature may be 133° C. at the most, if the pressure at the liquid level is atmospheric pressure. Hence, in an atmospheric vessel the temperature is not exceeding 100° C. at the liquid surface, and some exothermic heating may be developed during the downward flow of the suspension, and in bottom could hotter liquids be added without causing boiling, up to 133° C. if 20 meter liquid head is established.
An alternative objective is to enable a process system that could be changed between polysulfide impregnation or black liquor impregnation ahead of kraft cooking, with only changes in liquor routing between the two cooking modes.
According to one preferred embodiment of the method is additional steam added to the volume of the lignin containing cellulosic material kept above the lower level of liquor. This option may be needed in pulp mills in cold climate, as the cellulose material may have a temperature at existing ambient conditions, i.e. be deep frozen at some −30 to −40° C. But in normal operation is the steam released from the polysulfide liquor addition fully sufficient.
According to another preferred embodiment of the method is a part of the liquor volume in the first vessel withdrawn from the wall of the first vessel and circulated back to the volume of the lignin containing cellulosic material in a first circulation. In this embodiment is preferably the first circulation heated from a heat source.
Alternatively or additionally is the polysulfide liquor added to the first vessel heated from a heat source. While the heating is necessary in order to release steam, heating of the polysulfide is particular beneficial as the risk for plugging heat exchangers is low with this liquor free from any cellulose material that could be withdrawn in a liquor circulation.
The heated polysulfide liquor may be added directly into the vessel without further mixing with other liquors, but in a preferred embodiment of the invention is the polysulfide liquor added to the first circulation.
According to a preferred embodiment of the invention is the heat source used to heat the circulation and/or the polysulfide liquor the hot spent cooking liquor withdrawn from the second vessel. This spent cooking liquor holds full cooking temperature at withdrawal from the second cooking vessel and contains a considerable amount of heat value to be used when heating the liquors in the first vessel.
Alternatively the heat source used is steam, preferably steam from the low pressure steam net of the pulp mill. As the heating is done to reach temperatures close to 100° C., is the low pressure steam often enough, and is available most often in a mill in abundance. Medium pressure steam is more expensive and utilized for more demanding process conditions well over 100° C.
According to a most preferred mode of operation is the inventive method operated in line with conditions as outlined in WO2013032377, where the liquor in the first vessel has an alkali concentration above 60 g/l and a polysulfide concentration above 3 g/l, or above 0.09 mol/l, when adding the polysulfide cooking liquor, establishing a liquor-to-wood ratio in the range 2.0 to 3.2 in said first vessel. This establishment of the low liquor-to-wood ratio is however much easier to establish in the present invention, as the cellulosic material is not suspended in any liquor before feeding to the impregnation vessel. The added polysulfide liquor using the inventive method need therefore not to compete with bulk volumes of liquors brought into the impregnation vessel from the preceding feed system, as the cellulosic material contains no more liquid than the natural moisture content of the cellulosic material
The lignin-containing cellulosic materials to be used in the present process are suitably softwood, hardwood, or annual plants.
In
Feeding.
In this type of system is first the lignin containing cellulosic material, Chips, fed with a conveyor belt CB to the top of the atmospheric impregnation vessel A and sluiced into the top using a conventional sluice feeder SF. A first upper level of chips, LE1, is established in the vessel. Simultaneously is impregnation liquid added to the vessel establishing a second lower level of liquid, LE2. In this process is the new treatment liquid added as polysulfide liquor, identified as Orange Liquor in drawing, and between 80-100% of the total charge of alkali to the entire cooking process is charged in this position. In the embodiment shown in
The second lower level of liquid LE2 is established some 5-15 meter below the upper level of chips LE1, and thus provides for a volume of cellulose material above the liquid level. This dense packed volume of cellulose material provides for a dead weight that drives a plug of cellulose material down and into the pool of liquor contained in the bottom of the vessel. The dense plug of cellulose material also provides for a condensation volume cooling and finally condensing any steam that may evaporate upwardly against the wood material that have been fed to top of vessel and is kept at lower temperature, preferably at ambient temperature.
Steaming
The cellulose material must be steamed in order to drive out bound air and enable a thorough impregnation. The air must be expelled to such an extent that the cellulose material loses its buoyancy, as well as enablement of impregnation to such an extent that the entire cellulose volume may be fully cooked and reduce the amount of rejects after the cook. No steaming process in practice is capable of expelling 100% of all air bound in the cellulose material, but most system drive out air to such an extent that the wood material loses its buoyancy as well as keeping the amount of rejects at acceptable levels. Wth the experience from ImpBin concepts it has been proven that the steaming concept used in ImpBin works to such an extent that even large chunks of cellulose material becomes fully impregnated and that the reject volumes in some cases are close to zero. In some implementations of ImpBin system was installation of huge reject bins recommended to mill operators by 3rd party consultants, but after some weeks of operations it was discovered that not even a toothpick sized reject volume was sent to the reject bin, which proves the perfect impregnation effect from using ImpBin in that installation. This should be compared with some perceptions in the pulping industry in the late 1980-ies that the cellulose material required extensive steaming effects in dedicated apparatuses, first steaming in a chip bin, and then also steaming in a separate steaming vessel at slightly higher pressure before suspending the steamed chips in liquor, which was the standard set up in conventional cooking until the late 1990-ties.
In the system disclosed is the major part steaming effect, or in some cases the entire steaming effect, obtained by addition of hot liquors having a temperature above 100° C., in this case hot liquors containing the polysulfide liquor, in center of vessel A, and due to the fact that the vessel is atmospheric is steam flashed off into the volume of cellulose material. The steam is released from the outlet end of the central pipe CP located in the lower end of the volume of cellulose material located above the second liquid level LE2. In some cases could several central pipes be used to distribute the steam and the polysulfide liquor more evenly over the cross section, using the multipipe system as disclosed in EP2467533.
As disclosed is the liquors added to the vessel heated preferably using heat exchangers HE1 and HE2. Direct injection of steam may be used, but has the disadvantage that the polysulfide concentration decreases due to the dilution effect of steam condensate. Also, clean steam condensate is expensive to replace if lost, as even ordinary tap water needs thorough and expensive cleaning before use in the steam cycle, so preferably is the clean steam condensate from indirect heat exchangers sent back to the steam cycle.
A first heat exchanger HE, may be included in the circulation disclosed, and a second heat exchanger HE2 may be included in supply pipe of the polysulfide liquor, and at least one of these heat exchanger systems are included if not both depending upon need for heating and the starting temperature of the polysulfide liquor.
In the most preferred embodiment and as disclosed in
In the most preferred embodiment and as disclosed in
In particular demanding applications, for example in cold climate with ambient temperatures well below 0° C. and corresponding temperature of the cellulose material, additional steam may be supplied directly to the vessel A as disclosed, using low pressure steam using live steam from the low pressure steam net of the mill. This steam may be supplied in a distribution chamber in the wall of the digester located above the second liquid level LE2, and preferably implemented as disclosed in EP2591165 previously used for black liquor impregnation in ImpBin and first implemented in cold climate mills.
With these alternatives for steaming no risk for emission of malodorous sulfur compounds may be experienced, as all liquors added contains no black liquor. The steaming concept may thus be optionally changed from the cold top control previously used in black liquor impregnation using ImpBin. If instead hot top control is implemented, allowing steam to blow through the entire cellulose volume located above the second liquid level LE2, then the vented gases from the vessel may be sent to turpentine recovery, obtaining turpentine with less sulfur content.
The spent cooking liquor typically holds full cooking temperature, i.e. 130-160° C. at withdrawal, said temperatures obtained after This high heat value is preferably used to heat the polysulfide liquor that conventionally is made on site of the mill and is stored in atmospheric tanks holding a temperature of about 70-80° C.
A second heat exchanger system HE2 may be included in the circulation disclosed, and a second heat exchanger system HE2 may be included in supply pipe of the polysulfide liquor, and at least one of these heat exchanger systems are included if not both depending upon need for heating and the starting temperature of the polysulfide liquor. In the most preferred embodiment and as disclosed in
Each heat exchanger may comprise a number of heat exchangers arranged in a system, not shown, using the hotter heating media in countercurrent mode such that the residual heat value in the heating media heats the coldest flow in a first heat exchanger, and the original heat value heats a flow that has passed at least on preceding heat exchanger in a second heat exchanger.
Feed from Impregnation to Cooking Vessel
Thus, the first impregnation stage in vessel is implemented in the vessel B and preferably only charged with the polysulfide cooking liquor and as small amount as possible of additional liquids such as wood moisture, steam condensates, and especially no black liquor nor additional water or filtrates. The resulting liquor-to-wood ratio established should be in the range 2.0 to 3.2 and the temperature should be in the range 100-120° C.
After the sufficient retention time in vessel A, which should have a retention time resulting in an H-factor in the range 1-20 of the impregnation stage, the impregnated cellulose material will be fed to the steam/liquid phase digester B together with the residual treatment liquor. In
In this embodiment is shown a digester B with 2 concurrent cooking zones, one cooking zone above the first screen section SC2 and a second cooking zone above the final screen section SC3 in bottom of digester, but any kind of cooking scheme may be implemented in the digester vessel B. In a conventional manner is preferably a final counter current wash zone implemented in bottom of digester by addition of wash water/Wash. The final pulp with a kappa number below 40 is fed out from bottom in flow POUT.
The invention could be implemented in a number of different ways besides what is disclosed in
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/SE2014/050975 | 8/26/2014 | WO | 00 |