This application claims priority to German Utility Model Application filed Sep. 5, 2003.
The present invention relates to a countersunk screw having a threaded shank and a countersunk head, which latter has a conical surface tapering at a countersinking angle in the direction of the threaded shank. The conical surface has a plurality of ribbed protrusions distributed over the periphery and jointly defining a conical enveloping surface with a cone angle, the countersinking angle of the conical surface being less than the cone angle of the ribbed protrusions.
Countersunk screws are known in numerous forms. The countersunk head can be configured as a flat or raised countersunk head. Such screws are used, on the one hand, to fasten fittings or like components, especially metal, the respective component having for each screw a countersunk mounting hole. The countersinking angle typically measures around 90°. On the other hand, such countersunk screws are also employed in large numbers for so-called wood-wood joints, since they are screwed in directly with no predrilling. The countersunk head is meant, in this case, to press and sink automatically into the respective material. In the latter application, however, because of the 90° countersinking angle, the wood in wood-wood joints is spliced. This is prevented by screws having a correspondingly smaller (steeper) countersinking angle. These screws are not, however, suitable for fastening components with 90° sinkholes, since they do not come to bear with a sufficiently large area in the sinkhole, which is also detrimental to the fastening of the component.
Such a countersunk screw of the generic type last described is described in EP 0 781 382 B1. The very narrow ribs which are provided on the conical surface formed with a relatively steep countersinking angle, have countersinking cutters so that the screw is capable, by means of the ribs, of free-cutting in a workpiece a countersink for the countersunk head. This screw is not therefore suitable for fastening fittings or the like with 90° sinkholes since the ribs would in this case cause surface damage with their countersinking cutters and would make an impression with their very narrow surfaces.
The object of the present invention is to create a countersunk screw of the stated type, which may virtually be used as a “universal screw”, suitable for both of the described applications with good usage characteristics.
According to the invention, the above advantage is achieved by virtue of the described features. Further advantageous design features of the invention are contained in the subclaims.
A screw according to this invention has a conical surface has at least three rib-like ribbed protrusions distributed over the periphery, i.e. spaced apart in the peripheral direction, and having outer bearing surfaces which jointly define a conical enveloping surface and a cone angle. According to the invention, the ribbed protrusions are dimensioned to be relatively large. This means that, according to the invention, the area ratio of the sum of the bearing surfaces of all the ribbed protrusions to the sum of the respectively intervening regions of the conical surface is designed such that, on the one hand, the ribbed protrusions do not deter the countersunk head from sinking directly into wood or similar soft material and, on the other hand, in the fastening of components with sinkholes, a certain surface pressure is achieved between the ribbed protrusions and the respective sinkhole. The surface pressure is produced in such a way specific to the material or in dependence on the screw/component material combination (especially metal-metal) that surface damage in the region of the sinkhole of the component is avoided. When the screw is tightened, a high retaining force can in this case be conducted via the bearing surfaces into the respective component, with no risk of damage. At the same time, the ribbed protrusions are designed in such a way that, in the first-named application involving direct, countersinking screwing into a relatively soft material, such as, in particular, wood or a similar soft material, they have a milling effect (scraping effect). This helps to produce good countersinking of the head with minimal risk of splicing and provides low screw-in torque. Owing to the inventive arrangement of the bearing surfaces of the ribbed protrusions, this milling effect is absent, or only marginally present, in the fastening of fittings.
The countersinking angle of the conical surface is less than the cone angle of the enveloping surface of the ribbed protrusions. In a preferred design, the countersinking angle is of relatively small or steep configuration. It lies approximately within the range from 50° to 60° and, more particularly, measures around 53° to 55°. This countersinking angle is especially advantageous for direct screwing into wood with reduced risk of splicing in connection with the countersinking. By contrast, the cone angle of the ribbed protrusions measures around 90°, which is beneficial to the fastening of fittings and similar components with countersunk mounting holes having a countersinking angle of, likewise, around 90°.
The invention shall be described in greater detail with reference to preferred illustrative embodiments illustrated in the drawing, in which:
A countersunk screw 1 according to the invention has a threaded shank 2 with a countersunk head 4. At the other end, the threaded shank 2 passes into a screw tip (not represented). The countersunk head 4 has a conical surface 6 tapering at a certain countersinking angle α in the direction of the threaded shank 2.
In the represented illustrative embodiment, the countersunk head 4 is constituted by a flat countersunk head, which, on its side opposite to the threaded shank 2, has a plane surface 8. Alternatively, the countersunk head 4 can also, however, be realized as a so-called raised head with a convexly curved surface. In both cases, the countersunk head 4 can preferably have a force application socket 10. Indicated in dashed representation in
The threaded shank 2 comprises an at least segmentally cylindrical core 12 and a single-start or multiple-start thread 14 running as an elevation helically across the core 12. The thread 14 defines with its outer thread edge a thread nominal diameter D. The thread pitch is marked with S in
According to the invention, the conical surface 6 contains at least three ribbed protrusions 16 distributed over the periphery and spaced apart from one another. These ribbed protrusions 16 have outer bearing surfaces 18, which jointly define a conical enveloping surface with a cone angle β (
In addition thereto, on the one hand, the total area (sum) of all the bearing surfaces 18 of the ribbed protrusions 16 should not be too large, so that when countersinking in soft material, the ribbed protrusions 16 can readily be jointly sunk in. According to the invention, the ribbed protrusions 16 are herein designed such that, in this application of the screw involving direct countersinking screwing into, in particular wood or similar soft materials, they have a milling effect (scraping effect). This significantly reduces the risk of splicing. On the other hand, the ribbed protrusions 16, in terms of the area size of the bearing surfaces 18, are dimensioned in dependence on a material-specific surface pressure such that, in the application for the fastening of fittings or the like by screwing into a sinkhole between the ribbed protrusions 16 and the respective sinkhole, a surface pressure of such magnitude is generated that damage in the region of the sinkhole is avoided. In addition thereto, the sum of the bearing surfaces 18 of all the ribbed protrusions 16 should lie within the range from at least 40% to maximally around 60% of the conical enveloping surface related to the whole of the periphery. The minimum size of the bearing surfaces 18 of the ribbed protrusions 16, amounting to around 40% of the total area, is represented in
For most applications, including for the fastening of metal fittings (made of steel, aluminum or other non-ferrous metals), the screw 1 consists universally of a steel standardly used for screws.
The countersunk head 4, starting from the conical surface 6 on its side lying opposite the threaded shank 2, has a prominent peripheral rim 19 having an outer periphery 20 which is greater in diameter than the conical surface 6 (
Further, in the represented illustrative embodiments, six ribbed protrusions 16 of similar design and in even, radially symmetric peripheral distribution are provided. The number of ribbed protrusions 16 can also, however, lie within the range from three to, for example, eight. According to
As can further be seen from
In a further advantageous embodiment of the countersunk screw 1, the thread 14, according to
The invention is not limited to the illustrative embodiments which have been represented and described, but also covers all similarly-acting embodiments within the meaning of the invention. Moreover, the invention is also not yet limited to the combination of features specifically defined in the claims, but can also be defined by any chosen other combination of specific features of all the individual features disclosed overall. This means that, in principle, virtually any individual feature of an illustrated embodiment may be omitted or replaced by at least one individual feature disclosed elsewhere in the application. To this extent, claim 1 should only be regarded as an initial formulation attempt for an invention.
Number | Date | Country | Kind |
---|---|---|---|
203 13 819 U | Sep 2003 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
378857 | Woodford | Feb 1888 | A |
586232 | English | Jul 1897 | A |
877131 | Searelle | Jan 1908 | A |
1084643 | Lasater | Jan 1914 | A |
1151861 | Brumback | Aug 1915 | A |
1175665 | Sweet | Mar 1916 | A |
3124031 | Knohl | Mar 1964 | A |
3710676 | Ringland | Jan 1973 | A |
3903784 | Dekker | Sep 1975 | A |
4016795 | Gill | Apr 1977 | A |
4064784 | Adler | Dec 1977 | A |
4655661 | Brandt | Apr 1987 | A |
4708557 | Hashimoto | Nov 1987 | A |
4836730 | Jesson et al. | Jun 1989 | A |
5039262 | Giannuzzi | Aug 1991 | A |
5199839 | DeHaitre | Apr 1993 | A |
5203657 | Nagoshi et al. | Apr 1993 | A |
5205694 | Nagoshi et al. | Apr 1993 | A |
5234299 | Giannuzzi | Aug 1993 | A |
5249882 | Nagoshi et al. | Oct 1993 | A |
5275601 | Gogolewski et al. | Jan 1994 | A |
5482418 | Giannuzzi | Jan 1996 | A |
5487633 | Roberts | Jan 1996 | A |
5516248 | DeHaitre | May 1996 | A |
5518352 | Lieggi | May 1996 | A |
5531554 | Jeanson et al. | Jul 1996 | A |
5570983 | Hollander | Nov 1996 | A |
5683217 | Walther et al. | Nov 1997 | A |
5772376 | Konig | Jun 1998 | A |
5895187 | Kuo-Tai | Apr 1999 | A |
6042314 | Guelck | Mar 2000 | A |
6048150 | Clarke | Apr 2000 | A |
6164887 | Palm | Dec 2000 | A |
6290444 | Dicke | Sep 2001 | B1 |
6302631 | Takasaki et al. | Oct 2001 | B1 |
6334748 | Gudjonsson | Jan 2002 | B1 |
6394725 | Dicke | May 2002 | B1 |
6402757 | Moore et al. | Jun 2002 | B1 |
D462895 | Gaudron | Sep 2002 | S |
6477923 | Amis | Nov 2002 | B2 |
6558097 | Mallet et al. | May 2003 | B2 |
6676353 | Haytayan | Jan 2004 | B1 |
6698987 | Dicke | Mar 2004 | B1 |
20010038781 | Mallet et al. | Nov 2001 | A1 |
20050063796 | Dicke | Mar 2005 | A1 |
Number | Date | Country |
---|---|---|
84 09 108.8 | Jul 1984 | DE |
3335092 | Apr 1985 | DE |
89 01 963.6 | Dec 1989 | DE |
0 394 719 | Sep 1992 | EP |
0 516 431 | Dec 1992 | EP |
0 781 382 | Jul 1997 | EP |
Number | Date | Country | |
---|---|---|---|
20050063796 A1 | Mar 2005 | US |