Advances in microfluidic technology and the development of microfluidics-based devices have miniaturized laboratory instruments and integrated laboratory applications. One type of microfluidics device is based on microchannels formed in a rotatable disc. Such a device, sometimes called a “centrifugal rotor”, “lab on a chip” or “CD device” can be used to perform procedures with small quantities of fluids (see for example, those described in U.S. Pat. Nos. 5,006,749; 5,252,294; 5,304,487; 5,368,704; 6,527,432; 6,620,478; 6,709,869; 6,719,682; 6,884,395 and 6,919,058; International Application Publication Nos. WO93/22053; WO93/22058; WO 02/074438 and WO 99/58245).
Centrifugal microfluidic devices in laboratory applications generate centripetal acceleration by rotating a disc that enables fluid movement through microchannels in the disc. The rotation and centripetal acceleration create a centripetal force radially directed towards the disc center. A resulting centrifugal force moves fluids inside the disc towards the outer diameter or perimeter of the disc.
Although centrifugal microfluidic devices provide fast, portable and cost effective methods of processing multiple samples in parallel, the throughput of such devices are limited by the number of microchannel structures that fit on the disc surface. The available surface area of known devices limits their use for laboratory applications, such as DNA isolation and sequencing, which involve a large number of sequential steps. Further, the limited surface area restricts their use in the analysis and detection of large pathogen panels. For example, specific detection of biological warfare pathogens and toxins could include panels with 80 or more members. Similarly, panels for respiratory disease and emerging viruses involve large number of members.
In view of the foregoing, there is a need for an integrated microfluidic device that can be used for large panel detection and multi-step procedures within a single, enclosed structure. Provided herein are devices and methods of using the devices, devices capable of two-dimensional and three-dimensional fluid pumping along a disc surface and among multiple discs. In an embodiment, one or more pumps are used to propel sample in a direction opposite the direction of centrifugal force such that sample flows both radially outward and radially inward relative to the disc's axis of rotation. This effectively provides an increase in usable disc space for the flow of sample. The disclosed devices and methods reduce, minimize, or eliminate the surface area limitation of known integrated microfluidic devices. Thus, the disclosed devices provide increased usable surface area of rotating disc structure.
In one embodiment, the device includes a platform having an axis of rotation and one or more fluidic structures, each fluidic structure having an inlet port near the axis of rotation; a first reservoir located away from the axis of rotation; and a second reservoir located near the axis of rotation. The first reservoir fluidly communicates with the inlet port via a first conduit and the first reservoir fluidly communicates with the second reservoir via a second conduit. The platform also includes one or more pumps in fluid communication with the one or more fluidic structures via a third conduit. The fluid loaded in the inlet port moves through the first conduit to the first reservoir by centrifugal force arising from the platform rotating around the axis. The fluid moves from the first reservoir through the second conduit to the second reservoir by a counter-centrifugal force generated by the pump, and wherein fluid movement toward the first reservoir comprises movement away from the axis of rotation and fluid movement toward the second reservoir comprises movement toward the axis of rotation.
Also disclosed herein is an embodiment of a method of preparing a sample for analysis including loading a sample onto a platform. The platform includes an axis of rotation, one or more fluidic structures, and one or more pumps in fluid communication with the one or more fluidic structures. The sample is loaded in an inlet port near the axis of rotation. The method also includes rotating the platform about its axis of rotation generating a centrifugal force. The force moves the sample through the one or more fluidic structures to a first reservoir away from the axis of rotation. The method also includes generating a pressure differential within the one or more fluidic structures to move the sample toward the axis of rotation through the one or more fluidic structures against the centrifugal forces generated by rotating the platform.
Also disclosed herein is an embodiment of a method of preparing a sample for analysis that includes loading a sample into the inlet port of a device described herein. The method includes rotating the device about its axis of rotation to move the sample through a first conduit to a first reservoir located away from the axis of rotation by centrifugal force arising from the device rotating around the axis. The method also includes creating a counter-centrifugal force with a pump to move the sample from the first reservoir through a second conduit to a second reservoir located near the axis of rotation.
Other features and advantages should be apparent from the following description of various embodiments, which illustrate, by way of example, the principles of the invention.
According to common practice, the various features of the drawings may not be presented to-scale. Rather, the dimensions of the various features may be arbitrarily expanded or reduced for clarity. Included in the drawings are the following figures:
Before the present subject matter is further described, it is to be understood that this subject matter described herein is not limited to particular embodiments described, as such may of course vary. It is also to be understood that the terminology used here in is for the purpose of describing particular embodiments only, and is not intended to be limiting. Unless defined otherwise, all technical terms used herein have the same meaning as commonly understood by one skilled in the art to which this subject matter belongs.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit, unless the context clearly dictates otherwise, between the upper and lower limit of that range, and any other stated or intervening value in that stated range, is encompassed within the subject matter described herein. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges, and are also encompassed within the subject matter described herein, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the subject matter described herein.
It must be noted that as used herein and in the appended claims, the singular forms “a”, “and”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to a “fastener” includes a plurality of such fasteners, and reference to “the engagement element” includes reference to one or more engagement elements and equivalents thereof known to those skilled in the art, and so forth.
It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely”, “only” and the like, in connection with the recitation of claim elements, or the use of a “negative” limitation. Accordingly, the term “optional” or “optionally present”—as in an “optional element” or an “optionally present element” means that the subsequently described element may or may not be present, so that the description includes instances where the element is present and instances where it is not.
Provided herein are methods and devices for manipulation and preparation steps of biological, chemical, environmental, medical, forensic and industrial samples for performing microanalytical and microsynthetic assays. The device is a small, portable, disposable analysis system that is capable of processing a large sample panel (e.g. up to 20 or more samples per disc) thereby providing a system for rapid preparation and/or analysis of multiple samples. The device includes a platform that contains microfluidic systems of closed interconnected networks of channels and reservoirs. The platform rotates to generate centripetal acceleration and centrifugal force to achieve fluid movement through the network of channels and reservoirs. One or more electrochemical and/or chemical pumps can be used to achieve fluid movement in a direction counter to that achieved by rotation of the platform. That is, electrochemical pumps and/or chemical pumps can be used to achieve fluid movement on the disc in a direction counter to the centrifugal force. This permits an increase in the available surface area of the device for fluid channels. Fluidic separations from two dimensions into a third dimension further extend the available surface area of the device, as described in detail below. Extending the available surface area of the device allows for greater number of samples to be manipulated and/or a greater number of steps that can be performed with the device.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art. All patents, applications, published applications and other publications referred to herein are incorporated by reference in their entirety.
As used herein, “sample” refers to any fluid, solution or mixture, either isolated or detected as a constituent of a more complex mixture, or synthesized from precursor species. In general, a biological sample can be any sample taken from a subject, e.g., non-human animal or human and utilized in the device. For example, a biological sample can be a sample of any body fluid, cells, or tissue samples from a biopsy. Body fluid samples can include without any limitation blood, urine, sputum, semen, feces, saliva, bile, cerebral fluid, nasal swab, urogenital swab, nasal aspirate, spinal fluid, etc. Biological samples can also include any sample derived from a sample taken directly from a subject, e.g., human. For example, a biological sample can be the plasma fraction of a blood sample, serum, protein or nucleic acid extraction of the collected cells or tissues or from a specimen that has been treated in a way to improve the detectability of the specimen, for example, a lysis buffer containing a mucolytic agent that breaks down the mucens in a nasal specimen significantly reducing the viscosity of the specimen and a detergent to lyse the virus thereby releasing antigens and making them available for detection by the assay. A sample can be from any subject animal, including but not limited to, human, bird, porcine, equine, bovine, murine, cat, dog or sheep.
For example, a sample can be derived from any source, such as a physiological fluid, including blood, serum, plasma, saliva or oral fluid, sputum, ocular lens fluid, nasal fluid, nasopharyngeal or nasal pharyngeal swab or aspirate, sweat, urine, milk, ascites fluid, mucous, synovial fluid, peritoneal fluid, transdermal exudates, pharyngeal exudates, bronchoalveolar lavage, tracheal aspirations, cerebrospinal fluid, semen, cervical mucus, vaginal or urethral secretions, amniotic fluid, and the like. Herein, fluid homogenates of cellular tissues such as, for example, hair, skin and nail scrapings and meat extracts are also considered biological fluids. Pretreatment may involve preparing plasma from blood, diluting or treating viscous fluids, and the like. Methods of treatment can involve filtration, distillation, separation, concentration, inactivation of interfering components, and the addition of reagents. Besides physiological fluids, other samples can be used such as water, food products, soil extracts, and the like for the performance of industrial, environmental, or food production assays as well as diagnostic assays. In addition, a solid material suspected of containing the analyte can be used as the test sample once it is modified to form a liquid medium or to release the analyte. The selection and pretreatment of biological, industrial, and environmental samples prior to testing is well known in the art and need not be described further.
Other fields of interest include the diagnosis of veterinary diseases, analysis of meat, poultry, fish for bacterial contamination, inspection of food plants, food grains, fruit, dairy products (processed or unprocessed), restaurants, hospitals and other public facilities, analysis of environmental samples including water for beach, ocean, lakes or swimming pool contamination. Analytes detected by these tests include viral and bacterial antigens as well as chemicals including, for example, lead, pesticides, hormones, drugs and their metabolites, hydrocarbons and all kinds of organic or inorganic compounds. Samples include biological, chemical, environmental, medical, forensic and industrial samples. Samples can also include air samples where the bio-aerosol is converted into a liquid, e.g. using wet cyclones.
As used herein, “fluid” refers to liquids or gases. “Fluidly connected” or “in fluid communication” refers to components that are operably interconnected to allow fluid flow between the components.
The device can include a platform having one or more microchannel structures in which fluids are transported or processed, the structures extending in a plane parallel or substantially parallel to the platform plane. As used herein, “platform” contemplates a circular disc such as a compact disc (CD), however the platform need not be circular and any platform capable of being rotated to impart centripetal acceleration is considered. The platform can be of the same dimension as conventional CDs, but can be smaller or larger. As used herein, “platform” and “disc” are considered to be interchangeable.
As used herein, “3D-CD” or “CD stack” refers to at least two platforms in fluid communication with one another, but can also include three, four, five or more platforms.
As used herein, “microchannels,” “channels,” “microconduit” and “conduit” are interchangeable and refer to the structure for fluid transport into or out of a microchannel structure and well as fluid transport within the microchannel structure. Microchannels and microconduits can have, for example, a cross-sectional form that is rounded, i.e. circular, ellipsoid, etc. A microchannel can also have inner edges, i.e. a cross-sectional form that is triangular, square, rectangular, partly rounded, planar etc. Microcavities and microchambers and microreservoirs can have the same or a different cross-sectional geometry compared to the surrounding structures.
As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope of the subject matter described herein. Any recited method can be carried out in the order of events recited or in any other order which is logically possible.
As shown in
The microfluid structure 110 includes a network of reservoirs and conduits through which fluid flows. The fluid movement through the reservoirs and conduits is described with respect to the schematic diagram of
The platform spins or rotates about the rotational axis to generate centrifugal force sufficient to drive fluid from the inlet port 201 radially outward toward the edge or perimeter of the device through the conduit 205. In an embodiment, rotation in the range of 10-20 seconds at 1,000 RMP (when using 4.72″ diameter discs) generates a level of centrifugal force sufficient to move sample out of the inlet port 201 and through the first conduit 205 toward the first reservoir 210. The direction of fluid flow generated by centrifugal force is identified in
The microfluid structure 110 can also include vents and waste outlets. The vents are open to the air via the top surface of the disc to allow fluid to freely move through the microfluid structures 110. One or more structures that enable valving, decanting, calibration, mixing, metering, sample splitting and separation can be incorporated into the microfluid structure 110. For example, hydrophobic and capillary valves can be incorporated into the structure. Fluid gating within the microfluid structure 110 can be accomplished using “capillary” valves in which capillary forces retain fluids at an enlargement in a channel until rotationally induced pressure is sufficient to overcome the capillary pressure at the so-called burst frequency (see, Madou et al., “The LabCD™: A Centrifuge-Based Microfluidic Platform for Diagnostics,” in Systems and Technologies for Clinical Diagnostics and Drug Discovery, vol. 3259, G. E. Cohn and A. Katzir, Eds. San Jose, Calif.: SPIE, 1998, pp. 80-93; [Ekstrand et al., “Microfluidics in a Rotating CD”, Micro Total Analysis Systems 2000, A. van den Berg, W. Olthuis, P. Bergveld, Kluwer Academic Publishers, 2000 pp. 311-314; Tiensuu et al., “Hydrophobic Valves by Ink-Jet Printing on Plastic CDs with Integrated Microfluidics,” Micro Total Analysis Systems 2000, A. van den Berg, W. Olthuis, P. Bergveld, Kluwer Academic Publishers, 2000 pp. 575-578; Madou et al., “A Centrifugal Microfluidic Platform—A Comparison,” Micro Total Analysis Systems 2000, A. van den Berg, W. Olthuis, P. Bergveld, Kluwer Academic Publishers, 2000 pp. 565-570; Zeng et al., “Design Analysis of Capillary Burst Valves in Centrifugal Microfluidics,” Micro Total Analysis Systems 2000, A. van den Berg, W. Olthuis, P. Bergveld, Kluwer Academic Publishers, 2000 pp. 579-582; Badr et al., “Fluorescent Ion-Selective Optode Membranes Incorporated onto a Centrifugal Microfluidics Platform,” Analytical Chemistry, Vol. 74, No. 21, pp. 5569-5575, November 2002; Johnson et al., “Development of a Fully Integrated Analysis System for Ions Based on Ion-Selective Optodes and Centrifugal Microfluidics,” Analytical Chemistry, Vol. 73, No. 16, pp. 3940-3946, August 2001; McNeely et al., “Hydrophobic Microfluidics,”, Proc. Microfluidic Devices and Systems, SPIE, Vol. 3877, pp. 210-220, 1999; Application Report 101, Gyrolab MALDA SP1, Gyros AB, Uppsala, Sweden; Kellogg et al., “Centrifugal Microfluidics: Applications,” Micro Total Analysis Systems 2000, van den Berg et al., Kluwer Academic Publishers, 2000 pp. 239-242; Thomas et al., “Integrated Cell Based Assays in Microfabricated Disposable CD Devices,” Micro Total Analysis Systems 2000, van den Berg et al., Academic Publishers, 2000 pp. 249-252; Duffy et al., “Microfabicated Centrifugal Microfluidic Systems: Characterization and Multiple Enzymatic Assays,” Analytical. Chemistry, Vol. 71, No. 20, pp. 4669-4678, 1999).
As described above, the microfluid structures 110 are in fluid communication with one or more pumps 115. The pump 115 acts to direct fluid flow in a direction opposite to that generated by centrifugal force or in a direction radially inward from the periphery of the disc to the center of the disc. This permits fluid flow along additional areas of the disc than would be permitted with flow only in the radially outward direction. Thus, there is an effective increase in usable surface area for sample manipulation and preparation steps. With respect to the diagram in
Various mechanisms can be employed to provide a force that directs fluid flow in the counter-centrifugal direction. The mechanism by which the pump 115 acts to direct fluid flow in a counter-centrifugal direction can include, but is not limited to, chemical, electrochemical, electrolytic, electro-osmotic, and electrophoretic pumping. Similarly, various mechanisms can be employed to direct fluid flow in the counter-centrifugal direction through the desired channels. In an embodiment, the dimensions of the channel leading out of the reservoir can be larger than the channel leading to the reservoir thereby resulting in pressure from the pump pushing the fluid in the counter-centrifugal direction and through the desired channel in the circuit. In another embodiment, the entrance of the electrolysis pump “gas” channel can be closer to the top of the chamber so that fluid is pushed out of the reservoir in the desired direction and through the desired channel. Additional electrolytic pumps can be added to provide valving. Also, balancing pressures from multiple pumps acting on the same channels can also direct fluid into the desired channel.
With respect to
The substrate 305 can be, for example, water, an electrolyte or other appropriate liquid solution such as a sodium chloride or potassium nitrate solution or other substrate, such as a solid substrate. The electrodes 310, 315 can be metal, for example, platinum or other appropriate metal. The electrodes 310, 315 can be screen printed on a supporting acrylic disc or thin wires can be inserted and epoxied into the disc from its edge. The connection between the electrodes 310, 315 and the power supply 320 can occur, for example, via brush contacts pressed onto the disc (as shown in
On-disc pumping enables the device to be used for procedures requiring a multitude of steps. In another embodiment of the device, the platforms are stacked such that flow through the microfluid structures occurs in a three-dimensional manner. Multilayered, three-dimensional compact discs (3DCDs) significantly increase the available surface area on a disc for sample manipulation and preparation steps. Embedded on-disc pumping allows bi-directional and three-dimensional fluid transport, in turn, enabling unlimited pumping combinations through the device. The 3DCD system enables continuous centrifugal pumping and vertical fluidic communication between stacked discs. An on-CD pumping mechanism such as electrochemically generated pressure in the microchannels returns the fluid to the center of the disc and allows repeated centrifugal pumping on subsequent discs.
The schematic of
At some point the sample reaches the periphery of the platform and can be pumped in a counter-centrifugal direction (shown in the figure as arrow F2). The on-disc pump 5115b pumps the fluid away from the periphery of the platform 5101b, as described above. This primes the second platform 5101b such that sample can again flow through microchannel structures 5110 in response to centrifugal force. Sample can flow into an exit port 5401b in the microchannel structures 5110 of the second platform 5101b such that it flows downward through the support structure 5102b and into an inlet port 5201c of the third platform 5101c. Centrifugal forces direct fluid movement generally outward as well as downward to the next platform. The pump directs fluid movement generally inward or counter-centrifugally. Movement of the sample through the microfluid structures can thereby continue indefinitely.
Manufacture and Materials of the Device
Exemplary fabrication techniques of the device are described in Example 1 including the fabrication of PDMS CDs, fabrication of CDs using dry-laminated photoresist, and fabrication of machined and laminated polycarbonate discs. The device can be made in a disposable format to integrate cheaply with other analytic procedures.
The device can be manufactured from inorganic or organic material. Typical inorganic materials can include, but are not limited to silicon, quartz, glass etc. Typical organic materials can include, but are not limited to plastics including elastomers, such as rubber silicone polymers (for instance polydimethylsilicone, PDMS) etc. Materials selected for manufacture of the devices described herein have properties of interest, such as hydrophobic properties, low self-fluorescence, or are materials that are translucent or transparent. Plastic materials that can be used include polycarbonate, polystyrene and plastic material based on monomers which consist of a polymerizable carbon-carbon double or triple bonds and saturated branched straight or cyclic alkyl and/or alkylene groups.
The device can be in the form of a disc with the microfluid structures extending in a plane parallel or substantially parallel to the disc plane. The device can be the same dimension as a conventional CD or stack of CDs, but can also be smaller, for example down to 10% of conventional CDs, or larger, up to more than 200% or more the 400% of a conventional CD. Percentage values refer to the radius. The disc thickness can be about 0.5-2 mm to 10-20 mm for a multilayer disc structure.
Typically, open microstructures are formed in the surface of a planar substrate by various techniques such as etching, laser ablation, lithography, replication, embossing, molding, casting etc. Each substrate material typically has its preferred techniques. The microstructures can be designed such that when the surfaces of two planar substrates are opposed the desired enclosed microchannel structure is formed between the two substrates. Separate moldings can be assembled together such as by heating to provide a closed structure with openings at defined positions to allow loading of the device with fluids and removal of fluid samples or waste. With respect to the 3DCD stack, multiple discs can be separated from each other by a plastic layer, such as acrylic. Fluid connections between discs can be maintained by drilling ports through the separation layers.
The surface of channels and reservoirs can be modified, such as by chemical or physical means to alter surface properties, for example, to produce localized regions of hydrophobicity or hydrophilicity to confer a desired flow property. Surfaces of the open microchannel structures can be hydrophilised, for instance as described in WO 00/56808 (Gyros AB). The inner surface can then be coated with a non-ionic hydrophilic polymer as described in WO 00/56808 (Gyros AB). Hydrophobic surface breaks can also be introduced as outlined in WO 99/58245 (Gyros AB) to control flow. See also WO 01/85602 (Amic AB & Gyros AB).
Fabrication of PDMS CDs—
Polydimethylsiloxane (PDMS) used for preparation of microfluidic devices for biomedical applications involves molding of the polymer onto photolithographically created templates—the so-called soft lithography process. SU-8 photolithography is a good choice for fabricating a master mold allowing fabrication of channels and structures with features as high as or greater than about 500 μm. For the CD fabrication, the SU-8 process was adapted to achieve the desired multilayer (3-D) PDMS fluidic structures that provide sufficient surface area.
Preparation of the Exposure Mask—
Different fluidic patterns including inlet and waste reservoirs as well as pathways and chambers were designed using AutoCAD drawing program. A transparency foil was printed using very high resolution printers and appropriate black and white patterning (3,600 dpi). This simple mask and exposure procedure was sufficient to create CD channel features as small as 25 μm.
SU-8 Mold Fabrication—
SU-8 is a negative tone photoresist that has attracted interest for the fabrication of high aspect ratio features and for applications requiring very thick photoresist layers. Due to its UV transparency, standard UV lithography can be used to craft LIGA-like MEMS devices. SU-8 photoresists come in different viscosities: the lower viscosity products are more suited for the fabrication of thin structures down to 2 μm while the more viscous SU-8 resists are better suited for thick layers up to millimeters. XP SU-8-100, XP SU8-50F and SU-8 25, available from Microchem Inc. (Newton, Mass.), were tested for the CD development. SU-8 50 and SU-8 100 were found to provide best properties to create CD microchannel structures with appropriate height. SU-8 50 and 100 were processed on a 6″ reclaimed Si wafer (Addison Engineering, San Jose, Calif.) to obtain the structures for the microchannels between 50 μm and up to 250 μm in depth, depending on the spin-coating rate. The silicon wafer was first plasma cleaned (oxygen/argon plasma: O2; time=5 min; 100 mTorr pressure, power 200 W). Subsequently, a thick layer of SU-8 photoresist was spin-coated (Bid Tec Spin Coater, Model SP 100) over the wafer substrate (thick layers ca 100 μm: 1,000 rpm, 120 s or 2,500 rpm, 120 s for thinner films). The SU-8 photoresist was oven baked at 95° C. for 3-4 hours and evacuated to remove volatiles. The postbaking step can be critical for good adhesion between the substrate and the crosslinked SU-8 structures. Insufficient postbaking and exposure can cause the structures to peel off during development.
Exposure and Development of the Photoresist Mold—
The silicon wafer coated with SU-8 film was positioned on the aligner and exposed to UV through the transparency mask with appropriate fluidic patterns covering the entire disc (AB-M High Performance Table Top Alignment and Exposure System, 500 W mercury lamp), Typical exposure times were 1,500 mJ for 100-120 seconds. The exposed SU-8 mold was post-baked at 95° C. for 15 minutes and developed in XP SU-8 PEGMA developer (3 times). The wafer was washed in de-ionized water, dried with purified nitrogen and under vacuum for 15 minutes.
Polymerization Molding of PDMS CDs—
Polydimethylsiloxane was purchased from Dow Corning (Midland, Mich.). The base (Sylguard 184 silicone elastomer) and the curing agent (silicone resin solution) were thoroughly mixed in a weight proportion of 10:1. The mixture was de-gassed under vacuum for 30-45 minutes to avoid bubble formation. The silicone resin was weighed and poured over the patterned SU-8 coated wafer and spin-coated to obtain the uniform thickness. The disc shape was maintained using a plastic ring attached to the wafer. Low temperature curing (e.g. 65° C.) in a convection oven was preferred over high temperature baking due to the high thickness of the structures. High temperature (e.g. 150° C.) causes significant thermal stress at the interface between the SU-8 patterns and the Si substrate which can actually crack the substrate and peel off the SU-8 structures. Precise leveling of the PDMS on the substrate was applied to achieve a uniform thickness of the fluidic channels. The coated substrate was then cooled down gradually in an oven until its temperature decreased below 50° C. This step was intended to reduce residual stress in the pattern and at the Si/pattern interface. Development took about 50 min. The PDMS was unclamped from the wafer and the rotating CD disc was completed by sandwiching the PDMS sheet between two polycarbonate discs in the clean room.
Fabrication of CDs Using Dry-Laminated Photoresist
In a second method developed for the fabrication of the CD fluidic discs, a dry film photoresist (DF 8130, Think & Tinker, Palmer Lake, Colo.) was laminated onto a 1 mm thick polycarbonate disc with pre-drilled holes for sample introduction. The microfluidic pattern was made using a photolithographic pattern on the negative photoresist. This photoresist was exposed and developed in a similar manner as the PDMS discs. The fluidic system was capped with a polycarbonate disc that had been laminated with an optical quality pressure sensitive adhesive (3M 8142, 3M, Minneapolis, Minn.).
Fabrication of Machined and Laminated Polycarbonate Discs
For high sensitivity applications such as infectious disease detection, larger volumes of the samples may be needed to be able to extract and concentrate the targeted pathogen sample. CDs can be fabricated by machining the fluidic patterns in the acrylic materials and laminating with thin acrylic disc using pressure sensitive adhesives to enclose the fluidic channels.
The electrochemical pump on the 3DCDs was a simple well filled with a small amount of electrolyte (20-50 microliters of 0.05-0.1 M potassium nitrate) and with two platinum electrodes embedded in the wells. The electrolysis of water into hydrogen and oxygen gases at the electrodes pressurized the sample to be transported in the fluidic reservoirs positioned down flow in the microchannels allowing for on-demand, on-CD, counter-centrifugal pumping. The sample was centrifugally pumped to the edge reservoirs, back to the disc center as well as downward through holes in the acrylic support structure and into a chamber of the next disc in the 3DCD stack.
The discs making up the 3DCD stack were each 4.72″ in diameter and had eight 50 microliter pump wells embedded at the edge of the disc. This allowed for multiple samples to be tested on the disc simultaneously. The pump-wells were 0.2″ in diameter and centered 0.65″ from the edge of the disc at a spread of 360 between them. The vent holes and sample addition holes were 0.025″ to 0.0465″ in diameter.
Now with respect to
As certain changes may be made without departing from the scope of the present subject matter described herein, it is intended that all matter contained in the above description or shown in the accompanying drawings be interpreted as illustrative and not in a literal sense (and thus, not limiting). Practitioners of the art will realize that the method, device and system configurations depicted and described herein are examples of multiple possible system configurations that fall within the scope of the current subject matter described herein.
While the subject matter described herein has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the subject matter described herein. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective and scope of the subject matter described herein. All such modifications are intended to be within the scope of the claims appended hereto.
Throughout this application, various publications, patents and published patent applications may be cited. The disclosures of these publications, patents and published patent applications referenced in this application are hereby incorporated by reference in their entirety into the present disclosure. Citation herein by the Applicant of a publication, published patent application, or patent is not an admission by the Applicant of said publication, published patent application, or patent as prior art. Accordingly, all publications and patents cited in this specification are herein incorporated by reference as if each individual publication or patent were specifically and individually indicated to be incorporated by reference.
While this specification contains many specifics, these should not be construed as limitations on the scope of an invention that is claimed or of what may be claimed, but rather as descriptions of features specific to particular embodiments. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or a variation of a sub-combination. Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results.
Only a few examples and implementations are disclosed. Variations, modifications and enhancements to the described examples and implementations and other implementations may be made based on what is disclosed.
This application claims priority of co-pending U.S. Provisional Patent Application Ser. No. 60/994,613, filed Sep. 19, 2007. Priority of the aforementioned filing date is hereby claimed and the disclosure of the Provisional patent application is hereby incorporated by reference in its entirety.
This work was supported by NIH Grant No. 5R44AI052977 awarded by the National Institutes of Health. The United States government has certain rights to the invention.
Number | Date | Country | |
---|---|---|---|
60994613 | Sep 2007 | US |