This invention is designed to provide an apparatus to be used primarily in conjunction with a crane in situations requiring a load, be it materials, equipment or otherwise, to be inserted into a portal or under an obstruction by the use of an elongated boom. Oftentimes, during construction, it is necessary to place materials in elevated locations without the aid of an attached loading platform. This necessitates the use of hooks and ropes to position the load and manually pull it through an opening, usually a vacant window opening. This function can be dangerous to both the employees and to the load, especially when the task is at great heights. Prior art lifting beams, as shown in U.S. Pat. No. 6,048,012, utilizing a counterweight to offset the weight of the load require continuous counterweight adjustment, during load transfer, in order to prevent unwanted shifting of the load.
In view of the above, it should be appreciated that there is a need for a lifting beam that permits loads of various weights to be transferred from a ground level to an elevated level and through an opening in a building without the requirement of undue counterweight adjustment while the transfer is occurring. The present disclosure satisfies these and other needs and provides further related advantages.
The present invention is directed to a counterbalanced lifting beam having a centralized weight concentration that is designed to lift and permit balancing of heavy loads. The lifting beam includes an internal counterweight that is adapted to be hydraulically adjusted by use of a manually operated control mechanism. The lifting beam also includes a rigid elongated lifting tower that increases the stability of the lifting beam and includes a centralized storage cabinet, which stores control mechanism and increases the weight concentration and promotes the overall stability of the beam. Storage batteries and hydraulic control equipment are fully encased in the storage cabinet. As the lifting beam is held by the crane cable and a swivel, the beam can be moved in three dimensions.
Other features and advantages of the disclosure will be set forth in part in the description which follows and the accompanying drawings, wherein the embodiments of the disclosure are described and shown, and in part will become apparent upon examination of the following detailed description taken in conjunction with the accompanying drawings.
a is a cross sectional view of the lifting beam of
As illustrated in the drawings, the present invention relates to a lifting beam 10 which is adapted to be connected to a crane 13 and is designed to permit an operator to quickly level the beam 10 after a load 15 has been secured thereto as shown in
The housing member 12, as shown in
The lifting tower 16 includes a forward surface 32 that acts as a stop to prevent the lifting beam 10 from being inserted too far into the building, preventing damage to the crane cable 22. The forward surface 32 includes a pad 34 that acts as a cushion in the event the lifting tower 16 contacts the building structure, to prevent marring of the building's facade. The lifting tower 16 is rigidly secured to the housing member 12 to increase the stability of the lifting beam 10 and is designed to provide a pocket 36 to permit placement of the centralized storage cabinet 19. The lifting tower 16 is comprised of first and second side plates 38, 40 that are connected to sides 42 of the housing member 12. The lifting tower 16 includes a bridge plate 44 that interconnects the first and second side plates 38, 40 to form an I-beam arrangement and includes a first end 46 and a spaced apart second end 48 as shown in
The eyelet 28 is adapted to be connected to a hook 21 on the crane cable 22, as shown in
The use of the lifting tower 16 also permits the housing member 12 of the lifting beam 10 to be inserted further into the building structure, exceeding the range of a lifting beam in combination with a triangular harness and hook arrangement as illustrated in U.S. Pat. No. 6,048,012. Use of the triangular harness limits insertion of the housing member 12 into the building.
The load securing member 14, shown in the preferred embodiment as a swivel hook 21, is attached to the first end 24 of the housing member 12, as shown in
The preferred method of use of the lifting beam 10 involves a cooperative effort between the crane operator and the lifting beam operator. The eyelet 28 of the lifting tower 16 of the lifting beam 10, is attached to the crane 13 by means of a swivel hook, that is placed through the eyelet 28. After the housing member 12 has been initially lifted off of the ground, the lifting beam operator removes the control cable unit 58, as seen in
The alternative method is to wrap a sling or other strapping material around the housing member 12, also at the first end 24 of the housing member 12, and utilize a set of guide loops 64 positioned along the sides 42 of the housing member 12, as shown in
Once the lifting beam 10 is attached to the crane and the load 15 is attached to the housing member 12, the crane picks up the lifting beam 10 by slowly raising the crane cable 22. Initially, as the lifting beam 10 is slowly raised, the housing member 12 will not be horizontally oriented due to the load 15 at the first end 24 of the housing member 12. To level the housing member 12, the operator depresses the extend button 74 on the control cable unit 58, which energizes the hydraulic system, extending the hydraulic cylinder 54 and extending the counterweight 20 from the second end 26 of the housing member 12. Movement of the counterweight 20 in a direction opposite the load balances the overall weight of the beam and load at the fulcrum, returning the housing member 12 to a horizontal position. Due to the increased stability caused by the rigidly attached lifting tower 16 continual adjustments of the counterweight 20 are not required. The operator, with use of the cable unit 58 has the ability to reposition the load 15 to compensate for wind load and to raise or lower the load 15 for entry through an opening in a building structure.
The hydraulic system used to extend and retract the hydraulic cylinder 54 includes a hydraulic pump 66, a reservoir 68 for storing hydraulic fluid, electric power supply 70, solenoid valve 67 and the hydraulic cylinder 54, best illustrated in
In response to an unbalanced load, the control cable unit 58 is used by the operator to activate the hydraulic system. The power source for the hydraulic system consists of batteries 70 with an on-board charger 72. A gasoline engine also may also be used. The storage batteries 70 and the charger 72 are positioned within the storage cabinet 19, adjacent to the lifting tower 16 to center the load on the beam. The positioning of the batteries 70, charger 72 and pump 66 in the storage cabinet 19 adjacent to the lifting tower 16 concentrates the weight of the lifting beam 10 near the center adding stability eliminating the need for constant adjustment of the counterweight 20.
The storage cabinet 19 is positioned upon the housing member 12 and adjacent to the lifting tower 16. The storage cabinet 19 includes a hinge 78 that permits the storage cabinet 19 to be tilted to an open position to access the batteries, 70, charger 72, or hydraulic pump 66 within the cabinet 19. The oil reservoir 68 is located inside of the lifting tower 16 to further concentrate the load at the center of gravity of the beam. The storage cabinet 19 includes shelving units 80 that permit vertical stacking of the various accessories to further concentrate the equipment load adjacent to the lifting tower 16. The storage cabinet 19 also permits the storage of the hydraulic directional valve, the electrical disconnect and additional storage for tools and rigging.
The beam operator uses the control cable unit 58 to initially level the housing member 12 by pressing the extend button 74, as shown in
With the load 15 attached to the first end 24 of the housing member 12, the housing member 12 and attached load 15 is further lifted by the crane operator to eventually be delivered to the desired location. To ease in the axial displacement of the counterweight 20, a series of rollers or wear pads 77 are provided along the inner walls of the housing member 12, to enable the counterweight 20 to move easily and not to impinge on the sides, top or bottom of the housing member 12, as shown in
Once the housing member 12 and attached load 15 reaches the desired location, the first end 24 of the housing member 12 with the attached load 15 are inserted through an opening in a building to place the load 15 on a desired floor. Once the load is inserted through the opening in the building, the beam operator removes the control cable unit 58 and pushes the retract button 76, thereby axially displacing the counterweight 20 towards the first end 24 of the housing member 12 until there is sufficient slack in the securing device to release the load securing member 14 from the load 15.
Use of the cable unit 58 to control the lifting beam 10 relieves the responsibility of the crane operator, who is “blind” as to the final positioning of the load 15, to make any adjustments in the vertical direction. After the load 15 is disconnected from the first end 24 of the housing member 12, the beam operator utilizes the control cable unit 58 to manually raise the first end 24 until the housing member 12 has sufficient clearance to be safely removed. The beam operator then places the control cable unit 58 in the control cable storage box 60, and the crane operator backs out the housing member 12 from the opening in the building.
Removal of a load would be done in the opposite sequence as that shown and described for delivery of a load.
The lifting beam 10 can be designed for a wide range of loads and is sized to have the capability to balance loads attached to the beam. The lifting beam 10 saves substantial manpower, as only one operator is needed at both ends of the loading procedure, instead of multiple workers. In addition, there are increased safety effects of not having workers with pole hooks trying to physically pull the load 15 into the opening or under the structure. Finally, due to the balance of the lifting beam 10 caused by the rigid lifting tower 16 and concentrated load storage cabinet 19, constant adjustment of the counterweight 20 is not required during load transfer.
Various features of the invention have been particularly shown and described in connection with the illustrated embodiment of the invention. However, it must be understood that these particular arrangements merely illustrate, and that the invention is to be given its fullest interpretation within the terms of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2246142 | Moore | Jun 1941 | A |
3451224 | Colechia et al. | Jun 1969 | A |
3552793 | Lehtonen | Jan 1971 | A |
3572803 | Pompe | Mar 1971 | A |
3675960 | Mangold | Jul 1972 | A |
3675961 | Wheeler | Jul 1972 | A |
3762755 | Saether | Oct 1973 | A |
4017019 | Booth | Apr 1977 | A |
4017109 | Belinsky | Apr 1977 | A |
4245941 | Charonnat | Jan 1981 | A |
4251098 | Bellinsky | Feb 1981 | A |
4355832 | Anderson | Oct 1982 | A |
4418953 | Dunbar | Dec 1983 | A |
4425941 | Weaver | Jan 1984 | A |
4451198 | Sanderson | May 1984 | A |
4626012 | Weldele | Dec 1986 | A |
4671721 | Pratt et al. | Jun 1987 | A |
4759674 | Schroder et al. | Jul 1988 | A |
5312218 | Pratt et al. | May 1994 | A |
5355832 | Loh et al. | Oct 1994 | A |
6048012 | Selby et al. | Apr 2000 | A |
6578892 | Tsimmerman | Jun 2003 | B1 |
Number | Date | Country |
---|---|---|
266339 | Oct 1882 | DE |
24 52 345 | May 1976 | DE |
266-339 | Mar 1989 | DE |
2551738 | Mar 1985 | FR |
352033244 | Mar 1977 | JP |
969638 | Sep 1910 | RU |
1512908 | Oct 1924 | RU |
SU-969-638 | May 1982 | RU |
992383 | Jan 1983 | RU |
SU-992-383 | May 1983 | RU |
SU 1512-908 | Jul 1989 | RU |