This disclosure generally relates to forming a container for retaining a commodity, such as a solid or liquid commodity. More specifically, this disclosure relates to a centering device for use with a forming apparatus for forming blown plastic containers that minimizes contamination and maintains a preform in a desired orientation.
This section provides background information related to the present disclosure which is not necessarily prior art.
As a result of environmental and other concerns, plastic containers, more specifically polyester and even more specifically polyethylene terephthalate (PET) containers are now being used more than ever to package numerous commodities previously supplied in glass containers. Manufacturers and fillers, as well as consumers, have recognized that PET containers are lightweight, inexpensive, recyclable and manufacturable in large quantities.
Blow-molded plastic containers have become commonplace in packaging numerous commodities. PET is a crystallizable polymer, meaning that it is available in an amorphous form or a semi-crystalline form. The ability of a PET container to maintain its material integrity relates to the percentage of the PET container in crystalline form, also known as the “crystallinity” of the PET container. The following equation defines the percentage of crystallinity as a volume fraction:
where ρ is the density of the PET material; ρa is the density of pure amorphous PET material (1.333 g/cc); and ρc is the density of pure crystalline material (1.455 g/cc).
Container manufacturers use mechanical processing and thermal processing to increase the PET polymer crystallinity of a container. Mechanical processing involves orienting the amorphous material to achieve strain hardening. This processing commonly involves stretching an injection molded PET preform along a longitudinal axis and expanding the PET preform along a transverse or radial axis to form a PET container. The combination promotes what manufacturers define as biaxial orientation of the molecular structure in the container. Manufacturers of PET containers currently use mechanical processing to produce PET containers having approximately 20% crystallinity in the container's sidewall.
However, in some prior art configurations, preforms can become damaged or unsanitized during mechanical processing. That is, in some configurations, it has been found that preforms can become misaligned with the mechanical device during stretching and consequently lead to premature contact with the mold cavity and/or contact with other mechanical devices. This misalignment thus can lead to defects and wastage.
In some cases, thermal processing is used which involves heating the material (either amorphous or semi-crystalline) to promote crystal growth. On amorphous material, thermal processing of PET material results in a spherulitic morphology that interferes with the transmission of light. In other words, the resulting crystalline material is opaque, and thus, generally undesirable. Used after mechanical processing, however, thermal processing results in higher crystallinity and excellent clarity for those portions of the container having biaxial molecular orientation. The thermal processing of an oriented PET container, which is known as heat setting, typically includes blow molding a PET preform against a mold heated to a temperature of approximately 250° F.-350° F. (approximately 121° C.-177° C.), and holding the blown container against the heated mold for approximately two (2) to five (5) seconds. Manufacturers of PET juice bottles, which must be hot-filled at approximately 185° F. (85° C.), currently use heat setting to produce PET bottles having an overall crystallinity in the range of approximately 25%-35%.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
According to the principles of the present disclosure, a mold device and a method related thereto for forming a plastic container from a preform is provided. The mold device comprises a mold defining a mold cavity, a stretch initiation rod system for engaging an interior portion of the preform to define a stretch initiation area, and a centrally disposed pressure source positionable within the preform for introducing a pressurized fluid.
In some embodiments, the present teachings provide an apparatus for forming a plastic container from a preform, the preform having an upper portion with an opening, a body, and an internal volume accessible through the opening. The apparatus comprises: a mold having a mold cavity for expanding the preform, the mold cavity having an upper end, a lower end and a central portion extending from the upper end to the lower end along a longitudinal axis, the mold having a first aperture for accessing the mold cavity through the upper end, the first aperture being adapted for holding the preform at its upper portion while the body of the preform is placed into the central portion of the mold cavity; a liquid supply means for supplying a pressurized liquid through the opening and into the internal volume of the preform; and a centering rod disposed adjacent to the lower end of the mold cavity and telescopically extendable along the longitudinal axis into the central portion of the mold cavity.
In some embodiments, the centering rod comprises a tip portion at its upper end, the tip portion being adapted to engage with an exterior feature disposed on the outer surface of the body of the preform.
In some embodiments, the tip portion of the centering rod comprises a protrusion, the protrusion being adapted to engage an indentation disposed on the outer surface of the body of the preform.
In some embodiments, the tip portion of the centering rod comprises an indentation, the indentation being adapted to engage a protrusion extending from the outer surface of the body of the preform.
In some embodiments, the centering rod is telescopically extendable between an extended position and a retracted position, wherein in the retracted position the centering rod does not extend into the central portion of the cavity.
In some embodiments, the centering rod is disposed below the lower end of the mold cavity, the centering rod is telescopically extendable into the central portion of the mold cavity through a second aperture in the lower end of the mold cavity.
In some embodiments, the centering rod is integrated into a bottom portion of the mold.
In some embodiments, the apparatus comprises a stretch rod being movable along the longitudinal direction through the first aperture and into the internal volume of the preform.
Accordingly, the present teachings provide a method for forming a plastic container from a preform comprising the steps of: heating a preform having an internal volume; placing the preform into a mold cavity of a mold; expanding the preform by introducing a liquid at a pressure into the internal volume of the preform; and holding the preform within a central volume of the mold cavity with a telescopically expandable centering means.
In some embodiments, the telescopically expandable centering means extends to a fully extended position when no opposing longitudinal force is applied and retracts when an opposing longitudinal force is applied to the telescopically expandable centering means.
In some embodiments, the step of holding the preform within the central volume of the mold cavity comprises the step of engaging a tip portion of the telescopically expandable centering means with an exterior feature disposed on the outer surface of the preform.
In some embodiments, the step of holding the preform within the central volume commences no later than the step of expanding the preform.
In some embodiments, the preform is held within the central volume of the mold cavity for at least the first half of the step of expanding the preform by introducing a pressurized liquid into the internal volume of the preform.
In some embodiments, the method further comprises the step of stretching the preform by applying a stretching force to an internal surface of the preform.
In some embodiment, an apparatus is provided for forming a plastic container from a preform adapted to performing the steps of the aforementioned method.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings. Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a”, “an” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on”, “engaged to”, “connected to” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to”, “directly connected to” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath”, “below”, “lower”, “above”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
The present teachings provide for a stretch blow molding machine having a centering device operable for engaging a preform container during the molding process and a stretch initiation device operable to create a stretch initiation area on the preform container. The stretch initiation device, unlike molding machines, can be used to initiate the stretching of the preform and encourage the preform to engage the centering device. The centering device of the present teachings, unlike conventional molding machines, provides improved control for maintaining the preform in a predetermined orientation to minimize contact of the stretch rod to the preform, which could result in contamination of the finished container.
As will be discussed in greater detail herein, the shape of the container described in connection with the present teachings can be any one of a number of variations. By way of non-limiting example, the container of the present disclosure can be configured to hold any one of a plurality of commodities, such as beverages, food, or other hot-fill type materials.
It should be appreciated that the size and the exact shape of the centering device are dependent on the size and shape of the container to be formed. Therefore, it should be recognized that variations can exist in the presently described designs.
The present teachings relate to the forming of one-piece plastic containers. Generally, these containers, after formation, generally define a body that includes an upper portion having a cylindrical sidewall forming a finish. Integrally formed with the finish and extending downward therefrom is a shoulder portion. The shoulder portion merges into and provides a transition between the finish and a sidewall portion. The sidewall portion extends downward from the shoulder portion to a base portion having a base. An upper transition portion, in some embodiments, may be defined at a transition between the shoulder portion and the sidewall portion. A lower transition portion, in some embodiments, may be defined at a transition between the base portion and the sidewall portion.
The exemplary container may also have a neck. The neck may have an extremely short height, that is, becoming a short extension from the finish, or an elongated height, extending between the finish and the shoulder portion. The upper portion can define an opening. Although the container is shown as a drinking container and a food container, it should be appreciated that containers having different shapes, such as sidewalls and openings, can be made according to the principles of the present teachings.
The finish of the plastic container may include a threaded region having threads, a lower sealing ridge, and a support ring. The threaded region provides a means for attachment of a similarly threaded closure or cap (not illustrated). Alternatives may include other suitable devices that engage the finish of the plastic container, such as a press-fit or snap-fit cap for example. Accordingly, the closure or cap (not illustrated) engages the finish to preferably provide a hermetical seal of the plastic container. The closure or cap (not illustrated) is preferably of a plastic or metal material conventional to the closure industry and suitable for subsequent thermal processing.
The container can be formed according to the principles of the present teachings. A preform version of the container can include a support ring, which may be used to carry or orient the preform through and at various stages of manufacture. For example, the preform may be carried by the support ring, the support ring may be used to aid in positioning the preform in a mold cavity, or the support ring may be used to carry an intermediate container once molded. At the outset, the preform may be placed into the mold cavity such that the support ring is captured at an upper end of the mold cavity.
In general, as illustrated in
In one example, a machine places the preform heated to a temperature between approximately 190° F. to 250° F. (approximately 88° C. to 121° C.) into the mold cavity. The mold cavity may be heated to a temperature between approximately 250° F. to 350° F. (approximately 121° C. to 177° C.). An internal stretch rod apparatus can stretch or extend the heated preform within the mold cavity to a length approximately that of the intermediate container thereby molecularly orienting the polyester material in an axial direction generally corresponding with the central longitudinal axis of the container. While the stretch rod extends the preform, fluid (e.g. liquid, such as the final liquid commodity; air; and the like) from a centrally disposed pressure source, having a pressure between 300 PSI to 600 PSI (2.07 MPa to 4.14 MPa), assists in extending the preform in the axial direction and in expanding the preform in a circumferential or hoop direction thereby substantially conforming the polyester material to the shape of the mold cavity and further molecularly orienting the polyester material in a direction generally perpendicular to the axial direction, thus establishing the biaxial molecular orientation of the polyester material in most of the intermediate container. The pressurized fluid holds the mostly biaxial molecularly oriented polyester material against the mold cavity for a period of approximately two (2) to five (5) seconds before removal of the intermediate container from the mold cavity. This process is known as heat setting and results in a heat-resistant container suitable for filling with a product at high temperatures.
With particular reference to
With particular reference to
It should be noted, however, that stretch initiation rod system 20 can be separate from or joined with a typical central rod of a blow molding system. That is, a stretch initiation rod system 20 can be separately formed or integrally formed with the central rod. Stretch initiation rod system 20 can, however, employ distal tip 24 to engage or otherwise contact preform 112 to define the stretch initiation area and/or prestretch. By way of non-limiting example, prestretches of about 40 mm have been found to be beneficial, however other prestretch lengths, such as the distance X of
With reference to
In some embodiments, stretch initiation rod system 20 can be used to achieve a precise headspace within the final filled container. Specifically, as seen in
Moreover, in some embodiments, stretch initiation rod system 20 can be used to achieve a fluid pressure spike to aid in the shaping of preform 112 or container. Specifically, as seen in
Turning now to
To overcome this issue, with reference to
Still further, in some embodiments as illustrated in
In some embodiments of the present teachings, as illustrated in
In some embodiments where additional length of central exterior rod system 100 is required in order to contact preform 112 and/or where space limitations below mold 300 prevent use of a unitarily-formed central exterior rod system 100 having sufficient length to contact preform 112, a telescoping version of central exterior rod system 100 can be used. That is, in some embodiments, a telescoping counter stretch rod 102 can be employed having a first section 104 slidably receiving within a second section 106. It should be recognized, however, that additional telescoping sections can be used.
During manufacturing, according to the flow chart of
Alternatively, other manufacturing methods, such as for example, extrusion blow molding, one step injection stretch blow molding and injection blow molding, using other conventional materials including, for example, thermoplastic, high density polyethylene, polypropylene, polyethylene naphthalate (PEN), a PET/PEN blend or copolymer, and various multilayer structures may be suitable for the manufacture of plastic containers and used in connection with the principles of the present teachings.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the invention, and all such modifications are intended to be included within the scope of the invention.
This application claims the benefit of U.S. Provisional Application No. 61/552,075, filed on Oct. 27, 2011. The entire disclosure of the above application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3267185 | Freeman, Jr. | Aug 1966 | A |
3268635 | Kraus et al. | Aug 1966 | A |
3993427 | Kauffman et al. | Nov 1976 | A |
4039641 | Collins | Aug 1977 | A |
4177239 | Gittner et al. | Dec 1979 | A |
4321938 | Siller | Mar 1982 | A |
4432720 | Wiatt et al. | Feb 1984 | A |
4457688 | Calvert et al. | Jul 1984 | A |
4490327 | Calvert et al. | Dec 1984 | A |
4499045 | Obsomer | Feb 1985 | A |
4539172 | Winchell et al. | Sep 1985 | A |
4547333 | Takada | Oct 1985 | A |
4725464 | Collette | Feb 1988 | A |
4883631 | Ajmera | Nov 1989 | A |
4935190 | Tennerstedt | Jun 1990 | A |
4952134 | Bartley et al. | Aug 1990 | A |
5129815 | Miyazawa et al. | Jul 1992 | A |
5269672 | DiGangi, Jr. | Dec 1993 | A |
5344596 | Hendry | Sep 1994 | A |
5389332 | Amari et al. | Feb 1995 | A |
5403538 | Maeda | Apr 1995 | A |
5486103 | Meiring et al. | Jan 1996 | A |
5540879 | Orimoto et al. | Jul 1996 | A |
5599496 | Krishnakumar et al. | Feb 1997 | A |
5622735 | Krishnakumar et al. | Apr 1997 | A |
5635226 | Koda et al. | Jun 1997 | A |
5687550 | Hansen et al. | Nov 1997 | A |
5824237 | Stumpf et al. | Oct 1998 | A |
5962039 | Katou et al. | Oct 1999 | A |
6214282 | Katou et al. | Apr 2001 | B1 |
6277321 | Vailliencourt et al. | Aug 2001 | B1 |
6485670 | Boyd et al. | Nov 2002 | B1 |
6502369 | Andison et al. | Jan 2003 | B1 |
6692684 | Nantin et al. | Feb 2004 | B1 |
6729868 | Vogel et al. | May 2004 | B1 |
6749415 | Boyd et al. | Jun 2004 | B2 |
6767197 | Boyd et al. | Jul 2004 | B2 |
7141190 | Hekal | Nov 2006 | B2 |
7473388 | Desanaux et al. | Jan 2009 | B2 |
7553441 | Shi | Jun 2009 | B2 |
7658882 | Minganti | Feb 2010 | B2 |
7862327 | Rousseau et al. | Jan 2011 | B2 |
7914726 | Andison et al. | Mar 2011 | B2 |
7981356 | Warner et al. | Jul 2011 | B2 |
8017064 | Andison et al. | Sep 2011 | B2 |
8096483 | Riney | Jan 2012 | B2 |
8435026 | Andison et al. | May 2013 | B2 |
20010010145 | Tawa et al. | Aug 2001 | A1 |
20040070119 | Fibbia et al. | Apr 2004 | A1 |
20050067002 | Jones | Mar 2005 | A1 |
20050098527 | Yates, III | May 2005 | A1 |
20050206045 | Desanaux et al. | Sep 2005 | A1 |
20060068048 | Koda et al. | Mar 2006 | A1 |
20060097417 | Emmer | May 2006 | A1 |
20060231646 | Geary, Jr. | Oct 2006 | A1 |
20080029928 | Andison | Feb 2008 | A1 |
20080271812 | Stefanello et al. | Nov 2008 | A1 |
20100084493 | Troudt | Apr 2010 | A1 |
20100213629 | Adriansens | Aug 2010 | A1 |
20100303946 | Voth | Dec 2010 | A1 |
20110248429 | Maeda et al. | Oct 2011 | A1 |
20110265433 | Chauvin et al. | Nov 2011 | A1 |
Number | Date | Country |
---|---|---|
690003 | Mar 2000 | CH |
0379264 | Jul 1990 | EP |
0445465 | Nov 1990 | EP |
0849514 | Jun 1998 | EP |
1529620 | May 2005 | EP |
1577258 | Sep 2005 | EP |
1688234 | Aug 2006 | EP |
2887525 | Dec 2006 | FR |
57123027 | Jul 1982 | JP |
S6378728 | Apr 1988 | JP |
63-249616 | Oct 1988 | JP |
H07156933 | Jun 1995 | JP |
08-197563 | Aug 1996 | JP |
09-011325 | Jan 1997 | JP |
09057834 | Mar 1997 | JP |
09099477 | Apr 1997 | JP |
H1071641 | Mar 1998 | JP |
10-217258 | Aug 1998 | JP |
2000-043129 | Feb 2000 | JP |
2000-043130 | Feb 2000 | JP |
2000-167915 | Jun 2000 | JP |
2002-067131 | Mar 2002 | JP |
2003-053823 | Feb 2003 | JP |
2005-067002 | Mar 2005 | JP |
2005-254704 | Sep 2005 | JP |
2009-045876 | Mar 2009 | JP |
2005-529002 | Sep 2009 | JP |
10-0147442 | Aug 1998 | KR |
2006-0105883 | Oct 2006 | KR |
2006-0128062 | Dec 2006 | KR |
WO 0224435 | Mar 2002 | WO |
WO 03095179 | Nov 2003 | WO |
WO 2004065105 | Aug 2004 | WO |
WO 2005044540 | May 2005 | WO |
WO 2007120807 | Oct 2007 | WO |
WO 2008129013 | Oct 2008 | WO |
Entry |
---|
International Search Report and Written Opinion dated Mar. 25, 2013 in corresponding International Patent Application No. PCT/US2012/062210 (ten pages). |
Number | Date | Country | |
---|---|---|---|
20130106028 A1 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
61552075 | Oct 2011 | US |