With reference to the accompanying drawings in which like elements are designated by like numerals,
The lamp fixture has a fixture housing 12 which includes a cover 14 supported between two end caps 16. The cover 14 may be a single sheet of metal bent in a transverse dimension to define a generally planar housing top 18 between a rear wall 20 and a downwardly extending front 22. A removable interior partition 24 extends between the end caps 16 to define with the cover a wiring compartment 26 which runs the length of the housing 12. The partition includes a front 25 with a top edge 27 and a tab 28 projecting from the top edge, a bottom 30 with a rear edge 32, and side edges 34. As best seen in
The partition is assembled to the housing 12 by fitting the rear edge 32 against the rear wall 20 of the housing and pressing the front 25 towards the rear wall until it flexes sufficiently for tab 28 to align with and enter retaining slot 35, a condition depicted in
The partition provides a mounting chassis for the electrical components of the light fixture, namely power switch 36 mounted to the chassis bottom 30 and a lamp socket 38 mounted on the front 25 of the chassis. Switch 36 and socket 38 have terminal connectors interior to the compartment 26, and are interconnected by electric wiring 40 as seen in
A light reflector 42 is mounted to an underside 44 of the cover 14 in overlying relationship to a lamp bulb 46 fitted into the lamp socket 38. A heat shield plate 50 preferably of sheet metal is interposed between the cover 14 and reflector 42 for shielding the cover from heat radiated by the reflector. The reflector 42 and the plate 50 are supported on a pair of relatively small metal rivets 52 fastened to the cover 14. The heat shield plate is supported on the rivets in spaced relationship to the underside 44 of the cover by spacer washers 55, as shown in
During operation of the light fixture the reflector 42 becomes quite hot due to its close proximity to the halogen lamp bulb 46. Dissipation of heat by conduction from the reflector is limited by the conductivity of the rivets 52. Heat is however transferred to air around the reflector which then tends to rise in the housing 12. The rising hot air encounters the undersurface of the shield plate 50, which blocks direct upward air flow to the vents 54, and is deflected laterally until it reaches the edges of the plate, at which point the hot air is again free to rise into the cross-flow space 56. Since the vents lie over the plate 50, the hot air is forced to flow laterally and generally horizontally into the cross-flow space and over the top surface of the plate in order to exhaust from the housing through the vents. This flow of air in close contact with both the undersurface and the top surface of the plate 50 tends to carry away heat from the plate and consequently reduces heat transfer from the plate to the housing cover 14. This effect is enhanced by the narrow spacing between the plate and the cover which causes air flow to speed up in the restricted passage of cross-flow space 56, thereby improving cooling of the shield plate 50, before finally exhausting through vents 54.
The light fixture also has a rectangularly shaped prismatic light diffuser panel 60 of glass or other transparent or translucent heat resistant material. As best seen in
The front edge 74 of diffuser panel 60 is spaced from the lip 76 of the housing's downwardly sloping front 22, to define a first air gap 78, best seen in
Flow of air through the light fixture housing 12 is further facilitated by exterior spacers 82 rising above the housing top 18, as best seen in
Spacers 82 hold the housing top away from the mounting surface M, e.g. the bottom of a wall hung cabinet, to provide a three-fold benefit. Firstly, the sheet metal housing top 18 is moved away from contact with the mounting surface M, thereby greatly reducing conductive heat transfer to the mounting surface. Secondly, an open exhaust space 84 is created between the fixture 10 and mounting surface M which provides an insulating layer of air and facilitates rapid diffusion of hot air exhausting through vent openings 54 into the environment. Thirdly, mounting surface M is insulated from the hot metal cover 14 by the plastic spacers 82.
Yet another feature of the light fixture 10 is that the cover has a constant profile along its length. That is, the cross-sectional shape of the cover is constant in the longitudinal dimension of the cover, from one end fitting 16 to the other, except for the various openings in the cover. Cover 14 is bent only across its width or transverse dimension, at a bend line 90 to define the rear wall 20 and a radius 92 to define the downward sloping front 22, as indicated in
The cross sectional shape of partition chassis 24 also remains the same along its length. As a result, both cover 14 and partition 24 can be easily made in arbitrary lengths to accommodate more than one lamp socket and reflector assembly. The same end caps 16 may be used regardless of the length of the cover and partition, thereby simplifying manufacture of different sized light fixtures. Also, the same lamp socket/reflector/shield plate arrangement can be repeated at spaced intervals along the housing length to make multi-lamp fixtures. For example,
The end caps 16, which require no modification for fixtures of any length, may be of injection molded plastic and each equipped with integrally molded “knockout” 86 which can be opened to pass electrical supply wiring into the interior compartment 26 of housing 12. The knockouts in the end caps 16 can accommodate “wiremold” metal raceways, as well as Romex, flex conduit or rigid conduit. Additional knockouts may be provided in rear wall 20. Electrical power to the light fixture 10 can be delivered either by a conventional A.C. power cord 94 passed through a grommeted hole in rear wall 20, or for permanent installations suitable electrical conduit can be passed through any of the knockouts.
In the light fixtures shown in the drawings A.C. power is connected directly to each lamp socket. This arrangement requires use of high voltage halogen lamp bulbs designed to operate at A.C. line voltage. The light fixtures may be adapted, however, to use of low voltage bulbs by providing a suitable transformer or power converter in the wiring compartment 26.
From the foregoing it will be appreciated that a light fixture of simplified construction and assembly, easier maintenance and installation, improved ventilation and cooler operation has been disclosed.
While particular embodiments of the novel light fixture have been described and illustrated for purposes of clarity and example it should be understood that many changes, modifications and substitutions will be apparent to those having ordinary skill in the art without thereby departing from the scope of this invention, which is defined by the following claims.
This is a division of application Ser. No. 10/406,968 filed Apr. 3, 2003 which is a continuation of application Ser. No. 09/340,071 filed Jun. 25, 1999, now U.S. Pat. No. 6,565,234
| Number | Date | Country | |
|---|---|---|---|
| Parent | 10406968 | Apr 2003 | US |
| Child | 11530898 | US |
| Number | Date | Country | |
|---|---|---|---|
| Parent | 09340071 | Sep 2000 | US |
| Child | 10406968 | US |