Information
-
Patent Grant
-
6684934
-
Patent Number
6,684,934
-
Date Filed
Wednesday, May 24, 200024 years ago
-
Date Issued
Tuesday, February 3, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Elve; M. Alexandra
- Tran; Len
-
CPC
-
US Classifications
Field of Search
US
- 164 119
- 164 1221
- 164 255
- 164 63
-
International Classifications
-
Abstract
Countergravity casting of metals and metal alloys provides for melting of the metallic material under subambient pressure, evacuation of a gas permeable or impermeable mold under subambient pressure, and controlled, rapid filling of the mold while it is maintained under the subambient pressure by applying gas pressure locally on the molten metallic material in a sealed space defined by engagement of a mold base and a melting vessel with a seal therebetween. The gas pressure applied locally in the sealed space establishes a differential pressure on the molten metallic material to force it upwardly through the fill tube into the mold.
Description
FIELD OF THE INVENTION
The present invention relates to countergravity casting of metals and metal alloys.
BACKGROUND OF THE INVENTION
U.S. Pat. Nos. 3,863,706 and 3,900,064 describe countergravity casting process and apparatus which permit the melting of reactive metals and alloys under a vacuum, and the subsequent protection of the melted material by the introduction of an inert gas, such as argon, to a melting chamber. A gas permeable mold is positioned in a mold chamber above and separated by a horizontal isolation valve from the melting chamber. The mold chamber is evacuated and then inert gas, such as argon, is subsequently introduced to the mold chamber to the same pressure as the melting chamber, permitting the opening of the horizontal isolation valve between the mold and melting chambers. The gas permeable mold is lowered to immerse a mold fill tube into the melted material. The mold chamber then is re-evacuated to create a pressure differential sufficient to lift the melted material upwardly through the fill tube into the mold.
In spite of the success of the above countergravity casting process, production experience has identified a number of disadvantages which partially offset its advantages. In particular, the molten metal can not be introduced (countergravity cast) into the mold any more rapidly than the inert gas contained within that mold can be evacuated through its gas permeable wall. Most noticeably, when the molten metal rises beyond approximately two thirds of the height of the mold, the available mold wall surface area through which the remaining gas can be evacuated from the mold diminishes to a point where entry of metal into the top portion of the mold slows significantly. In cast parts with very thin walls, one disadvantage has been a tendency for the relatively slowly moving molten metal, which has lost much of its original superheat during the filling process to that point, to solidify prior to completely filling the cast shape. This results in excessively high rates of scrap in cast parts near the top of the mold, adding cost when prorated over the manufacture of acceptable cast parts.
Moreover, in practice of the above process, removal of reactive gasses from the mold chamber followed by their replacement with inert gas limits exposure of the mold itself to a relatively complete vacuum for only a very brief period of time (e.g. a few seconds). When gas permeable casting molds having interstitial spaces or pores are used in practice of the above process, gasses are trapped in the interstitial spaces or pores within the mold wall. Similarly, when preformed ceramic cores are positioned in the mold to create complex internal passages within a casting, they also have internal porosity which can contain entrapped gas. Exposure of the mold to high levels of vacuum for only a few seconds provides time for some, but not all, of these trapped gas molecules to escape. Backfilling with an inert gas basically reverses the process, pushing the trapped molecules back into the porous areas of the ceramic material. When the mold is filled with liquid metal or alloy, thermal expansion creates a secondary mechanism by which the gas is driven from the interstitial spaces or pores. Particularly when relatively thick castings, or castings containing ceramic cores, are produced using the above process, gas bubbles tend to form as a result of this thermal expansion and sometimes result in internal gas defects in the castings that increase rejection rates at x-ray inspection of the castings, and, occasionally, in external defects which are visually rejected, especially in hot isostatically pressed (HIPped) castings.
An object of the present invention is to provide countergravity casting method and apparatus that overcome the above disadvantages.
SUMMARY OF THE INVENTION
The present invention provides in one embodiment method and apparatus for countergravity casting metals and metal alloys (hereafter metallic material) that provide for melting of the metallic material in a melting vessel under subambient pressure, evacuation of a gas permeable or impermeable mold to a subambient pressure, and controlled, rapid filling of the mold while it is maintained under the subambient pressure by applying gas pressure locally on the molten metallic material in a sealed space defined by engagement of a mold base and the melting vessel with seal means therebetween. The gas pressure applied locally in the sealed space establishes a differential pressure on the molten metallic material to force it upwardly through the fill tube into the mold, which is maintained under subambient pressure.
Pursuant to one particular embodiment of the invention, a metallic material is melted in the melting vessel in a melting compartment under subambient pressure (e.g. vacuum of 10 microns or less). Concurrently, a preheated mold and fill tube are placed on a mold base outside of a casting compartment and then moved into the casting compartment where a mold bonnet is placed on the mold base about the preheated mold such that a mold clamp on the bonnet clamps the preheated mold within the mold base and bonnet. The mold fill tube extends through the mold base. The casting compartment and the mold are evacuated to subambient pressure (e.g. vacuum of 10 microns or less). The melting vessel then is moved into the casting compartment below the mold base. The mold base/bonnet are lowered to immerse the mold fill tube in the molten metallic material and to engage the mold base and the upper end of the melting vessel with a seal therebetween in such a way as to form a sealed gas pressurizable space between the molten metallic material in the melting vessel and the mold base. The mold base is clamped to the melting vessel. The sealed space then is pressurized with inert gas, such as argon, to establish a differential pressure effective to force the molten metallic material upwardly through the fill tube into the mold, while the mold is maintained under the subambient pressure. At the end of the defined time interval, the gas pressurization in the space over the molten melt surface is terminated and subambient pressure in the sealable space and casting compartment is equalized such that any metallic material remaining liquid within the mold drains back into the melting vessel. The mold base is unclamped from the melting vessel and the mold base/bonnet lifted to disengage from the melting vessel and withdraw the fill tube from the molten metallic material. The melting vessel is returned to the melting compartment, and an isolation valve is closed. The casting compartment can then be returned to ambient pressure and then opened, and the mold bonnet can be unclamped and separated from the mold base. The cast mold residing on the mold base then is removed and replaced with a new mold to be cast to repeat the casting cycle.
The present invention is advantageous in that the mold can be maintained under a continuous relative vacuum (e.g. 10 microns or less) prior to and during filling with the molten metallic material to reduce casting defects due to entrapped gas in the mold wall/core body, in that the mold fill rate is controllable and reproducible by virtue of control of positive gas pressure (e.g. up to 2 atmospheres) locally in the sealed space to improve mold filling and reduce casting defects due to inadequate mold fill out, especially in thin walls of the cast component, and to enable taller molds to be filled, and in that efficient utilization of the metallic material is provided in terms of the ratio of the weight of the component being cast relative to the total metallic material consumed during it's manufacture.
The above objects and advantages of the present invention will become more readily apparent from the following detailed description taken with the following drawings.
DESCRIPTION OF THE DRAWINGS
FIG. 1
is an elevational view of apparatus for practicing the invention with certain apparatus components shown in section.
FIG. 1A
is a partial elevational view of the wheeled shaft platform with the shaft broken away showing the wheels on a rail located behind the platform adjacent the induction power supply.
FIG. 2
is a partial elevational view of the casting compartment of FIG.
1
.
FIG. 3
is a plan view of the apparatus of FIG.
1
.
FIG. 4
is a sectional view of the melting vessel taken along the centerline of the shaft with some elements shown in elevation.
FIGS. 4A and 4B
are partial enlarged elevational views of the horizontal shunt ring and a vertical shunt tie-rod member.
FIG. 5
is a longitudinal sectional view of the temperature measurement and control device to illustrate certain internal components shown in elevation.
FIG. 6
is an elevational view, partially broken away, of the ingot charging system.
FIG. 6A
is a partial elevational view of the hook.
FIG. 7
is a diametral sectional view of mold bonnet on the mold base clamped on the melting vessel with certain componets shown in elevation.
FIG. 8
is a plan view of the mold bonnet clamped on the mold base.
FIG. 9A
is a partial plan view of the clamp ring on the mold bonnet in an unclamped position.
FIG. 9B
is a partial elevational view, partially in section, of the clamp ring on the mold bonnet in the unclamped position.
FIG. 9C
is a partial plan view of the clamp ring on the mold bonnet in a clamped position.
FIG. 9D
is a partial elevational view, partially in section, of the clamp ring on the mold bonnet in the clamped position.
FIGS. 10 through 14
are schematic views of the apparatus showing successive method steps for practicing the invention.
DESCRIPTION OF THE INVENTION
FIG. 1
shows a floor level front view of apparatus, with certain components shown in section for purposes of illustration, for practicing an embodiment of the invention for melting and countergravity casting nickel, cobalt and iron base superalloys for purposes of illustration and not limitation. For example, the melting chamber
1
and shaft
4
d
are shown in section for purposes of illustration. The invention is not limited to melting and casting of these particular alloys and can be used to melt and countergravity cast a wide variety of metals and alloys where it is desirable to control exposure of the metal or alloy in the molten state to oxygen and/or nitrogen.
A melting chamber or compartment
1
is connected by a primary isolation valve
2
, such as a sliding gate valve, to a casting chamber or compartment
3
. The melting compartment
1
comprises a double-walled, water-cooled construction with both walls made of stainless steel. Casting compartment
3
is a mild steel, single wall construction. Shown adjacent to the melting compartment
1
is a melting vessel location control cylinder
4
which moves hollow shaft
4
d
connected to a shunted melting vessel
5
horizontally from the melting compartment
1
into the casting compartment
3
along a pair of tracks
6
(one track shown) that extend from the compartment
1
to the compartment
3
.
The melting vessel
5
is disposed on a trolley
5
t
having front, middle, and rear pairs of wheels
5
w
that ride on the tracks
6
. The steel frame of the trolley
5
t
is bolted to the melting vessel and to the end of shaft
4
d
. The tracks
6
are interrupted at the isolation valve
2
. The interruption in the tracks
6
is narrow enough that the trolley
5
t
can travel over the interruption in the tracks
6
at the isolation valve
2
as it moves between the compartments
1
and
3
without simultaneously disengaging more than one pair of the wheels
5
w.
The control cylinder
4
includes a cylinder chamber
4
a
fixed to apparatus steel frame F at location L and a cylinder rod
4
b
connected to a wheeled platform structure
4
c
that includes front and rear, upper and lower pairs of wheels
4
w
that ride on a pair of parallel rails
4
r
1
above and below the rails,
FIG. 1A and 3
. The rails
4
r
1
are located at a level or height corresponding generally to that of shaft
4
d
. In
FIG. 1
, the rear rail
4
r
1
(nearer power supply
21
shown in
FIG. 3
) is hidden behind the shaft
4
d
and the front rail
4
r
1
is omitted to reveal the shaft
4
d
. Wheels
4
w
and rail
4
r
1
are shown in FIG.
1
A. Hollow shaft
4
d
is slidably and rotatably mounted by a bushing
4
e
at one end of the platform structure
4
c
and by a vacuum-tight bushing
4
f
at the other end in an opening in the dish-shaped end wall
1
a
of melting compartment
1
. Linear sliding motion of the hollow shaft
4
d
is imparted by the drive cylinder
4
to move the structure
4
c
on rails
4
r
1
.
When the melting compartment
1
has been opened by a hydraulic cylinder
8
powering opening of the dish-shaped end wall
1
a
of the melting compartment to ambient atmosphere, the melting vessel
5
can be disengaged from the trolley tracks
6
and inverted or rotated by a direct drive electric motor and gear drive system
7
disposed on platform structure
4
c
. The rotational electric motor and gear drive system
7
includes a gear
7
a
that drives a gear
7
b
on the hollow shaft
4
d
to effect rotation thereof. Electrical control of the direct drive motor is provided from a hand-held pendent (not shown) by a worker/operator. The melting vessel
5
can be inverted or rotated as necessary to clean, repair or replace the crucible C therein,
FIG. 4
, or to pour excess molten metallic material from the melting vessel at the end of a casting campaign into a receptacle (not shown) positioned below the crucible.
FIGS. 1 and 4
show that hollow shaft
4
d
contains electrical power leads
9
which carry electrical power from a power supply
21
to the melting vessel
5
, which contains a water cooled induction coil
11
shown in
FIG. 4
in melting vessel
5
. The leads
9
are spaced from the hollow shaft
4
d
by electrical insulating spacers
38
. Shown in more detail in
FIG. 4
, the power leads
9
comprise a cylindrical tubular water-cooled inner lead tube
9
a
and an annular outer, hollow, double-walled water-cooled lead tube
9
b
separated by electrical insulating material
9
c
, such as G10 polymer or phenolic, both at the end and along the space between the lead tubes. A cooling water supply passage is defined in the hollow inner lead tube
9
a
and a water return passage is defined in the outer, double-walled lead tube
9
b
to provide both supply and return of cooling water to the induction coil
11
in the melting vessel
5
. Returning to
FIG. 1
, electrical power and water are provided, and exhausted as well, to the power leads
9
a
,
9
b
through flexible water-cooled power cables
39
, connected to the outer end of hollow shaft
4
d
and to a bus bar
9
d
to accommodate its motion during operation. The power supply
21
is connected by these power cables to external fittings FT
1
, FT
2
connected to each power lead tube
9
a
,
9
b
at the end of the shaft
4
d
. The electrical power supply includes a three-phase 60 Hz AC power supply that is converted to DC power for supply to the coil
11
. The electric motor
7
c
that rotates shaft
4
d
receives electrical power from a flexible power cable (not shown) to accommodate motion of the shaft
4
d.
A gas pressurization conduit
4
h
,
FIGS. 4 and 13
, also is contained in the hollow shaft
4
d
and is connected by a fitting on the end of shaft
4
d
to a source S of pressurized gas, such as a bulk storage tank of argon or other gas that is non-reactive with the metallic material melted in the vessel
5
. The conduit
4
h
is connected to the source S through a gas control valve VA by a flexible gas supply hose H
1
to accommodate motion of shaft
4
d
. A vaccum conduit
4
v
,
FIGS. 4 and 13
, also is contained in the hollow shaft
4
d
. Vacuum conduit
4
v
is connected by a fitting on the end of shaft
4
d
to vacuum pumping system
23
a
,
23
b
, and
23
c
via a valve VV and flexible hose H
2
at the end of the shaft
4
d
to accommodate motion of shaft
4
d
. The vacuum pumping system
23
a
,
23
b
, and
23
c
, evacuates the melting compartment
1
as described below.
As mentioned above, rotational motion of the melting vessel
5
is provided by direct drive electric motor
7
c
and gears
7
a
,
7
b
of drive system
7
that may be activated when the melting compartment
1
has been opened by the hydraulic cylinder
8
powering such opening. In particular, the cylinder chamber
8
a
is affixed to a pair of parallel rails
8
r
that are firmly mounted to the floor. The cylinder rod
8
b
connects to the rail-mounted movable apparatus frame F at F
1
where it connects to the dish-shaped end wall
1
a
of the melting compartment
1
. The melting compartment end wall
1
a
can be moved by cylinder
8
horizontally away from main melting compartment wall
1
b
at a vacuum-tight seal
1
c
after clamps
1
d
are released to provide access to the melting compartment; for example, to clean or replace the crucible C in the melting vessel
5
. The seal
1
c
remains on melting compartment wall
1
b
. The support frame F and end wall
1
a
are supported by front and rear pairs of wheels
8
w
on parallel rails
8
r
during movement by cylinder
8
.
A conventional hydraulic unit
22
is shown in
FIGS. 1 and 3
and provides power to all hydraulic elements of the apparatus. The hydraulic unit
22
is located along side the melting compartment
1
.
In
FIG. 1
, conventional vacuum pumping systems
24
a
and
24
b
are shown for evacuating the casting compartment
3
and, as required, all other portions of the apparatus to be described below with the exception of the melting chamber
1
. The melting compartment
1
is evacuated by separate conventional vacuum pumping system
23
a
,
23
b
and
23
c
shown in FIG.
3
. Operation of the apparatus is controlled by a combination of a conventional operator data control interface, a data storage control unit, and an overall apparatus operating logic and control system represented schematically by CPU in FIG.
3
.
The vacuum pumping system
23
for the melting compartment
1
comprises three commercially available pumps to achieve desired negative (subambient) pressure; namely, a Stokes
412
microvac rotary oil-sealed vacuum pump
23
a
, a ring jet booster pump
23
b
, and a rotary vane holidng pump
23
c
operated to provide vacuum level of 50 microns and below (e.g. 10 microns or less) in melting compartment
1
when isolation valve
2
is closed.
A temperature measurement and control instrumentation device
19
is provided at the melting compartment
1
,
FIGS. 1 and 5
, and comprises a multi-function device including a movable immersion thermocouple
19
a
for temperature measurement with maximum accuracy, combined with a stationary single color optical pyrometer
19
b
for temperature measurement with maximum ease and speed. The immersion thermocouple is mounted on a motor driven shaft
19
c
to lower the thermocouple into the molten metallic material in the crucible C when isolation valve
19
d
is opened to communicate to melting chamber
1
. The shaft
19
c
is driven by electric motor
19
m
,
FIG. 1
, with its movement guided by guide rollers
19
r
. The thermocouple and pyrometer are combined in a single sensing unit to permit simultaneous measurement of metal temperature by both the optical and immersion thermocouple. The optical pyrometer is a single color system that measures temperature in the range of 1800 to 3200 degrees F. Because relatively minor issues such as a dirty sight glass impact the accuracy of optical readings, frequent calibration against immersion thermocouple readings is highly advisable for good process control. The thermocouple and pyrometer provide temperature signals to the CPU. A vacuum isolation chamber
19
v
can be opened after isolation valve
19
d
is closed by handle
19
h
to permit access for replacement of the immersion thermocouple tip and cleaning of the optical pyrometer sight glass
19
g
without breaking vacuum in the melting chamber
1
. The envelope around the optical pyrometer is water cooled for maximum sensitivity and accuracy of temperature measurement. The melting vessel
5
is maintained directly below the device
19
to monitor and control the melt temperature during melting.
An ingot charging device
20
is illustrated in
FIGS. 1 and 6
, and
6
A and is communicated to the melting compartment
1
. This device is designed to permit simple and rapid introduction of additional metallic material (e.g. metal alloy) in the form of individual ingots I to the molten metallic material in the melting vessel
5
without the need to break vacuum in the melting chamber
1
. This saves substantial time and avoids repeated exposure of the hot metal remaining in the crucible to contamination by either the oxygen or the nitrogen in the atmosphere. The device comprises a chamber
20
a
, chain hoist
20
b
driven by an electric motor
20
c
controlled by pendent operator hand control HP (FIG.
3
), an ingot-loading assembly
20
d
hinged on the left side of the device in FIG.
6
. Also shown are a door
20
e
hinged on the right side of the device and shown closed with cut away views, and an isolation valve
20
f
(called a load valve) which isolates or communicates the ingot feeder device to the melt chamber
1
. With the load valve
20
f
closed, the pressure in chamber
20
a
can be brought up to atmospheric pressure so that the door
20
e
can be opened.
When the melt vessel
5
is ready to be charged, a preheated ingot I (preheated to remove any moisture from the ingot) is loaded onto the ingot-loading assembly
20
d
. The ingot-loading assembly
20
d
is then swung into the chamber
20
a
. The chain hoist
20
b
is lowered into position so that hook
20
k
engages ingot loop LL. The hoist
20
b
is then raised to take the ingot I off from ingot-loading assembly
20
d
. The ingot-loading assembly
20
d
is swung out of the chamber
20
a
. The door
20
e
then is closed and sealed. At this point, vacuum is applied to the chamber
20
a
by vacuum pumping system
24
a
and
24
b
via vacuum conduits
24
c
and
24
d
(
FIG. 3
) connected to vacuum port
20
p
to bring the pressure down to the same vacuum as in the melt chamber or compartment
1
. The load valve
20
f
then is opened to provide communication to the melting vessel
5
and the hoist
20
b
is lowered by motor
20
c
until the ingot I is just above crucible C in the melting vessel
5
.
The hoist speed is then slowed down so that the ingot is preheated as it is lowered into the crucible C. When the ingot is in the crucible, the weight is automatically released from the chain hoist hook
20
k
by upward pressure from the crucible or molten metallic material in the crucible. A counterweight
20
w
on the hook
20
k
,
FIG. 6A
, causes the hook to be removed from the ingot I.
The hoist
20
b
is then raised and the load valve
20
f
is closed. The procedure is repeated to charge additional individual ingots into the melting vessel until the crucible C is fully charged. A sight-glass
20
g
,
FIG. 1
, cooperating with a mirror
20
m
permit viewing of the crucible to determine if it is properly charged.
When the melting vessel
5
has been pulled out of the melt chamber
1
for crucible cleaning, a full load of ingots can be placed in the crucible C before the melting vessel
5
is returned to the melt chamber
1
. This eliminates the need to charge ingots one at a time for the first charge. After the melting vessel
5
is charged with ingots at the ingot charging device
20
, it is moved to the instrumentation device
19
where the ingots are melted by energization of the induction coil
11
.
Referring to
FIG. 4
, the melting vessel
5
includes a steel cylindrical shell
5
a
in which the water cooled, hollow copper induction coil
11
is received. The coil
11
is connected to leads
9
a
,
9
b
by threaded fittings FT
5
, FT
6
; and FT
4
, FT
7
. The coil
11
is shunted by upper and lower horizontal shunt rings
5
b
,
5
c
connected by a plurality (e.g. six) of vertical shunt tie-rod members
5
d
spaced apart in a circumferential direction between the upper and lower shunt rings
5
b
,
5
c
to concentrate the magnetic flux near the coil and prevent the transfer of the induction power to surrounding steel shell
5
a
. The tie rod members
5
d
are connected to the upper and lower shunt rings
5
a
,
5
b
by threaded rods (not shown). Upper and lower coil compression rings
5
e
,
5
f
and pairs of spacer rings
5
g
,
5
h
are provided above and below the respective shunt rings
5
b
,
5
c
for mechanical assembly.
The shunt rings
5
b
,
5
c
and tie-rod members
5
d
comprise a plurality of alternate iron laminations
5
i
and phenolic resin insulating laminations
5
p
to this end. A flux shield
5
sh
made of electrical insulating material is disposed beneath the lower-shunt ring
5
c.
A closed end cylindrical (or other shape) ceramic crucible C is disposed in the steel shell
5
a
in a bed of refractory material
5
r
that is located inwardly of the induction coil
11
. The ceramic crucible C can comprise an alumina or a zirconia ceramic crucible when nickel base superalloys are being melted and cast. Other ceramic crucible materials can be used depending upon the metal or alloy being melted and cast. The crucible C can be formed by cold pressing ceramic powders and firing.
The crucible is positioned in bed
5
r
of loose, binderless refractory particles, such as magnesium oxide ceramic particles of roughly 200 mesh size. The bed
5
r
of loose refractory particles is contained in a thin-wall resin-bonded refractory particulate coil grouting
5
l
, such as resin-bonded alumina-silica ceramic particles of roughly 60 mesh size, that is disposed adjacent the induction coil
11
, FIG.
4
.
The resin-bonded liner
5
l
is formed by hand application and drying, and then the loose refractory particulates of bed
5
r
are introduced to the bottom of the liner
5
l
. The crucible C then is placed on the bottom loose refractory particulates and the space between the vertical sidewall of the crucible C and the vertical sidewall of the liner
5
l
is filled in with loose refractory particulates of bed
5
r.
An annular gas pressurization chamber-forming member
5
s
is fastened by suitable circumferentially spaced apart fasteners
5
j
and annular seal
5
v
atop the shell
5
a
. The member
5
s
includes an upper circumferential flange
5
z
, a large diameter circular central opening
501
and a lower smaller diameter circular opening
502
adjacent the upper open end of the crucible C and defining a central space SP. Water cooling passages
5
pp
are provided in the member
5
s
, which is made of stainless steel. The water cooling passages
5
pp
receive cooling water from water piping
5
p
contained within the hollow shaft
4
d
. The return water runs through a similar second water piping (not shown) located directly behind piping
5
p.
Gas pressurization conduit
4
h
extends to the melting vessel
5
and is communicated to the central space SP of the member
5
s
and to the space around the outside of the melting induction coil
11
to avoid creation of a different pressure across the crucible C. Similarly, vacuum conduit
4
v
extends to the melting vessel
5
and is communicated to the central space SP of the member
5
s
and to the space around the outside of the melting induction coil
11
in a manner similar to that shown for conduit
4
h
in FIG.
4
.
In practice of the invention, after the melting vessel
5
is charged with ingots at the ingot charging device
20
, it is moved to the instrumentation device
19
where the ingots are melted in the melting compartment
1
under a full vacuum (e.g. 10 microns or less) by energization of the induction coil
11
to this end to form a bath of molten metallic material M in the crucible C. The vacuum conduit
4
v
,
FIG. 4
, and valve VV,
FIGS. 1 and 3
, are controlled to provide the vacuum in space SP and in the space around the outside of the induction coil
11
of the melting vessel
5
during melting.
When the ingots have been melted in the melting vessel
5
, a preheated ceramic mold
15
is loaded into casting chamber or compartment
3
isolated by valve
2
from the melting compartment
1
. The casting compartment
3
comprises an upper chamber
3
a
and lower chamber
3
b
having a loading/unloading sealable door
3
c
, FIG.
2
. The lower chamber also includes a horizontally pivoting mold base support
14
. The mold base support
14
comprises a vertical shaft
14
a
and a hydraulic actuator
14
b
on the shaft
14
a
for moving up and down and pivoting motion thereon. The shaft
14
a
is supported between upper and lower triangular plates
14
p
welded to a fixed apparatus frame and the side of the casting compartment
3
. A support arm
14
c
extends from the actuator
14
b
and is configured as a fork shape to engage and carry a mold base
13
.
The mold base
13
,
FIGS. 2 and 7
, comprises a flat plate having a central opening
13
a
therethrough. The mold base
13
includes a plurality (e.g. 4) of vertical socket head shoulder locking screws
13
b
shown in
FIGS. 2
,
7
,
8
,
9
B, and
9
D, circumferentially spaced 90 degrees apart on the upwardly facing plate surface for purposes to be described. The mold base includes an annular short, upstanding stub wall
13
c
on upper surface
13
d to form a containment chamber that collects molten metallic material that may leak from a cracked mold
15
, FIG.
7
.
An annular seal SMB
1
comprising seal means is disposed between the mold base
13
and the flange
5
z
of the melting vessel
5
. The seal is adapted to be sealed between the mold base
13
and the flange
5
z
of the melting vessel
5
to provide a gas tight-seal when the mold base
13
and melting vessel
5
are engaged as described below. One or multiple seals SMB
1
can be provided between the mold base
13
and melting vessel
5
to this end. The mold base seal SMB
1
can comprise a silicone material. The seal SMB
1
typically is disposed on the lower surface
13
e of the mold base
13
so that it is compressed when the mold base and melting vessel are engaged, although the seal SMB
1
can alternately, or in addition, be disposed on the flange
5
z
of the melting vessel
5
. A similar seal SMB
2
is provided on the lower end flange
31
c
of a mold bonnet
31
, and/or upper surface
13
d
of mold base
13
, to provide a gas-tight seal between the mold base
13
and mold bonnet
31
.
The mold base
13
is adapted to receive a preheated mold-to-base ceramic fiber seal or gasket MS
1
about the opening
13
a
and a preheated ceramic mold
15
and a preheated snout or fill tube
16
. The preheated mold
15
with fill tube
16
is positioned on the mold base
13
with the fill tube
16
extending through the opening
13
a
beyond the lowermost surface
13
e
of the mold base
13
and with the bottom of the mold
15
sitting on a second seal MS
2
, a ceramic fiber gasket which seals the mold
15
and the fill tube
16
.
The ceramic mold
15
can be gas permeable or gas impermeable. A gas permeable mold can be formed by the well known lost wax process where a wax or other fugitive pattern is repeatedly dipped in a slurry of fine ceramic powder in water or organic carrier, drained of excess slurry, and then stuccoed or sanded with coarser ceramic particles to build up a gas permeable shell mold of suitable wall thickness on the pattern. A gas impermeable mold
15
can be formed using solid mold materials, or by the use in the lost wax process of finer ceramic particles in the slurries and/or the stuccoes to form a shell mold of such dense wall structure as to be essentially gas impermeable. In the lost wax process, the pattern is selectively removed from the shell mold by conventional thermal pattern removal operation such as flash dewaxing by heating, dissolution or other known pattern removal techniques. The green shell mold then can be fired at elevated temperature to develop mold strength for casting.
In practicing the invention, the ceramic mold
15
typically is formed to have a central sprue
15
a
that communicates to the fill tube
16
and supplies molten metallic material to a plurality of mold cavities
15
b
via side gates
15
c
arranged about the sprue
15
a
along its length as shown in U.S. Pat. Nos. 3,863,706 and 3,900,064, the teachings of which are incorporated herein by reference.
The support arm
14
c
loaded with mold base
13
and mold
15
thereon is pivoted into chamber
3
with the access door
3
c
open and is placed on support posts
3
d
fixed to the floor of the lower chamber
3
b
, FIG.
2
.
In the upper chamber
3
a
of the casting compartment is a double-walled, water cooled mold hood or bonnet
31
that is lowered onto the mold base
13
about the mold
15
, FIG.
7
. The mold bonnet
31
includes a lower bell-shaped region
31
a
that surrounds the mold
15
and an upper cylindrical tubular extension
31
b
, which passes through a vacuum-tight bushing SR to permit vertical movement of the bonnet
31
. The lower region
31
a
includes lowermost circumferential end flange
31
c
adapted to mate with the mold base
13
with the seal SMB
2
compressed therebetween to form a gas-tight seal, FIG.
7
. The flange
31
c
includes a rotatable mold clamp ring
33
that has a plurality of arcuate slots
33
a
each with an enlarged entrance opening
33
b
and narrower arcuate slot region
33
c
. A cam surface
33
s
is provided on the clamp ring proximate each slot
33
a
. The mold clamp ring
33
is rotated by a handle
33
h
by the worker loading the combination of mold base
13
/mold
15
into the casting compartment
3
. In particular, the mold bonnet
31
is lowered onto mold base
13
such that locking screws
13
b
are received in the enlarged opening
33
a
,
FIGS. 9A
,
9
B. Then, the worker rotates the ring
33
relative to the mold base
13
to engage cam surfaces
33
s
and the undersides of the heads
13
h
of locking screws
13
b
,
FIGS. 9C
,
9
D, to cam lock mold base
13
against the bottom of mold bonnet
31
.
The flange
31
c
has fastened thereto a plurality (e.g. 4) of circumferentially spaced apart, commercially available argon-actuated toggle lock clamps
34
(available as clamp model No. 895 from DE-STA-CO) that are actuated to clamp the melting vessel
5
and mold base
13
together during countergravity casting in a manner described below. The toggle lock clamps
34
receive argon from a source outside compartment
3
via a common conduit
34
c
that extends in hollow extension
31
b
,
FIG. 7
, and that supplies argon to a respective supply conduit (not shown) to each clamp
34
. The toggle lock clamps include a housing
34
a
mounted by fasteners on the flange
31
c
and pivotable lock member
34
b
that engages the underside of circumferential flange
5
z
of the gas-pressurization. chamber-forming member
5
s
,
FIG. 7
to clamp the melting vessel
5
, mold base
13
and mold bonnet
31
together with seal SMB
1
compressed between flange
5
z
and mold base
13
to provide a vacuum tight seal.
The hollow extension
31
b
of the mold bonnet
31
is connected to a pair of hydraulic cylinders
35
in a manner permitting the mold bonnet
31
to move up and down relative to the casting compartment
3
. The hydraulic cylinder rods
35
b
are mounted on a stationary mounting flange
3
e
of chamber
3
. The cylinder chambers
35
a
connect to the mold bonnet extension
31
b
at the flange
3
f
, which moves vertically with the actuation of the cylinders and raises or lowers the mold bonnet. The mold bonnet extension
31
b
moves through a vacuum-tight seal SR relative to the casting compartment
3
.
A hydraulic cylinder
37
also is mounted on the upper end of the mold bonnet extension
31
b
and includes cylinder chamber
37
a
and cylinder rod
37
b
that is moved in the mold bonnet extension
31
b
to raise or lower the mold clamp
17
. In particular, after the mold bonnet
31
is lowered and locked with the mold base
13
, the cylinder
37
lowers the mold clamp
17
against the top of the mold
15
in the bonnet
31
to clamp the mold
15
and seals MS
1
and MS
2
against the mold base
13
, FIG.
7
.
The casting compartment
3
is evacuated using conventional vacuum pumping systems
24
a
and
24
b
shown in
FIGS. 1 and 3
. The casting compartment vacuum pumping systems
24
a
and
24
b
each include a pair of commercially available pumps to achieve desired negative (subambient) pressure; namely, a Stokes 1739HDBP system which is comprised of a rotary oil-sealed vacuum pump and a Roots-type blower to provide an initial vacuum level of roughly 50 microns and below in casting compartment
3
when isolation valve
2
is closed.
The vacuum pumping systems
24
a
and
24
b
singly or in tandem, individually or simultaneously, evacuate the upper chamber
3
a
of the casting compartment
3
via conduits
24
g
,
24
h
, the ingot charging device
20
described above via branch conduits
24
c
,
24
d
and the temperature measurement device
19
via a flexible conduit (not shown) connecting with conduit
24
d
. The vacuum pumping systems
24
a
and
24
b
also evacuate the mold bonnet extension
31
b
via a pair of flexible conduits
24
e
(one shown in
FIG. 1
) connected to branch conduit
24
f
and to ports
310
(one shown) on opposite diametral sides of the extension
31
b
,
FIGS. 1 and 2
, and the compartment
3
b
via conduit
24
h
. Conduits
24
e
are omitted from FIG.
3
.
Operation of the apparatus detailed above will now be described with respect to
FIGS. 10-14
. After the melting vessel
5
is charged with ingots I at the ingot charging device
20
, it is moved by shaft
4
d
to the instrumentation device
19
where the ingots are melted in the melting compartment
1
under a full vacuum (e.g. 10 microns or less) by energization of the induction coil
11
to input the required thermal energy, FIG.
10
. When melting of the ingots in crcuible C is completed and the melt is brought to the required casting temperature as determined by temperature measurement device
19
and energization of induction coil
11
, a preheated ceramic mold
15
with preheated fill tube
16
and preheated seals MS
1
and MS
2
are loaded on a mold base
13
on support arm
14
c
, FIG.
10
. The support arm
14
c
then is pivoted to place the mold base
13
in the casting compartment
3
via the access door
3
c
with compartment
3
isolated by valve
2
from the melting compartment
1
, FIG.
11
. The mold bonnet
31
is in the raised position in upper chamber
3
a.
After the mold base
13
is placed in the casting chamber
3
a
, the mold bonnet
31
is lowered by cylinders
35
to align the locking screws
13
b
in the slot openings
33
b
of the locking ring
33
. The worker then rotates (partially turns) the locking ring
33
to lock the mold base
13
against the mold bonnet
31
by cam surfaces
33
s
engaging locking screw heads
13
h
. The mold clamp
17
is lowered by cylinder
37
to engage and hold the mold
15
and seals MS
1
, MS
2
against the mold base
13
. The mold base
13
and mold bonnet
31
form a mold chamber MC with mold
15
therein when clamped together. The clamped mold base/bonnet
13
/
31
then are lifted back into the upper chamber
3
a
of the casting compartment
3
, and the mold base support arm
14
c
is swung away by the worker so that the casting compartment door
3
c
can be closed and vacuum tight sealed by closure and locking of the door using door clamps
3
j
, FIG.
12
. Both the casting compartment
3
and the secondary mold chamber MC formed within mold base/bonnet
13
/
31
are evacuated by vacuum pumping systems
24
a
,
24
b
to a rapidly achievable, but very low initial pressure, such as for example 50 microns or less subambient pressure. Continuous pumping is maintained for approximately two full minutes, achieving a significantly more complete vacuum, such as 10 microns or less, than achievable with the process of U.S. Pat. Nos. 3,863,706 and 3,900,064 to remove virtually all gases, both those gases which are free within the casting compartment
3
and the mold chamber MC and those contained within porosity in shell mold
15
and core (not shown) if present in the mold, which gases could be potentially damaging to the reactive liquid metallic material (e.g. nickel base superalloy), if given the opportunity to combine with the more reactive elements in the metallic material to form oxides. If the mold
15
is gas impermeable, the opening to the mold through the snout or fill tube
16
provides access for evacuation.
When melting of the ingots in crucible C is completed and the melt is brought to the required casting temperature as determined by temperature measurement instrumentation
19
and after achieving the necessary vacuum level in the melting and casting compartments
1
,
3
, the isolation valve
2
is opened by its air actuated cylinder
2
a
. The melting vessel
5
with molten metallic material therein is moved on tracks
6
by actuation of cylinder
4
into the casting compartment
3
beneath the mold base/bonnet
13
/
31
, FIG.
12
. The tracks
6
provide both alignment and the mechanical stability necessary to carry the heavy, extended load.
The mold base/bonnet
13
/
31
then are lowered onto the melting vessel
5
,
FIGS. 7 and 13
, such that the mold base
13
engages the flange
5
z
of the melting vessel
5
and is clamped to it with the argon-actuated toggle clamp locks
34
engaging the flange
5
z
with a 90 degree mechanical latch action. This motion accomplishes two things.
First, the vertical movement of the mold base/bonnet immerses the mold fill tube
16
into the molten metallic material M present as a pool in crucible C.
Second, engagement and clamping of the mold base
13
to the flange
5
z
of melting vessel
5
creates a sealed gas pressurizable space SP between the top surface of the molten metallic material M and the bottom surface
13
e
of the mold base
13
. The seal SMB
1
is compressed between the mold base
13
and flange
5
z
of the melting vessel to provide a as-tight seal to this end. This small (e.g. typically 1,000 cubic inches) space SP and space around the induction coil
11
of the melting vessel
5
is then pressurized through argon gas supply conduit
4
h
via opening of valve VA and closing vacuum conduit valve VV, while the compartments
1
,
3
continue to be evacuated to 10 microns or less, thereby creating a pressure differential on the molten metallic material M in the crucible C required to force or “push” the molten metallic material upwardly through the fill tube
16
into the mold cavities
15
b
via the sprue
15
a
and side gates
15
c
. The argon pressurizing gas is typically provided at a gas pressure up to 2 atmospheres, such as 1 to 2 atmospheres, in the space SP. Maintenance of the positive argon pressure in the sealed space SP typically is continued for the specified casting cycle, during which time the metallic material in mold cavities
15
b
and a portion of the mold side gates
15
c
but typically not the sprue
15
a
has solidified. The melting vessel
5
is constructed to be pressure tight when sealed to the mold base
13
during the gas pressurization step using conduit
4
h
or vacuum tight during the evacuation step using vacuum conduit
4
v
described next.
After termination of the gas pressure by closing valve VA, the space SP and space around the induction coil
11
of the melting vessel
5
are evacuted using vacuum conduit
4
v
with valve VV open to equalize subambient pressure between sealable space SP and the compartments
1
,
3
. Remaining molten metallic material within the mold sprue
15
a
then can flow back into the crucible C and thereby be available, still in liquid form, for use in the casting of the next mold. The toggle lock clamps
34
are de-pressurized, permitting the mold base/bonnet
13
/
31
to be raised from the melting vessel
5
, withdrawing the fill tube
16
from the molten metallic material in the crucible C. A drip pan
70
then is positioned by hydraulic cylinder
72
under the mold base
13
to catch any remaining drips of molten metallic material from the fill tube
16
, FIG.
2
.
At this point in the casting cycle and as shown in
FIG. 14
, the melting vessel
5
is withdrawn into the melting compartment
1
and isolated from the casting compartment
3
by closing of isolation valve
2
. This allows the vacuum in compartment
3
to be released by ambient vent valve CV,
FIG. 14
, to provide ambient pressure therein and the door
3
c
to be opened and the cast mold
15
on mold base
13
may be removed using support arm
14
c
. If there is no longer sufficient metallic material remaining in the crucible C to cast another mold, the crucible C is recharged with fresh master alloy using the charging mechanism
20
, the new ingots are melted, and the total charge is again prepared for casting by establishing the defined melt casting temperature for the part to be cast. The casting of the molten metallic material into a new mold
15
is conducted in casting chamber
3
as previously described.
The invention is advantageous in that the mold
15
is filled with liquid metallic material while the mold is still under vacuum (e.g. 10 microns or less subambient pressure). There is, therefore, no resistance to the entry of metal into the mold cavities created by any sort of gas back pressure within the mold. It is no longer necessary that the mold wall be gas permeable to permit the escape of gases and the entry of metal. Entirely gas impermeable molds can be cast without difficulty, opening many new options with respect to the production of the mold itself, and making process combinations possible which were previously not practical. Further, as stated previously, substantially less interstitial gas, with the potential to form gas bubbles as a result of thermal expansion, remains in ceramic porosity, either in the mold wall or in preformed ceramic cores, such that casting scrap rates are reduced.
The molten metallic material returning from the sprue of the cast mold to the crucible is cleaner than similar recycled material from previous processes, because it, too, has been exposed to less evolved reactive gas during the casting cycle. This is revealed by the relative absence of accumulated dross floating on the surface of the metal remaining in the crucible following a similar number of casting cycles. Additionally, the gas pressurization of the small space above the melt which creates the pressure differential lifting the metal up into the mold can be accomplished more quickly, allowing complete molds to be filled faster, and therefore thinner cast sections to be filled. Greater consistency can be achieved between cavity fill rates at different heights on the same mold because of the elimination of available mold surface area and mold permeability as variables in the mechanics controlling the rate of pressure change within the mold. Pressure differentials greater than one atmosphere can be utilized in the practice of the invention. This permits the casting of taller components than could otherwise be produced due to the limitation on how high metal can be lifted by a pressure differential of not more than one atmosphere. It can also assist the feeding of porosity created during casting solidification as a result of the shrinkage which takes place in most alloys as they transition from liquid to solid. This increased pressure can force liquid to continue to progress through the solidification front to fill porosity voids that tend to be left behind. When applied to its full potential, the invention permits the use of smaller or fewer gates, resulting in additional cost reduction. It can also potentially eliminate the need for hot isostatic pressing (HIP'ing) as a means of microporosity elimination, achieving still further cost reduction.
Although the mold bonnet
31
is shown enclosing the mold
15
on mold base
13
and carrying the mold clamp
17
, the mold bonnet may be omitted if the mold clamp
17
can otherwise be supported in a manner to clamp the mold
15
onto the mold base
13
. That is, the mold
15
on the mold base
13
can communicate directly to casting compartment
3
without the intervening mold bonnet
31
in an alternative embodiment of the invention. Moreover, the invention envisions locating the melting compartment
1
below the casting compartment
3
in a manner described in U.S. Pat. No. 3,900,064 such that the melting vessel
5
is moved upwardly into the casting compartment to engage and seal with a mold base
13
positioned therein to form the gas pressurizable space to countergravity molten metallic material into a mold on the mold base.
Although certain specific embodiments of the invention have been described above, those skilled in the art will appreciate that the invention is not so limited and that changes, modifications and the like can be made thereto without departing from the scope of the invention as set forth in the appended claims.
Claims
- 1. Method of countergravity casting a metallic material, comprising:a) melting the metallic material under subambient pressure in a melting vessel, b) providing a mold under subambient pressure on a mold base with a fill tube extending through an opening in said mold base, c) relatively moving said melting vessel and said mold base while providing subambient pressure about said melting vessel and said mold to immerse an opening of said fill tube in the melted metallic material in said melting vessel and to engage said melting vessel and said mold base with means for sealing therebetween and with the engaged mold base and melting vessel together enclosing a sealed gas pressurizable space that is located above the melted metallic material and below said mold base exteriorly of said fill tube and in communication with said melted metallic material such that gas pressure provided in said space is exerted on said melted metallic material, and d) gas pressurizing said space while subambient pressure is provided about said melting vessel and about and in said mold to establish a pressure on the melted metallic material to force it upwardly through said fill tube into said mold.
- 2. The method of claim 1 including the further step after step d) of terminating said gas pressurizing and equalizing subambient pressure between said mold and said sealable space.
- 3. The method of claim 2 including the further step of relatively moving said melting vessel and said mold base to disengage said melting vessel and said mold base to withdraw said fill tube from the melted metallic material in said melting vessel.
- 4. The method of claim 1 wherein said means for sealing is disposed on said mold base.
- 5. The method of claim 1 including engaging an upper surface of said melting vessel and a bottom surface of said mold base with said means for sealing therebetween.
- 6. The method of claim 1 including clamping said mold base and said melting vessel together.
- 7. The method of claim 1 including clamping said mold on said mold base.
- 8. The method of claim 7 including disposing a mold bonnet on said mold base with a movable mold clamp in said bonnet clamping said mold on said mold base.
- 9. The method of claim 1 wherein said metallic material is melted in a melting vessel disposed in a melting chamber evacuated to subambient pressure.
- 10. The method of claim 9 wherein said mold on said mold base is disposed in a casting chamber evacuated to subambient pressure.
- 11. The method of claim 10 including moving said melting vessel to said casting chamber beneath said mold base.
- 12. The method of claim 11 including lowering said mold base to immerse said opening of said fill tube in the melted metallic material in said melting vessel and to engage said melting vessel and said mold base with said means for sealing therebetween.
- 13. The method of claim 1 wherein said metallic material comprises a nickel base superalloy.
- 14. The method of claim 1 wherein an annular surface between the mold base and melting vessel forms an outer periphery of said space.
- 15. The method of claim 1 wherein said melting vessel and said mold base with said mold thereon are relatively moved in a casting compartment at subambient pressure and wherein said space enclosed by said melting vessel and said mold base in said casting compartment is subjected to said gas pressurizing while said casting compartment is at the subambient pressure.
- 16. Method of countergravity casting a metallic material, comprising:a) melting the metallic material under subambient pressure in a melting vessel, b) providing a mold on a mold base in a casting compartment at subambient pressure with a fill tube of said mold extending through an opening in said mold base, c) relatively moving said melting vessel and said mold base with said mold thereon in the casting compartment at subambient pressure to immerse an opening of said fill tube in the melted metallic material in said melting vessel and to engage said melting vessel and said mold base with means for sealing therebetween and with the engaged mold base and melting vessel enclosing a gas pressurizable space in the casting compartment above the melted metallic material and below the mold base, and d) gas pressurizing said space while subambient pressure is provided in said casting compartment about said melting vessel and about and in said mold to establish a pressure on the melted metallic material to force it upwardly through said fill tube into said mold.
- 17. Method of countergravity casting a metallic material, comprising:a) melting the metallic material under subambient pressure in a melting vessel, b) providing a mold on a mold base in a casting compartment at subambient pressure with a fill tube of said mold extending through an opening in said base, c) relatively moving said melting vessel and said mold base with said mold thereon in the casting compartment at subambient pressure to immerse an opening of said fill tube in the melted metallic material in said melting vessel and to engage an upper surface of said melting vessel and a lower surface of said mold base with means for sealing between said upper surface and said lower surface and with the mold base and the melting vessel enclosing a gas pressurizable space in the casting compartment above the melted metallic material and below the mold base with said lower surface of said mold base directly facing said melted metallic material, and d) gas pressurizing said space while subambient pressure is provided in said casting compartment about said melting vessel and about and in said mold to establish a pressure on the melted metallic material to force it upwardly through said fill tube into said mold.
- 18. The method of claim 17 including cooling a region of said melting vessel that forms said upper surface thereof.
- 19. Method of countergravity casting a metallic material, comprising:a) melting the metallic material under subambient pressure in a melting vessel, b) providing a mold on a mold base in a casting compartment at subambient pressure with a fill tube of said mold extending through an opening in said mold base, c) relatively moving said melting vessel and said mold base with said mold thereon in the casting compartment at subambient pressure to immerse an opening of said fill tube in the melted metallic material in said melting vessel and to engage an upper surface of an annular flange on said melting vessel and a lower surface of said mold base with means for sealing between said upper surface and said lower surface so as to enclose a gas pressurizable space in the casting compartment above the melted metallic material and below said mold base with said lower surface of said mold base directly facing said melted metallic material and with said annular flange enclosing an outer periphery of said space, and d) gas pressurizing said space while subambient pressure is provided in the casting compartment about said melting vessel and about and in said mold to establish a pressure on the melted metallic material to force it upwardly through said fill tube into said mold.
- 20. The method of claim 19 including cooling said flange on said melting vessel by flowing a coolant through said flange.
- 21. Method of countergravity casting a metallic material, comprising:a) melting the metallic material under subambient pressure in a melting vessel, b) disposing a mold on a mold base in a casting compartment at subambient pressure with a fill tube of said mold extending through an opening in said mold base, c) relatively moving said melting vessel and said mold base with said mold thereon in said casting compartment at subambient pressure to immerse an opening of said fill tube in the melted metallic material in said melting vessel and to engage said melting vessel and said mold base with means for sealing therebetween and with the engaged mold base and melting vessel enclosing a sealed gas pressurizable space in said casting compartment above the melted metallic material and below said base, including clamping said melting vessel and said mold base together in said casting compartment, and e) gas pressurizing said space while subambient pressure is provided in said casting compartment about said melting vessel and about and in said mold to establish a pressure on the melted metallic material to force it upwardly through said fill tube into said mold.
- 22. The method of claim 21 wherein an upper annular flange on said melting vessel is clamped to said lower surface of said mold base and forms an outer periphery of said space.
- 23. Method of countergravity casting a metallic material, comprising:a) engaging a melting vessel and a mold base having a mold thereon in a casting compartment at subambient pressure to immerse an opening of a fill tube of said mold in melted metallic material in said melting vessel, said mold base and said melting vessel enclosing a gas pressurizable space located in the casting compartment above the melted metallic material and below the mold base, and b) gas pressurizing said space while said subambient pressure is provided in the casting compartment about said melting vessel and about and in said mold to establish a pressure on the melted metallic material to force it upwardly through said fill tube into said mold.
US Referenced Citations (21)
Foreign Referenced Citations (2)
Number |
Date |
Country |
6-31431 |
Jun 1994 |
JP |
WO 9015680 |
Dec 1990 |
WO |