Cotton Variety FM 2484B2F

Information

  • Patent Application
  • 20120304333
  • Publication Number
    20120304333
  • Date Filed
    May 01, 2012
    12 years ago
  • Date Published
    November 29, 2012
    12 years ago
Abstract
The cotton variety FM 2484B2F is disclosed. The invention relates to seeds, plants, plant cells, plant tissue, harvested products and cotton lint as well as to hybrid cotton plants and seeds obtained by repeatedly crossing plants of variety FM 2484B2F with other plants. The invention also relates to plants and varieties produced by the method of essential derivation from plants of FM 2484B2F and to plants of FM 2484B2F reproduced by vegetative methods, including but not limited to tissue culture of regenerable cells or tissue from FM 2484B2F.
Description
FIELD OF THE INVENTION

This invention relates to the field of plant breeding. More particularly, the invention relates to a variety of cotton designated as FM 2484B2F, its essentially derived varieties and the hybrid varieties obtained by crossing FM 2484B2F as a parent line with plants of other varieties or parent lines.


BACKGROUND OF THE INVENTION

Cotton is an important, fiber producing crop. Due to the importance of cotton to the textile industry, cotton breeders are increasingly seeking to obtain healthy, good yielding crops of excellent quality.


Cotton is commonly reproduced by self-pollination and fertilization. This type of sexual reproduction facilitates the preservation of plant and variety characteristics during breeding and seed production. The preservation of these characteristics is often important to plant breeders for producing cotton plants having desired traits. Other methods of producing cotton plants having desired traits are also used and include methods such as genetic transformation via Agrobacterium infection or direct transfer by microparticle bombardment. Examples of such methods are disclosed, for example, in U.S. Pub. No. 20090049564, incorporated by reference herein in its entirety.


Due to the environment, the complexity of the structure of genes and location of a gene in the genome, among other factors, it is difficult to predict the phenotypic expression of a particular genotype. In addition, a plant breeder may only apply his skills on the phenotype and not, or in a very limited way, on the level of the genotype. As a result, a particular plant breeder cannot breed the same variety twice using the same parents and the same methodology. Thus, a newly bred variety is an unexpected result of the breeding process. Indeed, each variety contains a unique combination of characteristics.


By carefully choosing the breeding parents, the breeding and selection methods, the testing layout and testing locations, the breeder may breed a particular variety type. In addition, a new variety may be tested in special comparative trials with other existing varieties in order to determine whether the new variety meets the required expectations.


SUMMARY OF THE INVENTION

The invention relates to seeds, plants, plant cells, parts of plants, cotton lint or fiber, and cotton textiles of cotton variety FM 2484B2F as well as to hybrid cotton plants and seeds obtained by repeatedly crossing plants of FM 2484B2F with other cotton plants. The invention encompasses plants and plant varieties produced by the method of derivation or essential derivation from plants of FM 2484B2F and to plants of FM 2484B2F reproduced by vegetative methods, including but not limited to regeneration of embryogenic cells or tissue of FM 2484B2F. The invention also encompasses methods of producing cotton seeds that comprise crossing plants of cotton variety FM 2484B2F either with itself or with a second, distinct cotton plant.







DETAILED DESCRIPTION OF THE INVENTION

The invention has been obtained by a general breeding process comprising the steps outlined below. For reference, see chapter 11, “Breeding Self-Pollinated Crops by Hybridization and Pedigree Selection” in Briggs and Knowles (1967).


Parent plants, which have been selected for good agronomic and fiber quality traits are manually crossed in different combinations. The resulting F1 (Filial generation 1) plants are self fertilized and the resulting F2 generation plants, which show a large variability on account of optimal gene segregation, are planted in a selection field.


These F2 plants are observed during the growing season for health, growth vigor, plant type, plant structure, leaf type, stand ability, flowering, maturity, seed yield, boll type, boll distribution, boll size, fiber yield and fiber quality. Plants are then selected. The selected plants are harvested and the bolls analyzed for fiber characteristics and the seed cleaned and stored. This procedure is repeated in the following growing seasons, whereby the selection and testing units increase from individual plants in the F2, to multiple plant containing ‘lines’ (descending from one mother plant) in the F5 and the number of units decrease from approximately 2500 plants in the F2 to 20 lines in the F5 by selecting about 10-20% of the units in each selection cycle.


The increased size of the units, whereby more seed per unit is available, allows the selection and testing in replicated trials on more than one location with a different environment and a more extensive and accurate analysis of the fiber quality.


The lines or candidate varieties become genotypically more homozygous and phenotypically more homogeneous by selecting similar plant types within a line and by discarding the so called off-types from the very variable F2 generation on to the final F7 or F8 generation.


Depending on the intermediate results the plant breeder may decide to vary the procedure described above, such as by accelerating the process by testing a particular line earlier or retesting a line another year. He may also select plants for further crossing with existing parent plants or with other plants resulting from the current selection procedure.


By the method of recurrent backcrossing, as described by Briggs and Knowles, supra, in chapter 13, “The Backcross Method of Breeding”, the breeder may introduce a specific trait or traits into an existing valuable line or variety, while otherwise preserving the unique combination of characteristics of this line or variety. In this crossing method, the valuable parent is recurrently used to cross it at least two or three times with each resulting backcross F1, followed by selection of the recurrent parent plant type, until the phenotype of the resulting F1 is similar or almost identical to the phenotype of the recurrent parent with the addition of the expression of the desired trait or traits.


This method of recurrent backcrossing eventually results in an essentially derived variety, which is predominantly derived from the recurrent parent or initial variety. This method can therefore also be used to get as close as possible to the genetic composition of an existing successful variety. Thus, compared to the recurrent parent the essentially derived variety retains a distinctive trait, which can be any phenotypic trait, with the intention to profit from the qualities of that successful initial variety.


Depending on the number of backcrosses and the efficacy of the selection of the recurrent parent plant type and genotype, which can be supported by the use of molecular markers as described by P. Stam (2003), the genetic conformity with the initial variety of the resulting essentially derived variety may vary between 90% and 100%.


Other than recurrent backcrossing, as described herein, such essentially derived variety may also be obtained by the selection from an initial variety of an induced or natural occurring mutant plant, or of an occurring variant (off-type) plant, or of a somaclonal variant plant, or by genetic transformation of regenerable plant tissue or embryogenic cell cultures of the said initial variety by methods well known to those skilled in the art, such as Agrobacterium-mediated transformation as described by Sakhanokho et al, (2004), Reynaerts et al. (2000), Umbeck et al. (1988) and others. Examples of transgenic events transformed in this way are “LLCotton25,” USDA-APHIS petition 02-042-01p, “Cot 102,” USDA-APHIS petition 03-155-01p, and “281-24-236,” USDA-APHIS petition 03-036-01p combined with “3006-210-23,” USDA-APHIS petition 03-036-02p. Information regarding these and other transgenic events referred to herein may be found at the U.S. Department of Agriculture's (USDA) Animal and Plant Health Inspection Service (APHIS) website. An “Event” is defined as a (artificial) genetic locus that, as a result of genetic engineering, carries a foreign DNA comprising at least one copy of the gene(s) of interest. Other methods of genetic transformation are well known in the art such as microprojectile bombardment. See, e.g., U.S. Publication No. 20090049564, which is incorporated by reference herein in its entirety.


The plants selected or transformed retain the unique combination of the characteristics of FM 2484B2F, except for the characteristics (e.g., one, two, three, four or five characteristics) changed by the selection of the mutant or variant plant or by the addition of a desired trait via genetic transformation. Therefore, the product of essential derivation (i.e., an essentially derived variety), has the phenotypic characteristics of the initial variety, except for the characteristics that change as a result of the act of derivation. Plants of the essentially derived variety can be used to repeat the process of essential derivation. The result of this process is also a variety essentially derived from said initial variety.


In one embodiment, FM 2484B2F progeny plants are produced by crossing plants of FM 2484B2F with other, different or distinct cotton plants, and further selfing or crossing these progeny plants with other, distinct plants and subsequent selection of derived progeny plants. The process of crossing FM 2484B2F derived progeny plants with itself or other distinct cotton plants and the subsequent selection in the resulting progenies can be repeated up to 7 or 8 times in order to produce FM 2484B2F derived cotton plants.


FM 2484B2F was derived from a backcross breeding program using Sicot 71 as the recurrent parent. All introgression work was done inside a glasshouse located at the CSIRO (Commonwealth Scientific and Industrial Research Organization) cotton research station in Narrabri, Australia. Subsequent backcrosses were made and screened for the presence of MON531 (cry1Ac); MON15985 (cry2Ab) and MON88913 (epsps) respectively conferring lepidopteran control and glyphosate tolerance. Progeny row evaluation and line testing was done at multiple sites in Australia. Selected sister lines were sent to Lubbock, Tex. and tested extensively in replicated trials. A single sister line was identified as having superior performance and named FM 2484B2F.


Provided herein as embodiments of the invention are seeds, plants, plant cells and parts of plants of the cotton variety FM 2484B2F. Representative seeds of this variety will be deposited under rule 37CFR 1.809, prior to issuance of a patent. Applicant will make a deposit of at least 2500 seeds of cotton variety FM 2484B2F disclosed herein with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, Va. 20110-2209 USA. The accession number for the deposit is ATCC Accession No. ______. The seeds are deposited with the ATCC on date ______. Access to this deposit will be made available during the pendency of the application to the Commissioner of Patents and Trademarks and persons determined by the Commissioner to be entitled thereto upon request. The deposit will be maintained for a period of 30 years, or 5 years after the most recent request, or for the enforceable life of the patent, whichever is longer, and will be replaced if it becomes nonviable during that period. Applicant does not waive any rights granted under this patent or under the Plant Variety Protection Act (7 U.S.C. 2321 et seq.).


Plants produced by growing such seeds are provided herein as embodiments of the invention. Also provided herein are pollen or ovules of these plants, as well as a cell or tissue culture of regenerable cells from such plants. In another embodiment, the invention provides for a cotton plant regenerated from such cell or tissue culture, wherein the regenerated plant has the morphological and physiological characteristics of cotton cultivar FM 2484B2F when grown in the same environmental conditions. In yet another embodiment, the invention provides methods of testing for a plant having the morphological and physiological characteristics of cotton cultivar FM 2484B2F. In one embodiment, the testing for a plant having the morphological and physiological characteristics of cotton cultivar FM 2484B2F is performed in the same field, under the same conditions and in the presence of plants of FM 2484B2F, e.g., plants grown from the seed deposited under Accession number ______.


In another embodiment, the present invention provides regenerable cells for use in tissue culture of cotton cultivar FM 2484B2F. The tissue culture will preferably be capable of regenerating plants having the physiological and morphological characteristics of the cotton cultivar FM 2484B2F, and of regenerating plants having substantially the same genotype as the cotton plant of the present invention. Preferably, the regenerable cells in such tissue cultures will be from embryos, protoplasts, meristematic cells, callus, pollen, leaves, anthers, pistils, roots, root tips, flowers, seeds, pods or stems. Still further, the present invention provides cotton plants regenerated from the tissue cultures of the invention.


Yet another aspect of the current invention is a cotton plant of the cotton variety FM 2484B2F comprising at least a first transgene, wherein the cotton plant is otherwise capable of expressing all the physiological and morphological characteristics of the cotton variety FM 2484B2F. In particular embodiments of the invention, a plant is provided that comprises a single locus conversion. A single locus conversion may comprise a transgenic gene which has been introduced by genetic transformation into the cotton variety FM 2484B2F or a progenitor thereof. A transgenic or non-transgenic single locus conversion can also be introduced by backcrossing, as is well known in the art. In certain embodiments of the invention, the single locus conversion may comprise a dominant or recessive allele. The locus conversion may confer potentially any desired trait upon the plant as described herein.


Single locus conversions may be implemented by a plant breeding technique called backcrossing wherein essentially all of the desired morphological and physiological characteristics of a variety are recovered in addition to the characteristics conferred by the single locus transferred into the variety via the backcrossing technique. A single locus may comprise one gene, or in the case of transgenic plants, one or more transgenes integrated into the host genome at a single site (locus).


In a particular aspect, the invention provides for a method of introducing a single locus conversion into cotton cultivar FM 2484B2F comprising: (a) crossing the FM 2484B2F plants, grown from seed deposited under Accession No. ______, with plants of another cotton line that comprise a desired single locus to produce F1 progeny plants; (b) selecting F1 progeny plants that have the single locus to produce selected F1 progeny plants; (c) crossing the selected F1 progeny plants with the FM 2484B2F plants to produce first backcross progeny plants; (d) selecting for first backcross progeny plants that have the desired single locus and the physiological and morphological characteristics of cotton cultivar FM 2484B2F when grown in the same environmental conditions, to produce selected first backcross progeny plants; and (e) repeating steps (c) and (d) one or more times (e.g. one, two, three, four, etc. times) in succession to produce selected third or higher backcross progeny plants that comprise the desired single locus and all of the physiological and morphological characteristics of cotton cultivar FM 2484B2F when grown in the same environmental conditions. Plants produced by this method have all of the physiological and morphological characteristics of FM 2484B2F, except for the characteristics derived from the desired trait.


Another embodiment of the invention provides for a method of producing an essentially derived plant of cotton variety FM 2484B2F comprising introducing a transgene conferring the desired trait into the plant, resulting in a plant with the desired trait and all of the physiological and morphological characteristics of cotton variety FM 2484B2F when grown in the same environmental conditions. In another embodiment, the invention provides for a method of producing an essentially derived cotton plant from FM 2484B2F comprising genetically transforming a desired trait in regenerable cell or tissue culture from a plant produced by the invention, resulting in an essentially derived cotton plant that retains the expression of the phenotypic characteristics of cotton variety FM 2484B2F, except for the characteristics changed by the introduction of the desired trait.


Desired traits described herein include modified cotton fiber characteristics, herbicide resistance, insect or pest resistance, disease resistance, including bacterial or fungal disease resistance, male sterility, modified carbohydrate metabolism and modified fatty acid metabolism. Such traits and genes conferring such traits are known in the art. See, e.g., US 20090049564, incorporated by reference herein in its entirety.


The invention also provides for methods wherein the desired trait is herbicide tolerance and the tolerance is linked to a herbicide such as glyphosate, glufosinate, sulfonylurea, dicamba, phenoxy proprionic acid, cyclohexanedione, triazine, benzonitrile, bromoxynil or imidazalinone.


In one embodiment, the desired trait is insect resistance conferred by a transgene encoding a Bacillus thuringiensis (Bt) endotoxin, a derivative thereof, or a synthetic polypeptide modeled thereon.


Also included herein is a method of producing cotton seed, comprising the steps of using the plant grown from seed of cotton variety FM 2484B2F, of which a representative seed sample will be deposited under Accession No. ______, as a recurrent parent in crosses with other cotton plants different from FM 2484B2F, and harvesting the resultant cotton seed.


Another embodiment of this invention relates to seeds, plants, plant cells and parts of plants of cotton varieties that are essentially derived from FM 2484B2F, being essentially the same as this invention by expressing the unique combination of characteristics of FM 2484B2F, including the herbicide and insect resistance of FM 2484B2F, except for the characteristics (e.g., one, two, three, four, or five, characteristics) being different from the characteristics of FM 2484B2F as a result of the act of derivation.


Another embodiment of this invention is the reproduction of plants of FM 2484B2F by the method of tissue culture from any regenerable plant tissue obtained from plants of this invention. Plants reproduced by this method express the specific combination of characteristics of this invention and fall within its scope. During one of the steps of the reproduction process via tissue culture, somaclonal variant plants may occur. These plants can be selected as being distinct from this invention, but still fall within the scope of this invention as being essentially derived from this invention.


Another embodiment of the invention provides for a method of producing an inbred cotton plant derived from the cotton variety FM 2484B2F comprising: (a) preparing a progeny plant derived from cotton variety FM 2484B2F, a representative sample of seed of said variety having been deposited under ATCC Accession No. PTA-______, by crossing cotton variety FM 2484B2F with a cotton plant of a second variety; (b) crossing the progeny plant with itself or a second plant to produce a seed of a progeny plant of a subsequent generation; (c) growing a progeny plant of a subsequent generation from said seed and crossing the progeny plant of a subsequent generation with itself or a second plant; and (d) repeating steps (b) and (c) for an additional 3-10 generations with sufficient inbreeding to produce an inbred cotton plant derived from the cotton variety FM 2484B2F.


Another embodiment of this invention is the production of a hybrid variety, comprising repeatedly crossing plants of FM 2484B2F with plants of a different variety or varieties or with plants of a non-released line or lines. In practice, three different types of hybrid varieties may be produced (see e.g., Chapter 18, “Hybrid Varieties” in Briggs and Knowles, supra):


The “single cross hybrid” produced by two different lines, the “three way hybrid”, produced by three different lines such that first the single hybrid is produced by using two out of the three lines followed by crossing this single hybrid with the third line, and the “four way hybrid” produced by four different lines such that first two single hybrids are produced using the lines two by two, followed by crossing the two single hybrids so produced.


Each single, three way or four way hybrid variety so produced and using FM 2484B2F as one of the parent lines contains an essential contribution of FM 2484B2F to the resulting hybrid variety and falls within the scope of this invention.


The invention also provides for cotton lint or fiber produced by the plants of the invention, plants reproduced from the invention, and plants essentially derived from the invention. The final textile produced from the unique fiber of FM 2484B2F also falls within the scope of this invention. The invention also provides for a method of producing a commodity plant product (e.g., lint, cotton seed oil) comprising obtaining a plant of the invention or a part thereof, and producing said commodity plant product therefrom.


The entire disclosure of each document cited herein (e.g., US patent publications, non-patent literature, etc.) is hereby incorporated by reference.


EXPERIMENTAL EXAMPLE
Characterization of Cotton Variety FM 2484B2F

Data were collected for distinguishing characters, for one year over three locations:


Location One:

BCSI Breeding Station, Lubbock, Tex. 2011 Conditions; Planting date, May 14. The trial was conducted under drip irrigation with conventional management. The trial was designed to measure distinguishing characteristics including yield and fiber quality. The trial consisted of 9 entries in a randomized complete block design with 3 replications, two 10 meter rows per plot. For distinguishing characteristics, measurements were taken from 35 plants from each replication.


Location Two:

Bayer CropScience Breeding Station, Idalou, Tex. 2011 Conditions; Planting date, May 25. The trial was conducted under irrigation with conventional management. The trial was designed to measure distinguishing characteristics including yield and fiber quality. The trial consisted of 9 entries in a randomized complete block design with 3 replications, two 10 meter rows per plot replication. For distinguishing characteristics, measurements were taken from 35 plants from each replication.


Location Three:

BCSI Cooperator Location, Acuff, Tex. 2011 Conditions; Planting date, May 18th. The trial was conducted under drip irrigation with conventional management. The trial was designed to measure distinguishing characteristics including yield and fiber quality. The trial consisted of 9 entries in a randomized complete block design with 3 replications, two 10 meter rows per plot replication. This location was used only as a back-up and no per-plant data was collected.


General descriptions of morphological characteristics including leaf, stem, gland, flower, plant height, and nodes to first fruiting branch, were collected from 35 plants in each of three replications. Field trials were designed specifically for observation of these characteristics in 2011 at two locations.


Data were collected for yield, agronomic performance, and fiber quality over three years in 85 different experiments during 2009, 2010 and 2011 across West Texas. The best practice management was used in each location.


Analysis of variance procedures were used to obtain least significant difference at the 5% level, using PRISM software. The Student's t test was used to verify significance between individual plant characteristics.









TABLE 1







Plant morphological characteristics measured


at Lubbock, and Idalou, TX, 2011.












FM2484B2F
FM1740B2F
Difference
p-value















Leaf size (cm)
12.9
13.8
−0.9
0.0002


Leaf Hair
1.8
2.6
−0.8
0


Stem Hair
1.8
2.4
−0.6
0


Gland Density
3
3
0
0.3184


Length (cm)
3.8
4.1
−0.3
0


Diameter (cm)
3.3
3.2
0.1
0.4586


Breadth (cm)
0.9
1
−0.1
0.2763


No. of locules
4.2
4.4
−0.2
0


Nodes to 1st FB
7.4
7
0.4
0.0081


Height to 1st FB (cm)
18.7
17.4
1.3
0.0041


Plant height (cm)
67.6
64.1
3.5
0.0001
















TABLE 2







Lint yield, fiber quality traits, plant height, and storm resistant


data from the PVP Trial - Acuff, Roosevelt and Idalou 2011.













FM2484B2F
FM1740B2F
Mn
LSD(.05)
SigEnt
















Yield (lbs−1
1189
1153
1171
85
0.11


acre)


Rank
1
2


Lint %
0.41
0.41
0.41
0.01
0


% open
61.7
45.8
53.8
8.3
0.11


Boll type
3.1
3.7
3.4
0.4
0


Plant Ht (m)
31.8
31.2
31.5
1
0


Length (in)
1.13
1.21
1.17
0.01
0


Strength
29.9
32
31
0.6
0


(g/tex)


Mic
4.38
3.98
4.18
0.16
0.03


UR
82.7
83.6
83.2
0.6
0


Elong
6
5.4
5.7
0.1
0
















TABLE 3







Agronomic and yield data across the US cotton growing regions















FM2484B2F
FM1740B2F
Mn
LSD(.05)
CVErr
SigEnt
#Locs


















Yield
1287
1263
1282
22
6.04
0.2
85


(lbs/acre)


Rank
1
2


Lint %
0.42
0.41
0.42
0
1.65
0
85


% open
49.9
60.2
54.6
1.9
6.96
0
55


Boll type
4.2
3.8
4
0.1
9.91
0
61


Plant
29.8
29.2
28.7
0.5
3.96
0.21
38


height (in)


Length
1.18
1.12
1.15
0
1.19
0
82


(in)


Strength
30.7
29.2
29.8
0.2
2.96
0
82


(g/tex)


Mic
4.15
4.46
4.28
0.03
3.09
0
82


UR
82.2
82.2
82.1
0.1
0.72
0.51
82


Elong
6.3
6.9
6.8
0.1
3.51
0
82
















TABLE 4





Visual Field Rating Key


















Maturity
10% = late
50% = mid
90% = very


(PERCENT OPEN)*


early


Boll type
1 = loose
5 =
9 =




intermediate
storm proof


Leaf
1 =
5 =
9 =


pubescence
glaborous
semi-smooth
pubescent





*Taken @ 130 days after planting













TABLE 5







Characteristics of FM 2484B2F









Variety










Description of characteristic
Possible expression/note
FM 2484B2F
FM 1740B2F













General Plant Type





Plant Habit
spreading, intermediate, compact
Intermediate
Spreading


Foliage
sparse, intermediate, dense
Intermediate
Intermediate


Stem Lodging
lodging, intermediate, erect
Erect
Erect


Fruiting Branch
clustered, short, normal
Normal
Normal


Growth
determinate, intermediate,
Intermediate
Intermediate



indeterminate


Leaf color
greenish yellow, light green, medium
Medium Green
Medium Green



green, dark green


Boll Shape
Length < Width, L = W, L > W
Length >
Length >




Width
Width


Boll Breadth
broadest at base, broadest at middle
Middle
Middle


Maturity
date of 50% open bolls
Mid Maturity
Mid Maturity


Plant


cm. to first Fruiting Branch
from cotyledonary node
18.71
17.45


No. of nodes to 1st Fruiting
excluding cotyledonary node
7.4
7.0


Branch


Mature Plant Height in cm.
cotyledonary node to terminal
67.65
64.1


Leaf: upper most,


fully expanded leaf


Type
normal, sub-okra, okra, super-okra
Normal
Normal


Pubescense
absent, sparse, medium, dense
Sparse
Sparse


Nectaries
present, absent
Present
Present


Stem Pubescense
glabrous, intermediate, hairy
Intermediate
Intermediate


Glands (Gossypol)
absent, sparse, normal, more than



normal


Leaf

Normal
Normal


Stem

Normal
Normal


Calyx lobe
(normal is absent)
Normal
Normal


Flower


Petals
cream, yellow
Cream
Cream


Pollen
cream, yellow
Cream
Cream


Petal Spot
present, absent
Absent
Absent


Seed


Seed Index
g/100 seed fuzzy basis
10.6
10.8


Lint Index
g lint/100 seeds
7.1
6.7


Boll


Lint percent, pulled

41.8
42.7


Gin Turnout, stripped


Number of Seeds per Boll

28.7
31.1


Grams Seed Cotton per Boll

4.95
5.45


Number of Locules per Boll

4.2
4.4


Boll Type
storm proof, storm
Storm
Storm



resistant, open
Resistant
Resistant


Fiber Properties


Method HVI


Length, inches, 2.5% SL

1.21
1.13


Uniformity (%)

83.6
82.7


Strength, T1 (g/tex)

32.0
29.9


Elongation, E1 (%)

5.4
6.0


Micronaire

3.98
4.38









DEPOSIT INFORMATION

Applicant will make a deposit of at least 2500 seeds of cotton variety FM 2484B2F disclosed herein with the ______ under ______ Accession No. ______. Seed of the cotton variety FM 2484B2F is located at the Lubbock Breeding station, 6508 East FM 40, Lubbock, Tex. 79403. The lot number for this seed material is FM 2484B2F-SU10-Foundation-S.Miller-PVP. The seeds will be deposited with the ______ on ______. Access to this deposit will be available during the pendency of the application to the Commissioner of Patents and Trademarks and persons determined by the Commissioner to be entitled thereto upon request. The deposit will be maintained for a period of 30 years, or 5 years after the most recent request, or for the enforceable life of the patent, whichever is longer, and will be replaced if it becomes nonviable during that period. Applicant does not waive any rights granted under this patent or under the Plant Variety Protection Act (7 U.S.C. 2321 et seq.).


CITED REFERENCES



  • Lawrence P. Burdett, “Cotton Variety 02T15,” U.S. Pub. No. 20090049564.

  • F. N. Briggs, and P. F Knowles, 1967: “Introduction to Plant Breeding”, Rheinhold Publishing Corporation.

  • H. F. Sakhanoko et al 2004: “Induction of Somatic embryogenesis and Plant Regeneration in Select Georgia and Pee Dee Cotton Lines”, Crop Science 44: 2199-2205.

  • Umbeck et al 1988: “Genetic engineering of cotton plants and lines”, Patent application number EP0290355.

  • Reynaerts et al 2000: “Improved method for Agrobacterium mediated transformation of cotton”, Patent application number WO 0071733.

  • P. Stam, 2003: “Marker-assisted introgression: speed at any cost?” Proceedings of the Eucarpia Meeting on Leafy Vegetable Genetics and Breeding, Noordwijkerhout, The Netherlands, 19-21 Mar. 2003. Eds. Th. J. L. van Hintum, A. Lebeda, D. Pink, J. W. Schut. P 117-124.

  • Trolinder et al. “Herbicide tolerant cotton plants having event EE-GH1.” U.S. Pat. No. 6,818,807 (2004).


Claims
  • 1. A seed of cotton variety FM 2484B2F, wherein a representative seed of said variety was deposited under ______ Accession No. ______.
  • 2. A plant, or a part thereof, produced by growing the seed of claim 1.
  • 3. A plant, or a part thereof, obtained by vegetative reproduction from the plant, or a part thereof, of claim 2, said plant, or a part thereof, expressing all the phenotypic characteristics of cotton variety FM 2484B2F, a sample of seed having been deposited under ______ Accession No. ______.
  • 4. A process of vegetative reproduction of cotton variety FM 2484B2F comprising, culturing regenerable cells or tissue from FM 2484B2F, a sample of seed having been deposited under ______ Accession No. ______.
  • 5. A cell or tissue culture produced from the plant, or a part thereof, of claim 2.
  • 6. A cotton plant regenerated from the cell or tissue culture of claim 5, said plant expressing all the phenotypic characteristics of FM 2484B2F, a sample of seed having been deposited under ______ Accession No. ______.
  • 7. A method of producing an F1 hybrid cotton seed, comprising the steps of crossing the plant of claim 2 with a different cotton plant and harvesting the resultant F1 hybrid cotton seed.
  • 8. An F1 hybrid cotton seed produced by the method of claim 7.
  • 9. An F1 hybrid cotton plant, or part thereof, produced by growing the hybrid seed of claim 8.
  • 10. A plant obtained by the vegetative reproduction of the cotton plant of claim 9.
  • 11. A method of producing a cotton seed comprising the steps of crossing the plant of claim 10 with a different cotton plant and harvesting the resultant cotton seed.
  • 12. A method of introducing a desired trait into a cotton plant, the method comprising, transforming the plant of claim 2 with a transgene that confers the desired trait, wherein the transformed plant retains all the phenotypic characteristics of cotton variety FM 2484B2F and contains the desired trait.
  • 13. The method of claim 12, wherein said desired trait is fiber quality, herbicide resistance, insect resistance, bacterial disease resistance or fungal disease resistance.
  • 14. A method of introducing a desired trait into a cotton plant, the method comprising transforming the plant of claim 9 with a transgene that confers the desired trait.
  • 15. A cotton plant produced by the method of claim 12.
  • 16. A method of introducing a single locus conversion into cotton variety FM 2484B2F comprising: (a) crossing a plant of variety FM 2484B2F with a second plant comprising a desired single locus to produce F1 progeny plants;(b) selecting F1 progeny plants that have the single locus to produce selected F1 progeny plants;(c) crossing the selected progeny plants with at least a first plant of variety FM 2484B2F to produce backcross progeny plants;(d) selecting backcross progeny plants that have the single locus and all physiological and morphological characteristics of cotton variety FM 2484B2F to produce selected backcross progeny plants; and(e) repeating steps (c) and (d) one or more times in succession to produce selected second or higher backcross progeny plants that comprise the single locus and otherwise comprise all of the physiological and morphological characteristics of cotton variety FM 2484B2F when grown in the same environmental conditions.
  • 17. The method of claim 16, wherein the single locus confers a trait selected from the group consisting of male sterility; herbicide tolerance; insect or pest resistance; disease resistance; modified fatty acid metabolism; modified carbohydrate metabolism; and modified cotton fiber characteristics.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application Ser. No. 61/481,961, filed May 3, 2012, the contents of which are herein incorporated by reference in their entirety.

Provisional Applications (1)
Number Date Country
61481961 May 2011 US