The present invention is related to the following applications entitled “Method and Apparatus for Selectively Counting Instructions and Data Accesses”, Ser. No. 10/674,604, “Method and Apparatus for Generating Interrupts upon Execution of Marked Instructions and upon Access to Marked Memory Locations”, Ser. No. 10,675,831, “Method and Apparatus for Counting Data Accesses and Instruction Executions that Exceed a Threshold”, Ser. No. 10/675,778, “Method and Apparatus for Counting Execution of Specific Instructions and Accesses to Specific Data Locations”, Ser. No. 10/675,776, “Method and Apparatus for Debug Support for Individual Instructions and Memory Locations”, Ser. No. 10,675,751, “Method and Apparatus to Autonomically Select Instructions for Selective Counting”, Ser. No. 10/675,721,“Method and Apparatus to Autonomically Count Instruction Execution for Applications”, Ser. No. 10/674,642, “Method and Apparatus to Autonomically Take an Exception on Specified Instructions”, Ser. No. 10/674,606, “Method and Apparatus to Autonomically Profile Applications”, Ser. No. 10/675,783, and “Method and Apparatus for Counting Instruction and Memory Location Ranges”, Ser. No. 10/675,872, filed Sep. 30, 2003, assigned to the same assignee, and incorporated herein by reference.
1. Technical Field
The present invention relates generally to an improved data processing system. In particular, the present invention provides a method and apparatus for obtaining performance data in a data processing system. Still more particularly, the present invention provides a method and apparatus for hardware assistance to software tools in obtaining performance data in a data processing system.
2. Description of Related Art
In analyzing and enhancing performance of a data processing system and the applications executing within the data processing system, it is helpful to know which software modules within a data processing system are using system resources. Effective management and enhancement of data processing systems requires knowing how and when various system resources are being used. Performance tools are used to monitor and examine a data processing system to determine resource consumption as various software applications are executing within the data processing system. For example, a performance tool may identify the most frequently executed modules and instructions in a data processing system, or may identify those modules which allocate the largest amount of memory or perform the most I/O requests. Hardware performance tools may be built into the system or added at a later point in time.
One known software performance tool is a trace tool. A trace tool may use more than one technique to provide trace information that indicates execution flows for an executing program. One technique keeps track of particular sequences of instructions by logging certain events as they occur, a so-called event-based profiling technique. For example, a trace tool may log every entry into, and every exit from, a module, subroutine, method, function, or system component. Alternately, a trace tool may log the requester and the amounts of memory allocated for each memory allocation request. Typically, a time-stamped record is produced for each such event. Corresponding pairs of records, similar to entry-exit records, also are used to trace execution of arbitrary code segments, starting and completing I/O or data transmission, and for many other events of interest.
In order to improve performance of code generated by various families of computers, it is often necessary to determine where time is being spent by the processor in executing code, such efforts being commonly known in the computer processing arts as locating “hot spots”. Ideally, one would like to isolate such hot spots at the instruction and/or source line of code level in order to focus attention on areas which might benefit most from improvements to the code.
Another trace technique involves periodically sampling a program's execution flows to identify certain locations in the program in which the program appears to spend large amounts of time. This technique is based on the idea of periodically interrupting the application or data processing system execution at regular intervals, so-called sample-based profiling. At each interruption, information is recorded for a predetermined length of time or for a predetermined number of events of interest. For example, the program counter of the currently executing thread, which is an executable portion of the larger program being profiled, may be recorded during the intervals. These values may be resolved against a load map and symbol table information for the data processing system at post-processing time, and a profile of where the time is being spent may be obtained from this analysis.
Creating tools such as these to find answers related to specific situations or problems can take much effort and can be very difficult to calibrate as the software tools themselves affect the system under test. The present invention recognizes that hardware assistance for tool development and problem analysis can significantly ease the amount of effort needed to develop software performance tools. Further, with the increasing density of processors, hardware assistance can be included to provide additional debug and analysis features.
Therefore, it would be advantageous to have an improved method, apparatus, and computer instructions for providing hardware assistance for performance tools for analyzing the performance of data processing systems.
The present invention provides a method, apparatus, and computer instructions in a data processing system for processing instructions. Instructions are received at a processor in the data processing system. If a selected indicator is associated with the instruction, counting of each event associated with the execution of the instruction is enabled.
The novel features believed characteristic of the invention are set forth in the appended claims. The invention itself, however, as well as a preferred mode of use, further objectives and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
With reference now to
An operating system runs on processor 102 and is used to coordinate and provide control of various components within data processing system 100 in
Those of ordinary skill in the art will appreciate that the hardware in
For example, client 100, if optionally configured as a network computer, may not include SCSI host bus adapter 112, hard disk drive 126, tape drive 128, and CD-ROM 130. In that case, the computer, to be properly called a client computer, includes some type of network communication interface, such as LAN adapter 110, modem 122, or the like. As another example, client 100 may be a stand-alone system configured to be bootable without relying on some type of network communication interface, whether or not client 100 comprises some type of network communication interface. As a further example, client 100 may be a personal digital assistant (PDA), which is configured with ROM and/or flash ROM to provide non-volatile memory for storing operating system files and/or user-generated data. The depicted example in
The processes of the present invention are performed by processor 102 using computer implemented instructions, which may be located in a memory such as, for example, main memory 104, memory 124, or in one or more peripheral devices 126-130.
Turning next to
In a preferred embodiment, processor 210 is a single integrated circuit superscalar microprocessor. Accordingly, as discussed further herein below, processor 210 includes various units, registers, buffers, memories, and other sections, all of which are formed by integrated circuitry. Also, in the preferred embodiment, processor 210 operates according to reduced instruction set computer (“RISC”) techniques. As shown in
BIU 212 is connected to an instruction cache 214 and to data cache 216 of processor 210. Instruction cache 214 outputs instructions to sequencer unit 218. In response to such instructions from instruction cache 214, sequencer unit 218 selectively outputs instructions to other execution circuitry of processor 210.
In addition to sequencer unit 218, in the preferred embodiment, the execution circuitry of processor 210 includes multiple execution units, namely a branch unit 220, a fixed-point unit A (“FXUA”) 222, a fixed-point unit B (“FXUB”) 224, a complex fixed-point unit (“CFXU”) 226, a load/store unit (“LSU”) 228, and a floating-point unit (“FPU”) 230. FXUA 222, FXUB 224, CFXU 226, and LSU 228 input their source operand information from general-purpose architectural registers (“GPRs”) 232 and fixed-point rename buffers 234. Moreover, FXUA 222 and FXUB 224 input a “carry bit” from a carry bit (“CA”) register 239.
FXUA 222, FXUB 224, CFXU 226, and LSU 228 output results (destination operand information) of their operations for storage at selected entries in fixed-point rename buffers 234. Also, CFXU 226 inputs and outputs source operand information and destination operand information to and from special-purpose register processing unit (“SPR unit”) 237.
FPU 230 inputs its source operand information from floating-point architectural registers (“FPRs”) 236 and floating-point rename buffers 238. FPU 230 outputs results (destination operand information) of its operation for storage at selected entries in floating-point rename buffers 238.
In response to a Load instruction, LSU 228 inputs information from data cache 216 and copies such information to selected ones of rename buffers 234 and 238. If such information is not stored in data cache 216, then data cache 216 inputs (through BIU 212 and system bus 211) such information from a system memory 239 connected to system bus 211. Moreover, data cache 216 is able to output (through BIU 212 and system bus 211) information from data cache 216 to system memory 239 connected to system bus 211. In response to a Store instruction, LSU 228 inputs information from a selected one of GPRs 232 and FPRs 236 and copies such information to data cache 216.
Sequencer unit 218 inputs and outputs information to and from GPRs 232 and FPRs 236. From sequencer unit 218, branch unit 220 inputs instructions and signals indicating a present state of processor 210. In response to such instructions and signals, branch unit 220 outputs (to sequencer unit 218) signals indicating suitable memory addresses storing a sequence of instructions for execution by processor 210. In response to such signals from branch unit 220, sequencer unit 218 inputs the indicated sequence of instructions from instruction cache 214. If one or more of the sequence of instructions is not stored in instruction cache 214, then instruction cache 214 inputs (through BIU 212 and system bus 211) such instructions from system memory 239 connected to system bus 211.
In response to the instructions input from instruction cache 214, sequencer unit 218 selectively dispatches the instructions to selected ones of execution units 220, 222, 224, 226, 228, and 230. Each execution unit executes one or more instructions of a particular class of instructions. For example, FXUA 222 and FXUB 224 execute a first class of fixed-point mathematical operations on source operands, such as addition, subtraction, ANDing, ORing and XORing, CFXU 226 executes a second class of fixed-point operations on source operands, such as fixed-point multiplication and division. FPU 230 executes floating-point operations on source operands, such as floating-point multiplication and division.
As information is stored at a selected one of rename buffers 234, such information is associated with a storage location (e.g. one of GPRs 232 or carry bit (CA) register 242) as specified by the instruction for which the selected rename buffer is allocated. Information stored at a selected one of rename buffers 234 is copied to its associated one of GPRs 232 (or CA register 242) in response to signals from sequencer unit 218. Sequencer unit 218 directs such copying of information stored at a selected one of rename buffers 234 in response to “completing” the instruction that generated the information. Such copying is called “writeback.”
As information is stored at a selected one of rename buffers 238, such information is associated with one of FPRs 236. Information stored at a selected one of rename buffers 238 is copied to its associated one of FPRs 236 in response to signals from sequencer unit 218. Sequencer unit 218 directs such copying of information stored at a selected one of rename buffers 238 in response to “completing” the instruction that generated the information.
Processor 210 achieves high performance by processing multiple instructions simultaneously at various ones of execution units 220, 222, 224, 226, 228, and 230. Accordingly, each instruction is processed as a sequence of stages, each being executable in parallel with stages of other instructions. Such a technique is called “pipelining.” In a significant aspect of the illustrative embodiment, an instruction is normally processed as six stages, namely fetch, decode, dispatch, execute, completion, and writeback.
In the fetch stage, sequencer unit 218 selectively inputs (from instruction cache 214) one or more instructions from one or more memory addresses storing the sequence of instructions discussed further hereinabove in connection with branch unit 220, and sequencer unit 218.
In the decode stage, sequencer unit 218 decodes up to four fetched instructions.
In the dispatch stage, sequencer unit 218 selectively dispatches up to four decoded instructions to selected (in response to the decoding in the decode stage) ones of execution units 220, 222, 224, 226, 228, and 230 after reserving rename buffer entries for the dispatched instructions' results (destination operand information). In the dispatch stage, operand information is supplied to the selected execution units for dispatched instructions. Processor 210 dispatches instructions in order of their programmed sequence.
In the execute stage, execution units execute their dispatched instructions and output results (destination operand information) of their operations for storage at selected entries in rename buffers 234 and rename buffers 238 as discussed further hereinabove. In this manner, processor 210 is able to execute instructions out-of-order relative to their programmed sequence.
In the completion stage, sequencer unit 218 indicates an instruction is “complete.” Processor 210 “completes” instructions in order of their programmed sequence.
In the writeback stage, sequencer 218 directs the copying of information from rename buffers 234 and 238 to GPRs 232 and FPRs 236, respectively. Sequencer unit 218 directs such copying of information stored at a selected rename buffer. Likewise, in the writeback stage of a particular instruction, processor 210 updates its architectural states in response to the particular instruction. Processor 210 processes the respective “writeback” stages of instructions in order of their programmed sequence. Processor 210 advantageously merges an instruction's completion stage and writeback stage in specified situations.
In the illustrative embodiment, each instruction requires one machine cycle to complete each of the stages of instruction processing. Nevertheless, some instructions (e.g., complex fixed-point instructions executed by CFXU 226) may require more than one cycle. Accordingly, a variable delay may occur between a particular instruction's execution and completion stages in response to the variation in time required for completion of preceding instructions.
Completion buffer 248 is provided within sequencer 218 to track the completion of the multiple instructions which are being executed within the execution units. Upon an indication that an instruction or a group of instructions have been completed successfully, in an application specified sequential order, completion buffer 248 may be utilized to initiate the transfer of the results of those completed instructions to the associated general-purpose registers.
In addition, processor 210 also includes performance monitor unit 240, which is connected to instruction cache 214 as well as other units in processor 210. Operation of processor 210 can be monitored utilizing performance monitor unit 240, which in this illustrative embodiment is a software-accessible mechanism capable of providing detailed information descriptive of the utilization of instruction execution resources and storage control. Although not illustrated in
Performance monitor unit 240 includes an implementation-dependent number (e.g., 2-8) of counters 241-242, labeled PMC1 and PMC2, which are utilized to count occurrences of selected events. Performance monitor unit 240 further includes at least one monitor mode control register (MMCR). In this example, two control registers, MMCRs 243 and 244 are present that specify the function of counters 241-242. Counters 241-242 and MMCRs 243-244 are preferably implemented as SPRs that are accessible for read or write via MFSPR (move from SPR) and MTSPR (move to SPR) instructions executable by CFXU 226. However, in one alternative embodiment, counters 241-242 and MMCRs 243-244 may be implemented simply as addresses in I/O space. In another alternative embodiment, the control registers and counters may be accessed indirectly via an index register. This embodiment is implemented in the IA-64 architecture in processors from Intel Corporation.
Additionally, processor 210 also includes interrupt unit 250, which is connected to instruction cache 214. Additionally, although not shown in
The present invention provides an ability to monitor the execution of specific instructions as well as the access of specific memory locations during the execution of a program. Specifically, a spare field may be used to hold an indicator that identifies the instruction or memory location as one that is to be monitored by a performance monitor unit or by some other unit in a processor. Alternatively, the indicator may be stored in another location in association with the instruction or memory location. In the case in which the indicator is placed in the instruction, a spare field is typically used, but in some cases the instruction may be extended to include the space needed for the indicator. With this case, the architecture of the processor may require changes. For example, a 64 bit architecture may be changed to a 65 bit architecture to accommodate the indicator. With respect to accesses of data, an indicator may be associated with the data or memory locations in which the data is located.
Turning now to
As part of this processing of instructions, instruction cache 300 determines which instructions are associated with indicators. These indicators also are referred to as “performance indicators” in these examples. Signals 304 have been associated with performance indicators. As a result, signals 304 for the instructions are sent to performance monitor unit 306. Performance monitor unit 306 is an example of performance monitor unit 240 in
When instruction cache 300 determines that an instruction associated with an indicator is present, a signal is sent to indicate that a marked instruction is being executed. In these examples, a marked instruction is an instruction associated with a performance indicator. Alternatively, a performance indicator may indicate that all items or instructions in a bundle are marked to be counted. Additionally, signals for these instructions are sent by instruction cache 300 to the appropriate functional unit. Depending on the particular implementation, a functional unit other than performance monitor unit 306 may count execution of instructions. In the case that the performance indicators are in the instructions, or in the bundles, the cache unit, instruction cache 300, detects the indicators and sends signals to performance monitor unit 306.
When signals for these instructions are received by performance monitor unit 306, performance monitor unit 306 counts events associated with execution of instructions 304. As illustrated, performance monitor unit 306 is programmed only to count events for instructions associated with performance indicators. In other words, an indicator associated with a instruction or memory location is used to enable counting of events associated with the instruction or memory location by performance monitor unit 306. If an instruction is received by instruction cache 300 without a performance indicator, then events associated with that instruction are not counted. In summary, the performance indicators enable the counting on a per instruction or per memory location basis in a processor.
Performance monitor unit 306 counts events for instructions associated with performance indicators, if performance monitor unit 306 is set in a mode to count metrics enabled for these types of marked instructions. In some cases, performance monitor unit 306 may be set to perform some other type of counting, such as counting execution of all instructions, which is a currently available function.
With respect to the accessing of data in memory locations, the data and indicators are processed by a data cache, such as data cache 216 in
Turning next to
When processor 400 receives an instruction from cache 402, processor 400 checks performance instrumentation shadow cache 404 to see whether a performance indicator is associated with the instruction. A similar check is made with respect to accesses of memory locations containing data. In one embodiment, a full shadow word is provided for each corresponding word that does not affect the actual data segments. In other words, processor 400 allows for the architecture or configuration of cache 402 to remain unchanged. In these examples, the mapping described is word for word. However, some other type of mapping may be used, such as a shadow bit per data word in which a bit in performance instrumentation shadow cache 404 corresponds to one word of data.
With respect to this type of architecture, the compilers, using this feature, create the debug information in a separate work area from the data area themselves in a manner similar to debug symbols. When a module is loaded, the extra information, performance indicators, is prepared by the loader so that it will be available to incorporate into performance instrumentation shadow cache 404 when instructions are loaded into cache 402. These cache areas may be intermingled and either marked as such or understood by the mode of operation. Processor 400 uses the performance indicators to determine how the related data accesses and instruction executions are to be counted or made to take exceptions. In these examples, the process is programmed by a debugger or a performance analysis program to know whether to use the shadow information while it is executing instructions.
Turning next to
Spare bits within bundle 500 are used to hold indicators of the present invention. For example, indicators 510, 512, and 514 are located within instruction slots 502, 504, and 506, respectively. These indicators may take various forms and may take various sizes depending on the particular implementation. Indicators may use a single bit or may use multiple bits. A single bit may be used to indicate that events are to be counted in response to execution of that instruction. Multiple bits may be used to identify a threshold, such as a number of processor or clock cycles for instruction execution that may pass before events should be counted. Further, these bits may even be used as a counter for a particular instruction. A similar use of fields may be used for indicators that mark data or memory locations.
Alternatively, template 508 may be used to contain a bundle of related indicators, so that one bit is used to identify all of the instructions in a bundle. Also, the bundle itself could be extended to be 256 bits or some other number of bits to contain the extra information for the performance indicators.
Turning next to
Data or memory locations containing data may be marked with indicators in a similar manner. These indicators are used in counting accesses to the data or memory locations in these examples. In
Turning now to
The process begins by receiving a bundle (step 700). In these examples, each bundle has a format similar to bundle 500 in
If a performance indicator is present, a signal is sent to a performance monitor unit (step 706). Upon receiving this signal, the performance monitor unit will count events associated with the execution of the instruction. Additionally, the instruction is processed (step 708). Processing of the instruction includes, for example, sending the instruction to the appropriate functional unit for execution.
Thereafter, a determination is made as to whether additional unprocessed instructions are present in the bundle (step 710). If additional unprocessed instructions are present in the bundle, the process returns to step 702 as described above. Otherwise, the process terminates. Turning back to step 704, if the performance indicator is not present, the process proceeds directly to step 708.
Turning now to
The process begins by receiving a bundle (step 800). An instruction in the bundle is identified (step 802). A determination is made as to whether a performance indicator associated with the instruction is present (step 804). The signal sent to the interrupt unit to indicate an exception is to be raised is different from the signal sent to the performance monitor unit. For example, an instruction may be associated with a specific performance indicator having a first value that causes a signal to be sent to the interrupt unit. A second value for a performance indicator may be used to send a different signal to the performance monitor unit. If a performance indicator having the first value is present, the signal is sent to an interrupt unit (step 806). Upon receiving this signal, the interrupt unit initiates appropriate call flow support to process this interrupt. The call flow support may, for example, record cache misses that may be missed by a functional unit trying to access instructions or data in a cache.
Additionally, the instruction is processed (step 808). Processing of the instruction includes, for example, sending the instruction to the appropriate functional unit for execution.
Thereafter, a determination is made as to whether additional unprocessed instructions are present in the bundle (step 810). If additional unprocessed instructions are present in the bundle, the process returns to step 802 as described above. Otherwise, the process terminates. Turning back to step 804, if the performance indicator is not present, the process proceeds directly to step 808.
With reference now to
The process begins by identifying a request to access a memory location (step 900). In response to identifying this request, a determination is made as to whether a performance indicator is associated with the memory location (step 902). If a performance indicator is associated with the memory location, an interrupt is generated by sending a signal to the interrupt unit (step 904). Thereafter, the access to the memory location is processed (step 906) with the process terminating thereafter.
In
The process begins by receiving a signal from an instruction cache indicating that an instruction with a performance indicator is being processed (step 1000). Next, events associated with the instruction being processed are counted (step 1002) with the process terminating thereafter. The counting of events may be stored in a counter, such as counter 241 in
With reference next to
The process begins by determining whether an instruction associated with a performance indicator has been received (step 1100). In this example, the indicator causes counting of events for this instruction and all subsequent instructions executed by the processor. Alternatively, the indicator could be an instruction itself which indicates the new mode of counting is to be started. If an instruction with an indicator has been received, a flag is set to start counting events for instructions (step 1102). This flag indicates that counting events for instructions should start.
Next, a determination is made as to whether an instruction with an indicator has been received (step 1104). Alternatively, the indicator could be an instruction itself which indicates the new mode of counting is to be stopped. If an instruction with an indicator is received, the flag is unset to stop counting the events (step 1106) with the process terminating thereafter.
The indicator in step 1100 and step 1104 may be the same indicator in which the indicator toggles the setting and unsetting of the flag. In another implementation, two different indicators may be used in which a first indicator only sets the flag. A second indicator is used to unset the flag. Communication between a cache unit, such as an instruction cache or a data cache, and the performance monitor unit to indicate a mode of counting may be implemented simply with a high signal when counting is to occur and a low signal when counting is no longer enabled.
With reference next to
The process begins by checking a flag (step 1200). A determination is made as to whether the flag is set (step 1202). If the flag is set, a signal is sent to the performance monitor unit to enable this unit to count events (step 1204) with the process terminating thereafter. Otherwise, a signal is sent to the performance monitor unit to disable the counting of events (step 1206) with the process terminating thereafter.
The processes illustrated in
Turning now to
The process begins by receiving an instruction associated with a performance indicator (step 1300). A threshold is identified for the instruction (step 1302). In these examples, the threshold relates to a number of processor or clock cycles needed to complete an instruction. If the cache latency or amount of time needed to access the cache exceeds the threshold value, that event is counted. The threshold value is set within the indicator in these examples.
For example, three bits may be used to set eight different values for the threshold. For example, “xx1”=10 cycles, “x1x”=50 cycles, and “1xx”=100 cycles. Some combination of these three bits may be used to set values for the threshold. More or fewer bits may be used and different values may be assigned to the bits depending on the specific implementation. The meaning of the bits may also be controlled through an interface, such as a set of registers that may be used to set the meaning of each of the bits. These registers are ones that are added to the processor architecture for this specific purpose.
Cycles for executing the instruction are monitored (step 1304). A determination is made as to whether the threshold has been exceeded for this instruction (step 1306). If the threshold has been exceeded, then a selected action is performed (step 1308). This selected action may take different forms depending on the particular implementation. For example, a counter may be incremented each time the threshold is exceeded. Alternatively, an interrupt may be generated. The interrupt may pass control to another process to gather data. For example, this data may include a call stack and information about the call stack. A stack is a region of reserved memory in which a program or programs store status data, such as procedure and function call addresses, passed parameters, performance monitor counter values, and sometimes local variables.
A determination is made as to whether monitoring is to end (step 1310). Step 1310 may be implemented one instruction at a time. When an instruction is executed or the threshold is exceeded, a signal is sent. In this example, execution of a single instruction results in one signal being sent. In the case in which multiple instructions may be executed at the same time, multiple signals may be needed to indicate the execution of each instruction. In some embodiments, a sampling approach may be supported, where the threshold is only supported for one instruction at a time. This may be done by only supporting thresholds for those instructions that are in a particular position in the processor's instruction queue. In other embodiments, one signal may be sent if at least one of the marked instructions exceeds the threshold. For each instruction in which a threshold is exceeded, a separate signal is raised or generated for that instruction.
If the monitoring is to end, the collected information is sent to a monitoring program (step 1312), with the process terminating thereafter. Otherwise, the process returns to step 1304 as described above. In step 1306, if the threshold is not exceeded for the instruction, the process proceeds directly to step 1310.
A similar process may be implemented in a data cache, such as data cache 216 in
As with the other examples, these indicators may be included as part of the instruction or with the data in a memory location. Alternatively, these indicators may be found in a performance instrumentation shadow cache or memory in association with the instruction or data.
With reference to
The process begins by receiving data associated with a performance indicator (step 1400). A determination is made as to whether a memory location for the data has been accessed (step 1402). If the memory location has been accessed, then a counter is incremented (step 1404). A determination is made as to whether monitoring is to end (step 1406). If monitoring of the memory location is to end, the process terminates. Otherwise, the process returns to step 1402. In step 1402, if the memory location is not accessed, then the process proceeds to step 1406.
Turning to
In one embodiment the format simply has a performance instrumentation shadow cache entry for each of its block or sector references and moves meta data 1504 to its corresponding shadow entry or entries. Instead of having a performance instrumentation shadow cache, the internal format of the cache itself may be modified to contain meta data 1504. In embodiments where the instruction stream itself is modified to contain the meta data, then either the loader updates the instruction stream to contain the appropriate indicators and work areas or compiler 1500 has generated the code to contain meta data 1504. In either case, after the code is loaded, the processor receives the meta data 1504.
In addition, meta data 1504 may be placed into performance instrumentation shadow memory 1505 in association with instructions 1502. Compiler 1500 produces information in a table or debug data section. The performance monitoring program loads this information into shadow data areas in performance instrumentation shadow memory 1505. Alternatively, the debug areas may be automatically populated by the operating system and the processor working together.
Instructions 1502 may then be executed by processor 1508. Compiler 1500 may set a register such as mode register 1510 in processor 1508. When this register is set, processor 1508 looks at meta data 1504 in performance instrumentation shadow memory 1505 when executing instructions 1502 to determine whether performance indicators in meta data 1504 are associated with instructions that are being executed in instructions 1502. These performance indicators are handled using processes, such as those described above with reference to
A similar process may be performed with respect to data in memory location 1512. Depending on the particular implementation, meta data 1504 may be placed within the instruction or within the data, rather than in performance instrumentation shadow memory 1505. However, by placing meta data 1504 in performance instrumentation shadow memory 1505, the generation of meta data 1504 may be performed dynamically when meta data 1504 is placed in performance instrumentation shadow memory 1505.
This feature allows for selection and monitoring of instructions to occur without having to modify the program. In other words, compiler 1500 may generate meta data 1504 after instructions 1502 have been compiled for execution by processor 1508. Setting mode register 1510 causes processor 1508 to look for meta data 1504 in performance instrumentation shadow memory 1505 without having to modify instructions 1502. In these examples, meta data 1504 take the form of performance indicators that tell processor 1508 how to handle the execution of instructions 1502 and/or data accesses to memory location 1512.
Turning next to
In this example, meta data 1600 includes 5 entries, entry 1602, 1604, 1606, 1608, and 1610 as indicated by line 1612 in meta data 1600. Each of these entries includes an offset, a length, and a flag for describing the instrumentation of code in this example.
Entry 1602 has an offset of 0 with an entry length of 120 bytes. Flag 1614 indicates that all instructions within the range indicated by entry length 1616 need to be counted. In these examples, each instruction has a length of 4 bytes. Entry 1604 has an entry length of 4 bytes, which corresponds to an instruction. Flag 1618 indicates that an exception should be generated upon execution of this instruction.
In entry 1606, an instruction beginning at an offset of 160 bytes is associated with flag 1620. This flag indicates that the instruction should be counted if the threshold, 100 cycles, is exceeded.
Flag 1622 in entry 1608 indicates that tracing should start at the instruction having an offset of 256 bytes. Tracing stops as indicated by flag 1624 in entry 1610, which has a flag for the instruction at an offset of 512 bytes.
These flags are used to generate the performance indicators that are associated with the instructions. The operating system moves this meta data generated by the compiler and processes the meta data into a performance instrumentation shadow memory, such as performance instrumentation shadow memory 1506 in
With reference now to
At program compile time, the compiler generates a new performance instrumentation data section as previously described. At program load time, the loader queries the processor to determine cache line size. The loader parses perfinst segment 1728 and constructs a shadow segment, in the format required by the processor, for any text or data segment that the loader loads. This shadow segment is placed into new performance instrumentation shadow cache 1730.
Each block in the shadow segment contains meta data for instructions or data in the corresponding primary cache block. This meta data includes, for example, flags, tag fields, threshold, and count fields for each tagged item in a block in primary segment 1702. This meta data also may include a flag that represents all the instructions or data in the block.
The loader constructs a table mapping, translation table 1726, for each block in primary segment 1702 to a corresponding perfinst block, such as block 1732, 1734, 1736, 1738, 1740, 1742, 1744, 1746, 1748, 1750, and 1752 in perfinst segment 1728. Further, the loader registers the head of this table, translation table 1726, and the location and size of primary segment 1702 with the processor.
At page replacement time, paging software provides a new interface to associate perfinst segment 1728 with the corresponding primary segment, primary segment 1702. When primary segment 1702 pages in or out, perfinst segment 1728 pages in or out as well.
At cache line replacement time, the processor contains new performance instrumentation shadow cache 1730 with cache frames directly associated with the frames in the existing data and instruction caches, such as existing cache 1700. When the processor's instruction or data cache loads a new line, the cache also must load the corresponding perfinst block into the performance instrumentation shadow cache, new performance instrumentation shadow cache 1730. The processor sees (from the registration data given by the loader at program load time) that the processor is bringing a block into its cache that has an associated perfinst segment, perfinst segment 1728. The processor looks in translation table 1726 associated with this segment, finds a reference to the perfinst block corresponding to the block it is about to load and loads the perfinst block into new performance instrumentation shadow cache 1730. In these examples, cache misses associated with meta data are not signaled or are treated differently from cache misses associated data in a primary cache block, such as in primary segment 1702.
With reference now to
The process begins by identifying an instruction for profiling (step 1800). This instruction may be, for example, one that has been executed more than a selected number of times. Meta data is generated for the identified instruction (step 1802). This meta data takes the form of a performance indicator. The performance indicator may, for example, increment a counter each time the instruction is executed, increment a counter if the number of cycles needed to execute the instruction exceeds a threshold value, toggle counting of events for all instructions for all events after this instruction, or count events occurring in response to executing the instruction. In a preferred embodiment, the counters are in the associated performance instrumentation shadow cache and take some number of bits to allow for a one to one correspondence between the data or instructions in the cache and the bits reserved for counting.
The meta data is then associated with the instruction (step 1804). Next, a determination is made as to whether more instructions are present for processing (step 1806). If additional instructions are present, the process returns to step 1800. Otherwise, the process terminates. A similar process may be used to dynamically generate meta data for data in memory locations.
With reference now to
The process begins by identifying a memory location for profiling (step 1900). Step 1900 occurs by detecting access to a marked location. Meta data is generated for the identified memory location (step 1902). This meta data takes the form of a performance indicator. The performance indicator may, for example, increment a counter each time the memory location is accessed, increment a counter if the number of cycles needed to access the memory location exceeds a threshold value, or toggle counting of all accesses to memory locations. The meta data is then associated with the memory location (step 1904). Next, a determination is made as to whether more memory locations are present for processing (step 1906). If additional memory locations are present, the process returns to step 1900. Otherwise, the process terminates.
Turning now to
The process begins by executing an instruction (step 2000). A determination is made as to whether a counter is associated with the instruction (step 2002). The counter may be included in a field within the instruction or may be in a performance instrumentation shadow memory. If a counter is associated with the instruction, the counter is incremented (step 2004) with the process terminating thereafter. Otherwise, the process terminates without incrementing the counter. The counter may be reset if the counter exceeds a threshold value.
When the counter is implemented as part of the instructions, the counter may be of limited size. In this case, a threshold value for the counter may be set to indicate when the counter is in danger of overflowing. The counter may then be reset after the value has been read. This value may be read by a performance monitor unit or by a program used to analyze data. APIs may be implemented to access this data.
Turning now to
The process begins by detecting access to a memory location (step 2100). A determination is made as to whether a counter is associated with the memory location (step 2102). The counter may be included within the memory location or may be in a performance instrumentation shadow memory. If a counter is associated with the memory location, the counter is incremented (step 2104) with the process terminating thereafter. Otherwise, the process terminates without incrementing the counter.
With reference next to
When the instruction or data cache pages are loaded into memory, the operating system program loader/linker and/or the performance monitoring program, reads the meta data generated by the compiler and determines that counting is associated with instruction or data access, then the loading process allocates data areas to maintain the counters as part of its perfinst segment. The size of the counters and the granularity of the data access determine the amount of work area to be allocated.
In a simple case, the granularity of the data or instruction access could be word size (so that an access to any byte in the word is considered an access) and the counts could also be a word size. In this case, one to many mapping is present between the primary segment and the perfinst segment (a full word to contain the counts or threshold is not required). The loading process allocates a shadow page or pages and tells the processor to use the shadow page(s) to contain the counts. Details of this mapping are described above with reference to
In an alternative embodiment, the compiler allocates the work areas to maintain the counts and indicates the placement of these work areas in its generated data areas. An entry in the meta data could indicate the start of the data, the number of bytes of data, granularity of the data, the start of the count area, and the granularity of each counting unit. In either case, the meta data is loaded into the processor and the processor populates its internal (shadow) cache with the meta data. In illustrative embodiments in which the instruction stream itself is modified to contain the meta data, then either the loader updates the instruction stream to contain the appropriate indicators and work areas or the compiler has generated the code to contain the meta data. In either case, after the code is loaded, the processor receives the meta data.
Data unit 2206 may be implemented as data cache 206 in
Each of these events, instruction execution and data access, results in incrementing of a counter. The mechanism of the present invention provides an interface, hardware interface 2212, to access this collected data. In these examples, hardware interface 2212 takes the form of an application programming interface (API) for operating system 2214. In this way, analysis tool 2216 may obtain data from counter 2204 and counter 2210. Analysis tool 2216 may take many forms, such as for example, Oprofile, which is a known system wide profiler for Linux systems. Although the examples in
In
Alternatively, a fixed number of counts of a performance monitor counter may be used instead of a timer. This program profiles subroutines that are used to indicate where time is spent within a program. A program having usage over a certain threshold also is referred to as being “hot”. By using information from profiler 2300, routines of interest, such as subroutine 2304 in program 2302 may be identified.
With this information, the instructions in subroutine 2304 may be autonomically modified by analysis tool 2306 to allow counting of the execution of subroutine 2304. Additional routines may be identified for modification by analysis tool 2306. For example, subroutine 2304 also may be identified as a routine of interest with the instructions of this routine being modified to allow counting of the execution of subroutine 2304. The modification of the code in these routines includes associating performance indicators with one or more instructions within each of these subroutines.
After the instructions in these routines have been modified by analysis tool 2306, program 2302 is then executed by processor 2308. Processor 2308 executes program 2302 and provides counts for these routines. For example, the counting of instructions executed and the number of cycles used in executing a routine may be performed by processor 2308 using the mechanisms described above.
With reference to
The process begins by identifying instructions of interest using data from a profiler (step 2400). This profiler may be, for example, a timer profiler found in AIX. An instruction from the identified instructions is selected for modification (step 2402). Thereafter, a performance indicator is dynamically added to the selected instruction (step 2404).
In step 2404, the instruction may be added in a manner such that the instructions do not need to be modified for execution. A performance instrumentation shadow memory, such as performance instrumentation shadow memory 1506 in
A determination is then made as to whether additional identified instructions are present for modification (step 2406). If additional instructions are present for modification, the process returns to step 2402. Otherwise, the process terminates.
Turning next to
In this example, program 2500 contains three pages, page 2502, page 2504, and page 2506. Scanning daemon 2508 associates performance indicators with instructions in program 2500 one or more pages at a time. For example, the instructions in page 2502 may be associated with performance indicators by scanning daemon 2508. Program 2500 is then executed by processor 2510. Data from the execution of program 2500 may then be collected. This data includes, for example, counts of events occurring in response to instructions in page 2502, counting the number of times each instruction in page 2502 is executed, and/or identifying the number of visits to page 2502.
Next, scanning daemon may remove the performance indicators from instructions in page 2502 and associate performance indicators with instructions in page 2504. Program 2500 is then executed again by processor 2510, and data from execution of this program is collected. Then, instructions in page 2506 may be modified in program 2500 executed to collect data on that page.
In this manner, usages of routines typically not recorded by programs, such as a timer profiler, may be identified. A timer profiler may not record some usages of routines because interrupts may be inhibited or the timing of samples may cause synchronous non-random behavior. By modifying instructions in program 2500, counting a routine or other modules may be obtained in which the counts are unbiased and the system is unperturbed. In this manner, interrupt driven counting is avoided. Further, although the instrumenting of code is one page at a time, other groupings of instructions may be used in scanning a program, such as modules that form the program. For example, the grouping may be a single executable program, a library, a group of selected functions, and a group of selected pages.
Turning next to
First, a selection of pages is identified (step 2600). In this example, the pages are those in the program that are to be scanned or instrumented. Next, a page within the selection of pages is selected for modification (step 2602). Indicators are then associated with all of the instructions in the selected page (step 2604). The program is then executed (step 2606). Next, a determination is made as to whether all the pages with the selection have been scanned (step 2608). If all of the pages have been scanned, the process terminates thereafter. However, if not all pages have been scanned, the next page to be scanned is selected (step 2610), with the process returning to step 2604 as described above.
The process illustrated in
A program is employed to identify a caller from a routine from the information found in a call stack. This program allows for an identification of what has occurred in a routine and provides a summary of what has occurred in a program by identifying function calls that have been made. This program, however, requires instructions inserted in the code to obtain this information.
The mechanism of the present invention allows for identifying calls and returns without having to perform special code instrumentation. In particular, the function of generating an interrupt on a specific set of instructions may be used to gather information about the system and applications. In these examples, instructions for calls and returns are associated with a performance indicator that generates an interrupt.
By walking back up the call stack, a complete call stack can be obtained for analysis. A “stack walk” may also be described as a “stack unwind”, and the process of “walking the stack” may also be described as “unwinding the stack.” Each of these terms illustrates a different metaphor for the process. The process can be described as “walking” as the process must obtain and process the stack frames step-by-step or frame-by-frame. The process may also be described as “unwinding” as the process must obtain and process the stack frames that point to one another, and these pointers and their information must be “unwound” through many pointer dereferences.
The stack unwind follows the sequence of function/method calls at the time of an interrupt and is generated in response to execution of an instruction associated with a performance indicator. A call stack is an ordered list of routines plus offsets within routines (i.e. modules, functions, methods, etc.) that have been entered during execution of a program. For example, if routine A calls routine B, and then routine B calls routine C, while the processor is executing instructions in routine C, the call stack is ABC. When control returns from routine C back to routine B, the call stack is AB. For more compact presentation and ease of interpretation within a generated report, the names of the routines are presented without any information about offsets. Offsets could be used for more detailed analysis of the execution of a program, however, offsets are not considered further herein.
Thus, during interrupt processing or at post-processing initiated by execution of an instruction associated with a particular performance indicator, the generated sample-based profile information reflects a sampling of call stacks, not just leaves of the possible call stacks, as in some program counter sampling techniques. A leaf is a node at the end of a branch, i.e. a node that has no descendants. A descendant is a child of a parent node, and a leaf is a node that has no children.
With reference now to
Call stack 2700 includes information identifying the routine that is currently running, the routine that invoked it, and so on, all the way up to the main program. Call stack 2700 includes a number of stack frames 2702, 2704, 2706, and 2708. In the depicted example, stack frame 2702 is at the top of call stack 2700, while stack frame 2708 is located at the bottom of call stack 2700. The top of the call stack is also referred to as the “root”. The interrupt (found in most operating systems) is modified to obtain the program counter value (pcv) of the interrupted thread, together with the pointer to the currently active stack frame for that thread. In the Intel architecture, this is typically represented by the contents of registers: EIP (program counter) and EBP (pointer to stack frame).
By accessing the currently active stack frame, it is possible to take advantage of the (typical) stack frame linkage convention in order to chain all of the frames together. Part of the standard linkage convention also dictates that the function return address be placed just above the invoked-function's stack frame; this can be used to ascertain the address for the invoked function. While this discussion employs an Intel-based architecture, this example is not a restriction. Most architectures employ linkage conventions that can be similarly navigated by a modified profiling interrupt handler.
When an interrupt occurs, the first parameter acquired is the program counter value. The next value is the pointer to the top of the current stack frame for the interrupted thread. In the depicted example, this value would point to EBP 2708a in stack frame 2708. In turn, EBP 2708 points to EBP 2706a in stack frame 2706, which in turn points to EBP 2704a in stack frame 2704. In turn, this EBP points to EBP 2702a in stack frame 2702. Within stack frames 2702-2708 are EIPs 2702b-2708b, which identify the calling routine's return address. The routines may be identified from these addresses. Thus, routines are defined by collecting all of the return addresses by walking up or backwards through the stack.
Obtaining a complete call stack may be difficult in some circumstances, because the environment may make tracing difficult, such as when an application having one call stack makes a call to a kernel having a different call stack. The hardware support provided by the mechanism of the present invention avoids some of these problems.
Turning next to
The process begins by identifying call and return instructions (step 2800). The instructions for calls and returns are ones of interest for determining when a routine has been called and when a routine completes. This may be accomplished for interrupts, interrupt returns, system calls, and returns from system calls.
Next, performance indicators are associated with the identified call and return instructions (step 2802). The program is then executed (step 2804), and data is collected from the performance monitor unit (step 2806) with the process terminating thereafter. This information may be collected through interfaces, such as hardware interface 2212 illustrated in
With this data, identifications of callers of routines may be made. This information may be used to generate data structures, such as trees to track and present information regarding the execution of the program. This generation of data structures may be implemented using processes similar to those provided in analysis tools.
Turning next to
First, a determination is made as to whether an execution of a selected instruction is detected (step 2900). This determination is made by examining each instruction that is executed to see whether a performance indicator is associated with the instruction. These performance indicators may be associated with the instructions through different tools, such as compiler 1500 in
If execution of an instruction containing a performance indicator is not identified, the process returns to step 2900 until a selected instruction is detected. If a selected instruction is identified as being executed, a counter with a set threshold is incremented for that selected instruction to count how often that particular instruction is executed (step 2902). In these examples, each instruction identified for monitoring is assigned a counter.
Next, a determination is made as to whether the set threshold has been reached (step 2904). Threshold values are initially determined by using documented cache miss times, for each of the cache levels. However, increasing times are used to determine problems caused by cache interventions (accesses from other processors). Repeated runs with different values may be made to identify the areas with the worst performance.
In these examples, the instruction may be associated with an indicator that includes an indication that execution of the instruction is to be monitored as well as providing a counter. Further, count criteria may be included to identify when an interrupt is to be generated. For example, an interrupt may be generated when the instruction has been executed more than thirteen times.
If the threshold has not been reached, the process returns to step 2900 as described above. If the set threshold has been reached, an interrupt is sent to the monitoring program (step 2906) with the process terminating thereafter. This interrupt may be sent to an interrupt unit, such as interrupt unit 250 in
This process may be especially useful for routines with many branches. In this case, all branch instructions would be flagged for counting. Information derived by this type of counting may be useful for identifying improvements for compiler and just-in-time (JIT) code generation by minimizing branches or adjusting hint flags, supported in the instruction architecture of the processor that is used.
Turning next to
First, a call stack is examined and the caller of a routine is identified (step 3000). Next, a count of the number of instructions executed is captured from the instruction cache (step 3002). The count is for a counter used in step 2902 in
Turning next to
Instruction cache 3106 uses range registers 3108 to define instruction ranges. These registers may be existing registers or instruction cache 3106 may be modified to include registers to define instruction ranges. These ranges may be based on addresses of instructions. Additionally, range registers 3108 may be updated by various debugger programs and performance tools.
If an instruction is executed in a range, such as instruction range 3102 or instruction range 3104, a counter is incremented in instruction cache 3106. Alternatively, the instruction may be sent to a performance monitor unit, such as performance monitor unit 240 in
Data accesses may be monitored in a similar fashion. For example, data 3112 includes data range 3114. Data accesses to data range 3114 may be counted in a similar fashion to execution of instructions within instruction range 3102 or instruction range 3104. These ranges may be defined in registers within a data unit, such as data cache 216 in
Turning next to
First, an instruction is identified for execution (step 3200). Next, a determination is made as to whether the instruction is within a set range of instructions (step 3202). The range may be identified by examining registers defining one or more instruction ranges. If the instruction is not within a set range of instructions, the process returns to step 3200 as described above. If the instruction is within a set range of instructions, a determination is made as to whether the previous instruction was within the set range of instructions (step 3204). If the previous instruction was not within the set range of instructions, a visit counter is incremented to tell the processor how many times the instruction range is entered (step 3206). Additionally, an execution counter is incremented to count the number of instructions executed within the set range of instructions (step 3208) with the process returning to step 3200 thereafter.
With reference again to step 3204, if the previous instruction was within the set range of instructions, the process proceeds to step 3208 as described above.
A similar process to the one illustrated in
Thus, the present invention provides an improved method, apparatus, and computer instructions for providing assistance in monitoring execution of programs. The mechanism of the present invention includes employing an indicator that is recognized by the processor to enable counting the execution of an instruction associated with the indicator. Various types of counting as described above are enabled through this mechanism. Further, with the information provided through the use of associating indicators with particular instructions, the mechanism of the present invention also provides for various types of adjustments to programs in monitoring and analyzing performance of programs. Further, as described above, programs may be automatically adjusted to allow for monitoring of selected instructions and even routines and modules without having to modify the program.
It is important to note that while the present invention has been described in the context of a fully functioning data processing system, those of ordinary skill in the art will appreciate that the processes of the present invention are capable of being distributed in the form of a computer readable medium of instructions and a variety of forms and that the present invention applies equally regardless of the particular type of signal bearing media actually used to carry out the distribution. Examples of computer readable media include recordable-type media, such as a floppy disk, a hard disk drive, a RAM, CD-ROMs, DVD-ROMs, and transmission-type media, such as digital and analog communications links, wired or wireless communications links using transmission forms, such as, for example, radio frequency and light wave transmissions. The computer readable media may take the form of coded formats that are decoded for actual use in a particular data processing system.
The description of the present invention has been presented for purposes of illustration and description, and is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art. For example, instead of using a field in an instruction or in a bundle, a new instruction or operation code may be used to indicate that a subsequent instruction, or a subsequent set of instructions are marked instructions. Also, the architecture of a processor may be changed to include additional bits if spare fields for performance indicators are unavailable in the case in which it is desirable to include performance indicators within fields in the instructions. Also, although examples of events, such as execution of the instruction, time, such as clock or processor cycles, needed to execute an instruction, time to access data, entry into a section of code, have been given, these examples are not meant to limit the present invention to the types of events that can be counted. Any event relating to execution of an instruction or access to a memory location may be counted using the mechanisms of the present invention.
The illustrative embodiments were chosen and described in order to best explain the principles of the invention, the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
This application is a continuation of application Ser. No. 10/675,777, filed Sep. 30, 2003 now U.S. Pat. No. 7,395,527.
Number | Name | Date | Kind |
---|---|---|---|
2112794 | Stickney | Mar 1938 | A |
3707725 | Dellheim | Dec 1972 | A |
4034353 | Denny et al. | Jul 1977 | A |
4145735 | Soga | Mar 1979 | A |
4291371 | Holtey | Sep 1981 | A |
4316245 | Luu et al. | Feb 1982 | A |
4374409 | Bienvenu et al. | Feb 1983 | A |
4395757 | Bienvenu et al. | Jul 1983 | A |
4558413 | Schmidt et al. | Dec 1985 | A |
4590555 | Bourrez | May 1986 | A |
4598364 | Gum et al. | Jul 1986 | A |
4682283 | Robb | Jul 1987 | A |
4794472 | Doyama | Dec 1988 | A |
4821178 | Levin et al. | Apr 1989 | A |
4825359 | Ohkami et al. | Apr 1989 | A |
4912623 | Rantala et al. | Mar 1990 | A |
4928222 | Vriezen et al. | May 1990 | A |
5032982 | Dalrymple et al. | Jul 1991 | A |
5051944 | Fetterolf et al. | Sep 1991 | A |
5103394 | Blasciak | Apr 1992 | A |
5113507 | Jaeckel | May 1992 | A |
5142634 | Fite et al. | Aug 1992 | A |
5142635 | Saini | Aug 1992 | A |
5150349 | Takai et al. | Sep 1992 | A |
5151981 | Westcott et al. | Sep 1992 | A |
5206584 | Nishimori | Apr 1993 | A |
5212794 | Pettis et al. | May 1993 | A |
5256775 | Froehler | Oct 1993 | A |
5257358 | Cohen | Oct 1993 | A |
5276833 | Auvinen et al. | Jan 1994 | A |
5287481 | Lin | Feb 1994 | A |
5339426 | Aoshima | Aug 1994 | A |
5339435 | Lubkin et al. | Aug 1994 | A |
5355487 | Keller et al. | Oct 1994 | A |
5394529 | Brown, III et al. | Feb 1995 | A |
5404500 | Legvold et al. | Apr 1995 | A |
5438670 | Baror et al. | Aug 1995 | A |
5450349 | Brown et al. | Sep 1995 | A |
5463775 | DeWitt et al. | Oct 1995 | A |
5479633 | Wells et al. | Dec 1995 | A |
5537541 | Wibecan | Jul 1996 | A |
5537572 | Michelsen et al. | Jul 1996 | A |
5544342 | Dean | Aug 1996 | A |
5548762 | Creedon et al. | Aug 1996 | A |
5555432 | Hinton et al. | Sep 1996 | A |
5557548 | Gover et al. | Sep 1996 | A |
5564015 | Bunnell | Oct 1996 | A |
5574872 | Rotem et al. | Nov 1996 | A |
5581482 | Wiedenman et al. | Dec 1996 | A |
5581778 | Chin et al. | Dec 1996 | A |
5581981 | Fulkerson et al. | Dec 1996 | A |
5590352 | Zuraski et al. | Dec 1996 | A |
5594864 | Trauben | Jan 1997 | A |
5603004 | Kurpanek et al. | Feb 1997 | A |
5628018 | Matsuzaki et al. | May 1997 | A |
5644692 | Eick | Jul 1997 | A |
5652858 | Okada et al. | Jul 1997 | A |
5657253 | Dreyer et al. | Aug 1997 | A |
5659679 | Alpert et al. | Aug 1997 | A |
5666507 | Flora | Sep 1997 | A |
5671920 | Acquaviva et al. | Sep 1997 | A |
5675802 | Allen et al. | Oct 1997 | A |
5684030 | Elokdah et al. | Nov 1997 | A |
5689712 | Heisch | Nov 1997 | A |
5691920 | Levine et al. | Nov 1997 | A |
5694540 | Humelsine et al. | Dec 1997 | A |
5708803 | Ishimi et al. | Jan 1998 | A |
5710881 | Gupta et al. | Jan 1998 | A |
5727167 | Dwyer, III et al. | Mar 1998 | A |
5740413 | Alpert et al. | Apr 1998 | A |
5745770 | Thangadurai et al. | Apr 1998 | A |
5748878 | Rees et al. | May 1998 | A |
5751942 | Christensen et al. | May 1998 | A |
5752062 | Gover et al. | May 1998 | A |
5754839 | Pardo et al. | May 1998 | A |
5758061 | Plum | May 1998 | A |
5758168 | Mealey et al. | May 1998 | A |
5758187 | Young | May 1998 | A |
5761103 | Oakland et al. | Jun 1998 | A |
5768500 | Agrawal et al. | Jun 1998 | A |
5772322 | Burns et al. | Jun 1998 | A |
5774724 | Heisch | Jun 1998 | A |
5775825 | Hong et al. | Jul 1998 | A |
5787280 | Joseph et al. | Jul 1998 | A |
5787286 | Hooker | Jul 1998 | A |
5794028 | Tran | Aug 1998 | A |
5794052 | Harding | Aug 1998 | A |
5796939 | Berc et al. | Aug 1998 | A |
5797019 | Levine et al. | Aug 1998 | A |
5802378 | Arndt et al. | Sep 1998 | A |
5802678 | Puente | Sep 1998 | A |
5805879 | Hervin et al. | Sep 1998 | A |
5815707 | Krause et al. | Sep 1998 | A |
5822578 | Frank et al. | Oct 1998 | A |
5822763 | Baylor et al. | Oct 1998 | A |
5822790 | Mehrotra | Oct 1998 | A |
5835702 | Levine et al. | Nov 1998 | A |
5839050 | Baehr et al. | Nov 1998 | A |
5855578 | Guglielmi et al. | Jan 1999 | A |
5857097 | Henzinger et al. | Jan 1999 | A |
5862381 | Advani et al. | Jan 1999 | A |
5872913 | Berry et al. | Feb 1999 | A |
5875294 | Roth et al. | Feb 1999 | A |
5875334 | Chow et al. | Feb 1999 | A |
5887159 | Burrows | Mar 1999 | A |
5889947 | Starke | Mar 1999 | A |
5896538 | Blandy et al. | Apr 1999 | A |
5909573 | Sheaffer | Jun 1999 | A |
5913925 | Kahle et al. | Jun 1999 | A |
5920689 | Berry et al. | Jul 1999 | A |
5920721 | Hunter et al. | Jul 1999 | A |
5923863 | Adler et al. | Jul 1999 | A |
5926640 | Mason et al. | Jul 1999 | A |
5928334 | Mandyam et al. | Jul 1999 | A |
5930508 | Faraboschi et al. | Jul 1999 | A |
5937437 | Roth et al. | Aug 1999 | A |
5938760 | Levine et al. | Aug 1999 | A |
5938778 | John, Jr. et al. | Aug 1999 | A |
5940618 | Blandy et al. | Aug 1999 | A |
5949971 | Levine et al. | Sep 1999 | A |
5950003 | Kaneshiro et al. | Sep 1999 | A |
5950009 | Bortnikov et al. | Sep 1999 | A |
5966537 | Ravichandran | Oct 1999 | A |
5966538 | Granston et al. | Oct 1999 | A |
5966539 | Srivastava | Oct 1999 | A |
5970439 | Levine et al. | Oct 1999 | A |
5973417 | Goetz et al. | Oct 1999 | A |
5973542 | Okayasu et al. | Oct 1999 | A |
5978907 | Tran et al. | Nov 1999 | A |
5987250 | Subrahmanyam | Nov 1999 | A |
5987598 | Levine et al. | Nov 1999 | A |
5991708 | Levine et al. | Nov 1999 | A |
5991908 | Baxter et al. | Nov 1999 | A |
5996069 | Yasoshima et al. | Nov 1999 | A |
6006033 | Heisch | Dec 1999 | A |
6009514 | Henzinger et al. | Dec 1999 | A |
6026235 | Shaughnessy | Feb 2000 | A |
6063134 | Peters et al. | May 2000 | A |
6067644 | Levine et al. | May 2000 | A |
6070009 | Dean et al. | May 2000 | A |
6073109 | Flores et al. | Jun 2000 | A |
6073215 | Snyder | Jun 2000 | A |
6094709 | Baylor et al. | Jul 2000 | A |
6098169 | Ranganathan | Aug 2000 | A |
6101524 | Choi et al. | Aug 2000 | A |
6105051 | Borkenhagen et al. | Aug 2000 | A |
6105129 | Meier et al. | Aug 2000 | A |
6112317 | Berc et al. | Aug 2000 | A |
6118448 | McMillan et al. | Sep 2000 | A |
6119075 | Dean et al. | Sep 2000 | A |
6134676 | VanHuben et al. | Oct 2000 | A |
6145077 | Sidwell et al. | Nov 2000 | A |
6145123 | Torrey et al. | Nov 2000 | A |
6147318 | Marhic | Nov 2000 | A |
6148321 | Hammond | Nov 2000 | A |
6149318 | Chase et al. | Nov 2000 | A |
6161187 | Mason et al. | Dec 2000 | A |
6163840 | Chrysos et al. | Dec 2000 | A |
6182210 | Akkary et al. | Jan 2001 | B1 |
6185652 | Shek et al. | Feb 2001 | B1 |
6185671 | Pentovski et al. | Feb 2001 | B1 |
6189072 | Levine et al. | Feb 2001 | B1 |
6189141 | Benitez et al. | Feb 2001 | B1 |
6189142 | Johnston et al. | Feb 2001 | B1 |
6192513 | Subrahmanyam | Feb 2001 | B1 |
6195765 | Kislanko et al. | Feb 2001 | B1 |
6199204 | Donohue | Mar 2001 | B1 |
6202199 | Wygodny et al. | Mar 2001 | B1 |
6202207 | Donohue | Mar 2001 | B1 |
6206235 | Green | Mar 2001 | B1 |
6206584 | Hastings | Mar 2001 | B1 |
6212675 | Johnston et al. | Apr 2001 | B1 |
6223338 | Smolders | Apr 2001 | B1 |
6233679 | Holmberg | May 2001 | B1 |
6237019 | Ault et al. | May 2001 | B1 |
6237141 | Holzle et al. | May 2001 | B1 |
6240510 | Yeh et al. | May 2001 | B1 |
6243804 | Cheng | Jun 2001 | B1 |
6247113 | Jaggar | Jun 2001 | B1 |
6253338 | Smolders | Jun 2001 | B1 |
6256771 | O'Neil et al. | Jul 2001 | B1 |
6256775 | Flynn | Jul 2001 | B1 |
6275893 | Bonola | Aug 2001 | B1 |
6278064 | Hinkley et al. | Aug 2001 | B1 |
6285974 | Mandyam et al. | Sep 2001 | B1 |
6286132 | Tanaka et al. | Sep 2001 | B1 |
6286584 | Frields | Sep 2001 | B1 |
6298521 | Butterfield | Oct 2001 | B1 |
6311327 | O'Brien et al. | Oct 2001 | B1 |
6324689 | Lowney et al. | Nov 2001 | B1 |
6330662 | Patel et al. | Dec 2001 | B1 |
6339818 | Olszewski et al. | Jan 2002 | B1 |
6349406 | Levine et al. | Feb 2002 | B1 |
6351844 | Bala | Feb 2002 | B1 |
6353877 | Duncan et al. | Mar 2002 | B1 |
6374364 | McElroy et al. | Apr 2002 | B1 |
6378064 | Edwards et al. | Apr 2002 | B1 |
6381679 | Matsubara et al. | Apr 2002 | B1 |
6404500 | Schneider et al. | Jun 2002 | B1 |
6406135 | Watanabe et al. | Jun 2002 | B1 |
6408386 | Hammond et al. | Jun 2002 | B1 |
6425118 | Molloy et al. | Jul 2002 | B1 |
6430741 | Mattson, Jr. et al. | Aug 2002 | B1 |
6430938 | Royal et al. | Aug 2002 | B1 |
6438743 | Boehm et al. | Aug 2002 | B1 |
6442585 | Dean et al. | Aug 2002 | B1 |
6446019 | Kynett et al. | Sep 2002 | B1 |
6446029 | Davidson et al. | Sep 2002 | B1 |
6453468 | D'Souza | Sep 2002 | B1 |
6457170 | Boehm et al. | Sep 2002 | B1 |
6459998 | Hoffman | Oct 2002 | B1 |
6460135 | Suganuma | Oct 2002 | B1 |
6460693 | Harrold | Oct 2002 | B1 |
6477703 | Smith et al. | Nov 2002 | B1 |
6480938 | Vondran, Jr. | Nov 2002 | B2 |
6480966 | Rawson, III | Nov 2002 | B1 |
6484315 | Ziese | Nov 2002 | B1 |
6501995 | Kinney et al. | Dec 2002 | B1 |
6505292 | Witt | Jan 2003 | B1 |
6513045 | Casey et al. | Jan 2003 | B1 |
6519310 | Chapple | Feb 2003 | B2 |
6526571 | Aizikowitz et al. | Feb 2003 | B1 |
6530042 | Davidson et al. | Mar 2003 | B1 |
6539458 | Holmberg | Mar 2003 | B2 |
6542985 | Johnson et al. | Apr 2003 | B1 |
6549930 | Chrysos et al. | Apr 2003 | B1 |
6549959 | Yates et al. | Apr 2003 | B1 |
6549998 | Pekarich et al. | Apr 2003 | B1 |
6550002 | Davidson et al. | Apr 2003 | B1 |
6560693 | Puzak et al. | May 2003 | B1 |
6562858 | Oxenkrug | May 2003 | B2 |
6569679 | Barber et al. | May 2003 | B1 |
6574727 | Davidson et al. | Jun 2003 | B1 |
6594820 | Ungar | Jul 2003 | B1 |
6598153 | Flachs et al. | Jul 2003 | B1 |
6601233 | Underwood | Jul 2003 | B1 |
6631514 | Le | Oct 2003 | B1 |
6636950 | Mithal et al. | Oct 2003 | B1 |
6647301 | Sederlund et al. | Nov 2003 | B1 |
6654781 | Browning | Nov 2003 | B1 |
6658416 | Hussain et al. | Dec 2003 | B1 |
6658651 | O'Brien et al. | Dec 2003 | B2 |
6662295 | Yamaura | Dec 2003 | B2 |
6665776 | Jouppi et al. | Dec 2003 | B2 |
6678755 | Peterson et al. | Jan 2004 | B1 |
6681387 | Hwu et al. | Jan 2004 | B1 |
6681388 | Sato et al. | Jan 2004 | B1 |
6687794 | Malik | Feb 2004 | B2 |
6687807 | Damron | Feb 2004 | B1 |
6687811 | Yamada | Feb 2004 | B1 |
6708296 | Gover et al. | Mar 2004 | B1 |
6721875 | McCormick, Jr. et al. | Apr 2004 | B1 |
6725457 | Priem et al. | Apr 2004 | B1 |
6725458 | Shimotani et al. | Apr 2004 | B2 |
6732354 | Ebeling et al. | May 2004 | B2 |
6735666 | Koning | May 2004 | B1 |
6735757 | Kroening et al. | May 2004 | B1 |
6742179 | Megiddo et al. | May 2004 | B2 |
6757771 | Christie | Jun 2004 | B2 |
6758168 | Koskinen et al. | Jul 2004 | B2 |
6772322 | Merchant et al. | Aug 2004 | B1 |
6772412 | Baba et al. | Aug 2004 | B2 |
6774724 | Krvavac | Aug 2004 | B2 |
6775728 | Zimmer et al. | Aug 2004 | B2 |
6775825 | Grumann et al. | Aug 2004 | B1 |
6782454 | Damron | Aug 2004 | B1 |
6785844 | Wong et al. | Aug 2004 | B2 |
6801961 | Chu et al. | Oct 2004 | B2 |
6820155 | Ito | Nov 2004 | B1 |
6832296 | Hooker | Dec 2004 | B2 |
6840829 | Matsuda et al. | Jan 2005 | B2 |
6842850 | Ganapathy et al. | Jan 2005 | B2 |
6848029 | Coldewey | Jan 2005 | B2 |
6848030 | Tokar et al. | Jan 2005 | B2 |
6857083 | Floyd et al. | Feb 2005 | B2 |
6865663 | Barry | Mar 2005 | B2 |
6865666 | Yoshida et al. | Mar 2005 | B2 |
6871298 | Cavanaugh et al. | Mar 2005 | B1 |
6918106 | Burridge et al. | Jul 2005 | B1 |
6918606 | Petrishe | Jul 2005 | B2 |
6925424 | Jones et al. | Aug 2005 | B2 |
6928521 | Burton et al. | Aug 2005 | B1 |
6928582 | Adl-Tabatabai et al. | Aug 2005 | B2 |
6930508 | Kim et al. | Aug 2005 | B2 |
6944720 | Sperber et al. | Sep 2005 | B2 |
6944722 | Cantrill | Sep 2005 | B2 |
6944734 | Anzai et al. | Sep 2005 | B2 |
6948032 | Kadambi et al. | Sep 2005 | B2 |
6948059 | Sprecher et al. | Sep 2005 | B1 |
6951018 | Long et al. | Sep 2005 | B2 |
6961681 | Choquier et al. | Nov 2005 | B1 |
6961925 | Callahan, II et al. | Nov 2005 | B2 |
6966057 | Lueh | Nov 2005 | B2 |
6970999 | Kurihara et al. | Nov 2005 | B2 |
6971091 | Arnold et al. | Nov 2005 | B1 |
6972417 | Suganuma et al. | Dec 2005 | B2 |
6972541 | Matsushiro et al. | Dec 2005 | B2 |
6973417 | Maxwell et al. | Dec 2005 | B1 |
6973542 | Schmuck et al. | Dec 2005 | B1 |
6981128 | Fluhr et al. | Dec 2005 | B2 |
6988186 | Eickemeyer et al. | Jan 2006 | B2 |
7020808 | Sato et al. | Mar 2006 | B2 |
7024668 | Shiomi et al. | Apr 2006 | B2 |
7035996 | Woodall et al. | Apr 2006 | B2 |
7065634 | Lewis et al. | Jun 2006 | B2 |
7069541 | Dougherty et al. | Jun 2006 | B2 |
7082486 | DeWitt et al. | Jul 2006 | B2 |
7086035 | Mericas | Aug 2006 | B1 |
7089535 | Bates et al. | Aug 2006 | B2 |
7093081 | DeWitt, Jr. et al. | Aug 2006 | B2 |
7093154 | Bartfai et al. | Aug 2006 | B2 |
7093236 | Swaine et al. | Aug 2006 | B2 |
7114036 | DeWitt, Jr. et al. | Sep 2006 | B2 |
7114150 | Dimpsey et al. | Sep 2006 | B2 |
7131115 | Hundt et al. | Oct 2006 | B2 |
7155575 | Krishnaiyer et al. | Dec 2006 | B2 |
7162594 | Bungo | Jan 2007 | B2 |
7168067 | Betker et al. | Jan 2007 | B2 |
7181723 | Luk et al. | Feb 2007 | B2 |
7194732 | Fisher et al. | Mar 2007 | B2 |
7197586 | DeWitt, Jr. et al. | Mar 2007 | B2 |
7207043 | Blythe et al. | Apr 2007 | B2 |
7210126 | Ghobrial et al. | Apr 2007 | B2 |
7225309 | DeWitt, Jr. et al. | May 2007 | B2 |
7237242 | Blythe et al. | Jun 2007 | B2 |
7257657 | DeWitt, Jr. et al. | Aug 2007 | B2 |
7290254 | Comp et al. | Oct 2007 | B2 |
7293164 | DeWitt, Jr. et al. | Nov 2007 | B2 |
7296130 | Dimpsey et al. | Nov 2007 | B2 |
7296259 | Betker et al. | Nov 2007 | B2 |
7299319 | Dimpsey et al. | Nov 2007 | B2 |
7313655 | Hsu | Dec 2007 | B2 |
7373637 | DeWitt, Jr. et al. | May 2008 | B2 |
7392370 | DeWitt, Jr. et al. | Jun 2008 | B2 |
7395527 | DeWitt et al. | Jul 2008 | B2 |
7415699 | Gouriou et al. | Aug 2008 | B2 |
7415705 | DeWitt, Jr. et al. | Aug 2008 | B2 |
7421681 | DeWitt, Jr. et al. | Sep 2008 | B2 |
7421684 | Dimpsey et al. | Sep 2008 | B2 |
7448025 | Kalafatis et al. | Nov 2008 | B2 |
7458078 | DeWitt, Jr. et al. | Nov 2008 | B2 |
7469407 | Burky et al. | Dec 2008 | B2 |
7480899 | Dimpsey et al. | Jan 2009 | B2 |
7487301 | Mutz et al. | Feb 2009 | B2 |
7496908 | DeWitt, Jr. et al. | Feb 2009 | B2 |
7496909 | Kuch et al. | Feb 2009 | B2 |
7526616 | Dimpsey et al. | Apr 2009 | B2 |
7526757 | Levine et al. | Apr 2009 | B2 |
7574587 | DeWitt, Jr. et al. | Aug 2009 | B2 |
7577951 | Partamian et al. | Aug 2009 | B2 |
7581218 | Johnson | Aug 2009 | B2 |
7594219 | Ramachandran et al. | Sep 2009 | B2 |
7620777 | Dimpsey et al. | Nov 2009 | B2 |
7779394 | Homing et al. | Aug 2010 | B2 |
7783886 | Walmsley | Aug 2010 | B2 |
7895382 | DeWitt, Jr. et al. | Feb 2011 | B2 |
7895473 | Alexander, III et al. | Feb 2011 | B2 |
7902986 | Takei | Mar 2011 | B2 |
7926041 | Dimpsey et al. | Apr 2011 | B2 |
7937685 | Weil et al. | May 2011 | B2 |
7937691 | Dewitt, Jr. et al. | May 2011 | B2 |
7987453 | Dewitt, Jr. et al. | Jul 2011 | B2 |
8042102 | Dewitt, Jr. et al. | Oct 2011 | B2 |
8070009 | McKenzie et al. | Dec 2011 | B2 |
8135915 | Dimpsey et al. | Mar 2012 | B2 |
8141099 | Dewitt, Jr. et al. | Mar 2012 | B2 |
8171457 | Dimpsey et al. | May 2012 | B2 |
8191049 | Levine et al. | May 2012 | B2 |
8255880 | Dewitt, Jr. et al. | Aug 2012 | B2 |
8381037 | Dewitt, Jr. et al. | Feb 2013 | B2 |
20010014905 | Onodera | Aug 2001 | A1 |
20010032305 | Barry | Oct 2001 | A1 |
20020019976 | Patel et al. | Feb 2002 | A1 |
20020073406 | Gove | Jun 2002 | A1 |
20020124161 | Moyer et al. | Sep 2002 | A1 |
20020124237 | Sprunt et al. | Sep 2002 | A1 |
20020129309 | Floyd et al. | Sep 2002 | A1 |
20020147965 | Swaine et al. | Oct 2002 | A1 |
20020157086 | Lewis et al. | Oct 2002 | A1 |
20020199179 | Lavery et al. | Dec 2002 | A1 |
20030005422 | Kosche et al. | Jan 2003 | A1 |
20030014741 | Megiddo et al. | Jan 2003 | A1 |
20030040955 | Anaya et al. | Feb 2003 | A1 |
20030041096 | Johnson | Feb 2003 | A1 |
20030061471 | Matsuo | Mar 2003 | A1 |
20030066055 | Spivey | Apr 2003 | A1 |
20030101367 | Bartfai et al. | May 2003 | A1 |
20030115580 | Arai et al. | Jun 2003 | A1 |
20030126590 | Burrows et al. | Jul 2003 | A1 |
20030131343 | French et al. | Jul 2003 | A1 |
20030135719 | DeWitt, Jr. et al. | Jul 2003 | A1 |
20030135720 | DeWitt, Jr. et al. | Jul 2003 | A1 |
20030154463 | Betker et al. | Aug 2003 | A1 |
20030191900 | Hooker | Oct 2003 | A1 |
20030225917 | Partamian et al. | Dec 2003 | A1 |
20040003381 | Suzuki et al. | Jan 2004 | A1 |
20040006546 | Wedlake et al. | Jan 2004 | A1 |
20040030870 | Buser | Feb 2004 | A1 |
20040049712 | Betker et al. | Mar 2004 | A1 |
20040128651 | Lau | Jul 2004 | A1 |
20040153612 | Mutz et al. | Aug 2004 | A1 |
20040194076 | Comp et al. | Sep 2004 | A1 |
20040205302 | Cantrill | Oct 2004 | A1 |
20040236993 | Adkisson et al. | Nov 2004 | A1 |
20040268316 | Fisher et al. | Dec 2004 | A1 |
20050071515 | DeWitt, Jr. et al. | Mar 2005 | A1 |
20050071516 | Levine et al. | Mar 2005 | A1 |
20050071608 | DeWitt, Jr. et al. | Mar 2005 | A1 |
20050071609 | Levine et al. | Mar 2005 | A1 |
20050071610 | Levine et al. | Mar 2005 | A1 |
20050071611 | DeWitt, Jr. et al. | Mar 2005 | A1 |
20050071612 | DeWitt et al. | Mar 2005 | A1 |
20050071816 | Levine et al. | Mar 2005 | A1 |
20050071817 | DeWitt et al. | Mar 2005 | A1 |
20050071821 | Levine et al. | Mar 2005 | A1 |
20050071822 | DeWitt, Jr. et al. | Mar 2005 | A1 |
20050081019 | DeWitt et al. | Apr 2005 | A1 |
20050081107 | DeWitt et al. | Apr 2005 | A1 |
20050091456 | Huck | Apr 2005 | A1 |
20050102493 | DeWitt, Jr. et al. | May 2005 | A1 |
20050108483 | Bungo | May 2005 | A1 |
20050154811 | DeWitt, Jr. et al. | Jul 2005 | A1 |
20050154812 | DeWitt, Jr. et al. | Jul 2005 | A1 |
20050154813 | DeWitt, Jr. et al. | Jul 2005 | A1 |
20050154838 | DeWitt, Jr. et al. | Jul 2005 | A1 |
20050154839 | DeWitt, Jr. et al. | Jul 2005 | A1 |
20050154867 | DeWitt, Jr. et al. | Jul 2005 | A1 |
20050155018 | DeWitt, Jr. et al. | Jul 2005 | A1 |
20050155019 | Levine et al. | Jul 2005 | A1 |
20050155020 | DeWitt, Jr. et al. | Jul 2005 | A1 |
20050155021 | DeWitt, Jr. et al. | Jul 2005 | A1 |
20050155022 | DeWitt, Jr. et al. | Jul 2005 | A1 |
20050155025 | DeWitt, Jr. et al. | Jul 2005 | A1 |
20050155026 | DeWitt, Jr. et al. | Jul 2005 | A1 |
20050155030 | DeWitt, Jr. et al. | Jul 2005 | A1 |
20050177822 | Kuch et al. | Aug 2005 | A1 |
20050210275 | Homing et al. | Sep 2005 | A1 |
20050210450 | Dimpsey et al. | Sep 2005 | A1 |
20050257092 | Alexander et al. | Nov 2005 | A1 |
20060090063 | Theis | Apr 2006 | A1 |
20080088609 | Chou et al. | Apr 2008 | A1 |
20080235495 | DeWitt et al. | Sep 2008 | A1 |
20090287729 | Chen et al. | Nov 2009 | A1 |
20090300587 | Zheng et al. | Dec 2009 | A1 |
20110105970 | Gainer, Jr. | May 2011 | A1 |
20110106994 | Dewitt, Jr. et al. | May 2011 | A1 |
20120151465 | Dewitt, Jr. et al. | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
1164475 | Dec 2001 | EP |
10083284 | Mar 1998 | JP |
10260820 | Sep 1998 | JP |
2000029731 | Dec 1999 | JP |
2000347863 | Dec 2000 | JP |
406239 | Sep 2000 | TW |
457432 | Oct 2001 | TW |
457432 | Oct 2001 | TW |
Entry |
---|
Office Action issued on Sep. 2, 2011 for U.S. Appl. No. 12/185,254. |
Office Action regarding U.S. Appl. No. 10/675,777, dated Oct. 2, 2006. |
Response to Office Action regarding U.S. Appl. No. 10/675,777, dated Jan. 3, 2007. |
Final Office Action regarding U.S. Appl. No. 10/675,777, dated Mar. 21, 2007. |
Request for Continued Examination with Preliminary Amendment regarding U.S. Appl. No. 10/675,777, dated Jun. 20, 2007. |
Notice of Allowance regarding U.S. Appl. No. 10/675,777, dated Sep. 25, 2007. |
Supplemental Notice of Allowability regarding U.S. Appl. No. 10/675,777, dated Jan. 9, 2008. |
Supplemental Notice of Allowability regarding U.S. Appl. No. 10/675,777, dated May 8, 2008. |
Taiwan Search Report for application 094100082 dated Apr. 19, 2010. |
Jya, “Software Design of a UNIX-like Kernel”, Jul. 2003, pp. 1-4 http://etd.lib.nsysu.edu.tw/ETD-search-c/view—etd?URN+etd-09151030113427. |
Ramirez et al., “The Effect of Code Reordering on Branch Prediction”, Proceedings of the International Conference on Parallel Architectures and Compilation Techniques, Oct. 2000, pp. 189-198. |
Yang et al., “Improving Performance by Branch Reordering”, Proceedings of the ACM SIGPLAN 1998 Conference onProgramming Language Design and Implementation, Montreal Canada, 1008, pp. 130-141. |
Conte et al., “Accurate and Practical Profile-Driven Compilation Using the Profile Buffer”, Proceedings of the 29th Annual ACM/IEEE International Symposium on Microarchitecture, Paris, France, 1996, pp. 36-45. |
Conte et al., “Using Branch Handling Hardware to Support Profile-Driven Optimization”, Proceedings of the 27th Annual International Symposium on Microarchitecture, San Jose CA, 1994, pp. 12-21. |
Fisher, “Trace Scheduling: A Technique for Global Microcode Compaction”, IEEE Transactions on Computers, vol. C30, No. 7, Jul. 1981, pp. 478-490. |
Chang et al., “Using Profile Information to Assist Classic Code Optimizations”, Software Pract. Exper. 21, Dec. 1991, pp. 1301-1321. |
Schmidt et al., “Profile-Directed Restructuring of Operating System Code”, IBM Systems Journal, 1998, vol. 37, No. 2, pp. 270-297. |
Aho et al., “Compilers: Principles, Techniques, and Tools”, Addison-Wesley, 1988, pp. 488-497. |
Intel, “Intel IA-64 Architecture Software Developer's Manual”, Revision 1.1, vol. 4, No. 245320.002, Jul. 2001. |
“CPU Cache”, Wikipedia, pp. 1-14 retrieved Nov. 1, 2006 http://en.wikip;edia.org/wiki/CPU—cache. |
Ammons et al., “Exploiting Hardware Performance Counters with Flow and Context Sensitive Profiling”, 1997, ACM, pp. 85-96. |
“Method for the dynamic prediction of nonsequential memory accesses”, Sep. 25, 2002, pp. 1-4, ip.com IPCOM000009888D. |
“Cache Miss Director—A Means of Prefetching Cache Missed Lines”, Aug. 1, 1982, IBM Technical Disclosure Bulletin, vol. 25, Issue 3A, pp. 1286. |
Kikuchi, “Parallelization Assist System”, Joho Shori, vol. 34, No. 9, Sep. 1993, pp. 1158-1169. |
Cohen et al., “Hardware-Assisted Characterization of NAS Benchmarks”, Cluster Computing, vol. 4, No. 3, Jul. 2001, pp. 189-196. |
Talla et al., “Evaluating Signal Processing and Multimedia Applications on SIMD, VLIW and Super Scalar Architectures”, International Conference on Computer Design, Austin, Sep. 17-20, 2000, pp. 163-172. |
Iwasawa et al., “Parallelization Method of Fortran DO Loops by Parallelizing Assist System”, Transactions of Information Processings Society of Japan, vol. 36, No. 8, Aug. 1995, pp. 1995-2006. |
Talla et al., “Execution Characteristics of Multimedia Applications on a Pentium II Processor”, IEEE International Performance, Computing, and Communications Conference, 19th, Phoenix, Feb. 20-22, 2000, pp. 516-524. |
IBM Research Disclosure Bulletin 444188, “Enable Debuggers as an Objective Performance Measurement Tool for Software Development Cost Reduction”, Apr. 2001, pp. 686-688. |
Jeong et al., “Cost Sensitive Cache Replacement Algorithms”, Jun. 2002, Second Workshop on Cashing, Coherence and Consistency, NY, pp. 1-14. |
Wikipedia “JavaServer Pages” downloaded Jan. 24, 2006 http://en.wikipedia.org/wiki/JavaServer—Pages. |
“Hardware Cycle Based memory Residency”, IBM, May 22, 2003, ip.com, IPCOM000012728D, pp. 1-2. |
Hyde, “The Art of Assembly Language”, 2001, Linux Edition, pp. 247-248, retrieved Mar. 1, 2005 from http://webster.cs.ucr.edu/AoA/Linux/PDFs/0—PDFIndexLinux.html. |
Tanenbaum, “Structured Computer Organization”, 1984, Prentice-Hall, Inc., 2nd Edition, pp. 10-12. |
Torrellas et al., “False Sharing and Spatial Locality in Multiprocessor Caches”, Jun. 1994, IEEE Transactions on Computers, vol. 43, No. 6, pp. 651-663. |
Rothman et al., “Analysis of Shared Memory Misses and Reference Patterns”, 2000, IEEE, pp. 187-198. |
Short, “Embedded Microprocessor Systems Design: An Introduction Using the Intel 80C188EB” Prentice-Hall, Inc.: 1998, p. 761. |
Mano, “Computer System Architecture”, Prentice-Hall, Inc., 2nd Ed., 1982, pp. 434-443. |
Inoue, “Digital mobile communication system designed for nationwide police activities—WIDE system”, IEEEXplore, Oct. 1996, pp. 1-2. |
Merten et al., “A Hardware Driven Profiling Scheme for Identifying Program Hot Spots to Support Runtime Optimization”, IEEE, 1999, pp. 136-147. |
Yang et al., “Improving Performance by Branch Reordering”, Proceedings of the ACM SIGPLAN 1998 Conference on Programming Language Design and Implementation, Montreal Canada, 1998, pp. 130-141. |
Conte et al., “Using Branch Handling Hardware to Support Profile-Driven Optimization”, Proceeding of the 27th Annual International Symposium on Microarchitecture, San Jose CA, 1994, pp. 12-21. |
Chang et al., “Using Profile Information to Assist Classic Code Optimization ”, Software Pract. Exper. 21, Dec. 1991, pp. 1301-1321. |
USPTO notice of allowance dated Oct. 2, 2012 regarding U.S. Appl. No. 10/682,385, 30 pages. |
Office Action, dated May 27, 2011, regarding USPTO U.S. Appl. No. 13/004,153, 23 pages. |
Final Office Action, dated Oct. 20, 2011, regarding USPTO U.S. Appl. No. 13/004,153, 10 pages. |
Office Action, dated Feb. 25, 2013, regarding USPTO U.S. Appl. No. 13/004,153, 45 pages. |
USPTO Final Office Action dated Jul. 24, 2007 regarding U.S. Appl. No. 10/808,716, 19 pages. |
USPTO Final Office Action dated Nov. 16, 2007 regarding U.S. Appl. No. 10/808,716, 10 pages. |
USPTO Notice of Allowance dated Sep. 12, 2008 regarding U.S. Appl. No. 10/808,716, 19 pages. |
USPTO Office Action dated Feb. 8, 2007 regarding U.S. Appl. No. 10/808,716, 37 pages. |
USPTO Final Office Action dated Sep. 25, 2007 regarding U.S. Appl. No. 10/675,721, 16 pages. |
USPTO Final Office Action dated Oct. 3, 2008 regarding U.S. Appl. No. 10/675,721, 8 pages. |
USPTO Office Action dated Feb. 26, 2007 regarding U.S. Appl. No. 10/675,721, 40 pages. |
USPTO Office Action dated Apr. 9, 2008 regarding U.S. Appl. No. 10/675,721, 8 pages. |
USPTO Final Office Action dated May 31, 2006 regarding U.S. Appl. No. 10/675,751), 15 pages. |
USPTO Office Action dated Jan. 30, 2006 regarding U.S. Appl. No. 10/675,751, 17 pages. |
USPTO Final Office Action dated Jun. 15, 2010 regarding U.S. Appl. No. 10/675,776, 9 pages. |
USPTO Final Office Action dated Jun. 17, 2008 regarding U.S. Appl. No. 10/675,776, 17 pages. |
USPTO Final Office Action dated Jun. 30, 2009 regarding U.S. Appl. No. 10/675,776, 22 pages. |
USPTO Notice of Allowance dated Dec. 29, 2010 regarding U.S. Appl. No. 10/675,776, 10 pages. |
USPTO Office Action dated Jan. 21, 2010 regarding U.S. Appl. No. 10/675,776, 13 pages. |
USPTO Office Action dated Dec. 18, 2008 regarding U.S. Appl. No. 10/675,776, 22 pages. |
USPTO Office Action dated Dec. 21, 2007 regarding U.S. Appl. No. 10/675,776, 17 pages. |
USPTO Office Action dated Oct. 2, 2006 regarding U.S. Appl. No. 10/675,777, 25 pages. |
USPTO Final Office Action dated May 31, 2006 regarding U.S. Appl. No. 10/675,778, 19 pages. |
USPTO Office Action dated Feb. 3, 2006 regarding U.S. Appl. No. 10/675,778, 19 pages. |
USPTO Final Office Action dated Oct. 26, 2007 regarding U.S. Appl. No. 10/675,783, 14 pages. |
USPTO Final Office Action dated Oct. 30, 2008 regarding U.S. Appl. No. 10/675,783, 22 pages. |
USPTO Office Action dated Apr. 17, 2008 regarding U.S. Appl. No. 10/675,783, 16 pages. |
USPTO Office Action dated May 14, 2007 regarding U.S. Appl. No. 10/675,783, 42 pages. |
USPTO Final Office Action dated Jun. 12, 2006 regarding U.S. Appl. No. 10/675,831, 18 pages. |
USPTO Office Action dated Jan. 27, 2006 regarding U.S. Appl. No. 10/675,831, 17 pages. |
USPTO Final Office Action dated Feb. 11, 2008 regarding U.S. Appl. No. 10/806,866, 17 pages. |
USPTO Final Office Action dated Mar. 29, 2007 regarding U.S. Appl. No. 10/806,866, 22 pages. |
USPTO Office Action dated Oct. 5, 2006 regarding U.S. Appl. No. 10/806,866, 32 pages. |
USPTO Office Action dated Jum. 25, 2008 regarding U.S. Appl. No. 10/806,866, 6 pages. |
USPTO Office Action dated Aug. 24, 2007 regarding U.S. Appl. No. 10/806,866, 23 pages. |
USPTO Notice of Allowance dated Dec. 16, 2008 regarding U.S. Appl. No. 10/806,866, 8 pages. |
USPTO Examiner's Answer to Appeal Brief dated Oct. 31, 2008 regarding U.S. Appl. No. 10/806,871, 21 pages. |
USPTO Final Office Action dated Mar. 22, 2007 regarding U.S. Appl. No. 10/806,871, 23 pages. |
USPTO Final Office Action dated Apr. 19, 2008 regarding U.S. Appl. No. 10/806,871, 20 pages. |
USPTO Office Action dated Aug. 24, 2007 regarding U.S. Appl. No. 10/806,871, 26 pages. |
USPTO Office Action dated Sep. 19, 2006 regarding U.S. Appl. No. 10/806,871, 35 pages. |
USPTO Notice of Allowance dated Sep. 7, 2011 regarding U.S. Appl. No. 10/806,871, 9 pages. |
USPTO Final Office Action dated Nov. 3, 2006 regarding U.S. Appl. No. 10/675,872, 19 pages. |
USPTO Notice of Allowance dated Nov. 2, 2008 regarding U.S. Appl. No. 10/675,872, 6 pages. |
USPTO Supplemental Notice of Allowance dated Mar. 19, 2008 regarding U.S. Appl. No. 10/675,872, 6 pages. |
USPTO Office Action dated Jun. 5, 2006 regarding U.S. Appl. No. 10/675,872, 16 pages. |
USPTO Office Action dated Jul. 13, 2007 regarding U.S. Appl. No. 10/675,872, 22 pages. |
USPTO Final Office Action dated Oct. 4, 2007 regarding U.S. Appl. No. 10/806,917, 18 pages. |
USPTO Notice of Allowance dated May 1, 2008 regarding U.S. Appl. No. 10/806,917, 9 pages. |
USPTO Office Action dated Apr. 20, 2007 regarding U.S. Appl. No. 10/806,917, 45 pages. |
Armand et al., “Multi-threaded Processes in Chorus/MIX,” Proceedings of EEUG Spring 1990 Conference, Apr. 1990, pp. 1-16. |
Briggs et al., “Synchronization, Coherence, and Event Ordering in Multiprocessors,” Computer, vol. 21, Issue 2, Feb. 1988, pp. 9-21. |
Cai, “Architectural and Multiprocessor Design Verification of the PowerPC 604 Data Cache,” Conference Proceedings of the 1995 IEEE Fourteenth Annual International Phoenix Conference on Computers and Communications, Mar. 1995, pp. 383-388. |
Carey et al., “The Architecture of the EXODUS Extensible DBMS”, 1986 IEEE, ACM Digital Library, pp. 52-65. |
Schulz, “EDG Testbed Experience,” Oct. 2002, pp. 1-27, accessed Aug. 27, 2012 http://conferences.fnal.gov/Iccws/papers2/tue/edgtestbmarkusfinal.pdf. |
Grunwald et al., “Whole-Program Optimization for Time and Space Efficient Threads”, ASPLOS-VII Proceedings—Seventh International Conference on Architectural Support for Programming Languages and Operating Systems, Oct. 1996, 10 pages. |
“CPU cache,” Wikipedia definition, article dated Oct. 2006, 14 pages, accessed Nov. 1, 2006 http://en.wikipedia.org/wiki/CPU—cache. |
Kistler et al., “Continuous Program Optimization: A Case Study,” ACM Transactions on Programming Languages and Systems, vol. 25, No. 4, Jul. 2003, pp. 500-548. |
USPTO Final Office Action dated Aug. 15, 2007 regarding U.S. Appl. No. 10/682,437, 15 pages. |
Santhanam et al., “Software Verification Tools Assessment Study”, Department of Transportation: Federal Aviation Administration Technical Report, Report No. DOT/FAA/AR-06/54, Jun. 2007, 139 pages. |
Schmidt et al., “Profile-directed restructuring of operating system code”, IBM Systems Journal, vol. 37, No. 2, Apr. 1998, pp. 270-297. |
Shye et al., “Code Coverage Testing Using Hardware Performance Monitoring Support”, Proceedings of the Sixth International Symposium on Automated Analysis-Driven Debugging, Sep. 2005, 5 pages. |
Soffa et al., “Exploiting Hardware Advances for Software Testing and Debugging (NIER Track)”, Proceedings of the 33rd International Conference on Software Engineering, May 2011, 4 pages. |
Stolicny et al., “Alpha 21164 Manufacturing Test Development and Coverage Analysis,” IEEE Design & Test of Computers, vol. 15, Issue 3, Jul./Sep. 1988, pp. 98-104. |
Talla et al., “Execution Characteristics of Multimedia Applications on a Pentium II Processor”, Proceedings of the 19th IEEE International Performance, Computing, and Communications Conference, Feb. 2000, pp. 516-524. |
“Interrupt,” Wikipedia definition, article undated,last modified Aug. 8, 2012, 7 pages, accessed Aug. 27, 2012 http://en.wikipedia.org/wiki/Interrupt. |
TW search report dated Jun. 30, 2010 regarding Taiwan application 094107739A, filed Mar. 14, 2005, 2 Pages. |
Tran et al., “Student Paper: A hardware-Assisted Tool for Fast, Full Code Coverage Analysis,” 19th International Symposium on Software Reliability Engineering, Nov. 2008, pp. 321,322. |
Zhou, “Using Coverage Information to Guide Test Case Selection in Adaptive Random Testing,” 2010 IEEE 34th Annual Computer Software and Applications Conference Workshops, Jul. 2010, pp. 208-213. |
Saltz et al., “Run-Time Scheduling and Execution of Loops on Message Passing Machines,” Journal of Parallel and Distributed Computing, vol. 8, Issue 4, April 990, pp. 303-312. |
“Tool to Facilitate Testing of Software to Insur Compatibility,” IBM Technical Disclosure Bulletin, vol. 30, Issue 11, Apr. 1988, pp. 162,165. |
USPTO Office Action dated Aug. 24, 2007 regarding U.S. Appl. No. 10/757,171, 30 pages. |
USPTO Notice of Allowance dated Jan. 14, 2008 regarding U.S. Appl. No. 10/757,171, 7 pages. |
USPTO Final Office Action dated Mar. 12, 2007 regarding U.S. Appl. No. 10/757,186, 28 pages. |
USPTO Final Office Action dated Nov. 29, 2007 regarding U.S. Appl. No. 10/757,186, 30 pages. |
USPTO Notice of Allowance dated Oct. 20, 2010 regarding U.S. Appl. No. 10/757,186, 8 pages. |
USPTO Office Action dated Aug. 1, 2007 regarding U.S. Appl. No. 10/757,186, 34 pages. |
USPTO Office Action dated Nov. 28, 2005 regarding U.S. Appl. No. 10/757,186, 17 pages. |
USPTO Final Office Action dated Jun. 16, 2006 regarding U.S. Appl. No. 10/757,192, 11 pages. |
USPTO Notice of Allowance dated Nov. 3, 2006 regarding U.S. Appl. No. 10/757,192, 15 pages. |
USPTO Office Action dated Dec. 8, 2005 regarding U.S. Appl. No. 10/757,192, 12 pages. |
USPTO Final Office Action dated Jan. 30, 2008 regarding U.S. Appl. No. 10/757,197, 11 pages. |
USPTO Final Office Action dated Mar. 12, 2007 regarding U.S. Appl. No. 10/757,197, 19 pages. |
USPTO Notice of Allowance dated Oct. 15, 2008 regarding U.S. Appl. No. 10/757,197, 6 pages. |
USPTO Office Action dated Aug. 17, 2007 regarding U.S. Appl. No. 10/757,197, 17 pages. |
USPTO Office Action dated Sep. 13, 2006 regarding U.S. Appl. No. 10/757,197, 22 pages. |
USPTO Office Action dated Mar. 14, 2006 regarding U.S. Appl. No. 10/757,198, 7 pages. |
USPTO Office Action dated Dec. 2, 2005 regarding U.S. Appl. No. 10/757,198, 13 pages. |
USPTO Notice of Allowance dated Jul. 28, 2006 regarding U.S. Appl. No. 10/757,227, 11 pages. |
USPTO Supplemental Notice of Allowance dated Aug. 10, 2006 regarding U.S. Appl. No. 10/757,22, 4 pages. |
USPTO Office Action dated Feb. 28, 2006 regarding U.S. Appl. No. 10/757,227, 13 pages. |
USPTO Final Office Action dated May 8, 2006 regarding U.S. Appl. No. 10/687,248, 23 pages. |
USPTO Office Action dated Jan. 6, 2006 regarding U.S. Appl. No. 10/687,248, 24 pages. |
USPTO Final Office Action dated Jul. 5, 2007 regarding U.S. Appl. No. 10/757,250, 11 pages. |
USPTO Notice of Allowance dated Nov. 20, 2007 regarding U.S. Appl. No. 10/757,250, 6 pages. |
USPTO Office Action dated Oct. 6, 2006 regarding U.S. Appl. No. 10/757,250, 10 pages. |
USPTO Notice of Allowance dated Dec. 27, 2011 regarding U.S. Appl. No. 12/185,254, 10 pages. |
USPTO Notice of Allowance dated Jul. 1, 2009 regarding U.S. Appl. No. 12/431,389, 31 pages. |
USPTO Notice of Allowance dated Apr. 30, 2008 regarding U.S. Appl. No. 10/757,250, 6 pages. |
USPTO Office Action dated Feb. 26, 2007 regarding U.S. Appl. No. 10/682,437, 18 pages. |
USPTO Office Action dated Jun. 15, 2011 regarding U.S. Appl. No. 12/122,558, 18 pages. |
USPTO Notice of Allowance dated Nov. 22, 2011 regarding U.S. Appl. No. 12/122,558, 13 pages. |
USPTO Final Office Action dated Oct. 24, 2006 regarding U.S. Appl. No. 10/806,576, 25 pages. |
USPTO Office Action dated May 4, 2006 regarding U.S. Appl. No. 10/806,576, 16 pages. |
USPTO Final Office Action dated May 9, 2006 regarding U.S. Appl. No. 10/674,604, 21 pages. |
USPTO Office Action dated Jan. 17, 2006 regarding U.S. Appl. No. 10/674,604, 22 pages. |
USPTO Final Office Action dated Jun. 23, 2006 regarding U.S. Appl. No. 10/674,606, 17 pages. |
USPTO Office Action dated Jan. 12, 2006 regarding U.S. Appl. No. 10/674,606, 12 pages. |
USPTO Final Office Action dated Dec. 20, 2006 regarding U.S. Appl. No. 10/806,633, 21 pages. |
USPTO Notice of Allowance dated Apr. 20, 2007 regarding U.S. Appl. No. 10/806,633, 4 pages. |
USPTO Supplemental Notice of Allowance dated Oct. 5, 2007 regarding U.S. Appl. No. 10/806,633, 7 pages. |
USPTO Office Action dated May 15, 2006 regarding U.S. Appl. No. 10/806,633, 19 pages. |
USPTO Final Office Action dated Aug. 23, 2007 regarding U.S. Appl. No. 10/674,642, 15 pages. |
USPTO Office Action dated Feb. 27, 2007 regarding U.S. Appl. No. 10/674,642, 16 pages. |
USPTO Office Action dated Mar. 27, 2008 regarding U.S. Appl. No. 10/674,642, 16 pages. |
USPTO Office Action dated Aug. 24, 2006 regarding U.S. Appl. No. 10/674,642, 24 pages. |
USPTO Notice of Allowance dated Mar. 18, 2011 regarding U.S. Appl. No. 10/803,663, 10 pages. |
USPTO Office Action dated May 2, 2008 regarding U.S. Appl. No. 10/803,663, 23 pages. |
USPTO Office Action dated May 4, 2007 regarding U.S. Appl. No. 10/803,663, 36 pages. |
USPTO Office Action dated Oct. 18, 2007 regarding U.S. Appl. No. 10/803,663, 24 pages. |
USPTO Final Office Action dated Apr. 29, 2008 regarding U.S. Appl. No. 10/808,716, 10 pages. |
USPTO Notice of Allowance dated Aug. 15, 2013 regarding U.S. Appl. No. 13/004,153, 8 pages. |
Supplemental notice of allowance dated Oct. 3, 2013 regarding U.S. Appl. No. 13/004,153, 30 pages. |
Non-final office action dated Sep. 20, 2013 regarding U.S. Appl. No. 13/347,876, 89 pages. |
USPTO Final Office Action dated Jun. 10, 2013 regarding U.S. Appl. No. 13/004,153, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20080141005 A1 | Jun 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10675777 | Sep 2003 | US |
Child | 12021425 | US |