Couple inductor power transfer system

Information

  • Patent Grant
  • 10348131
  • Patent Number
    10,348,131
  • Date Filed
    Tuesday, September 13, 2016
    8 years ago
  • Date Issued
    Tuesday, July 9, 2019
    5 years ago
Abstract
Coupled inductor systems are disclosed in which transmitter and receiver inductors, or coils, are coupled in a configuration for wirelessly transferring power and/or data among them. In preferred implementations, the systems are used for transmitting both power and data in pairs of coupled coils. Primary side circuits in preferred embodiments of the systems of the invention employ Class D or Class G amplifiers.
Description
TECHNICAL FIELD

The invention relates to coupled inductor systems. More particularly, the invention relates to coupled inductor systems for use in wireless power and data transfer applications. In preferred embodiments employed in wireless power applications, the invention relates to the more efficient utilization of energy resources.


BACKGROUND OF THE INVENTION

Inductive coupling is an effect used to transfer electrical energy from one circuit to an adjacent circuit through inductive coils. A variable current on a primary coil is used to create a varying magnetic field, and thus a voltage, in a secondary coil. Wireless charging systems employing inductive coupling are useful for transferring energy from one device to another. Such systems are used for supplying power, charging batteries, and in some cases also for transferring data. Challenges inherent in such systems include providing efficiency in transferring power. Inefficient systems generate excess heat and are limited in their maximum power transfer capability.


Due to these and other problems and potential problems, improved coupled inductor systems would be useful and advantageous contributions to the arts.


SUMMARY OF THE INVENTION

In carrying out the principles of the present invention, in accordance with preferred embodiments, the invention provides advances in the arts with novel apparatus directed to the transfer of power and/or data using inductive couplings. In preferred embodiments, systems include capabilities for power and/or data transfer. Preferably, the coupled coils of systems of the invention are not permanently physically interconnected.


According to aspects of the invention, examples of preferred embodiments include multiple coil couple inductor systems including at least a primary side coil and a secondary side coil for completing an inductive coupling with the primary side. The coils are preferably not permanently physically affixed to one another and are interchangeable, e.g., a secondary side coil can preferably be removed from proximity with a primary side coil and replaced with a different secondary side coil. When positioned in proximity, the primary and secondary side coils are electromagnetically, but not physically coupled such that one or more signals may be passed between the coils.


According to aspects of the invention, in an example of presently preferred embodiments, a coupled inductor system for wireless power transfer includes a primary side with a driver connected for driving a primary side inductor. A secondary side is provided with a secondary side inductor and is adapted for receiving a sine wave power signal transmitted to it through the primary side inductor.


According to aspects of the invention, preferred embodiments also include systems as described immediately above with Class G amplifier drivers.


According to aspects of the invention, preferred embodiments also include systems as described immediately above with Class D amplifier drivers.


According to aspects of the invention, in preferred embodiments, coupled inductor systems for wireless power transfer are also equipped for providing feedback from the secondary side to the primary side.


According to aspects of the invention, preferred embodiments of coupled inductor systems for wireless power transfer also include data transmission functionality.


The invention has advantages including but not limited to one or more of, improved coupled inductor system power transfer, improved data transmission functionality, and reduced costs. These and other potential advantageous, features, and benefits of the present invention can be understood by one skilled in the arts upon careful consideration of the detailed description of representative embodiments of the invention in connection with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be more clearly understood from consideration of the following detailed description and drawings in which:



FIG. 1 is a simplified schematic diagram of a coupled inductor power transfer system illustrating an example of a preferred embodiment of the invention;



FIG. 2 is a simplified schematic diagram of a coupled inductor power transfer system illustrating an example of a preferred embodiment of the invention;



FIG. 3 is a simplified schematic diagram of a coupled inductor power transfer system illustrating an example of a preferred embodiment of the invention; and



FIG. 4 is a simplified schematic diagram of a coupled inductor power transfer system illustrating an example of a preferred embodiment of the invention.





References in the detailed description correspond to like references in the various drawings unless otherwise noted. Descriptive and directional terms used in the written description such as right, left, back, top, bottom, upper, side, et cetera, refer to the drawings themselves as laid out on the paper and not to physical limitations of the invention unless specifically noted. The drawings are not to scale, and some features of embodiments shown and discussed are simplified or amplified for illustrating principles and features as well as advantages of the invention.


DESCRIPTION OF PREFERRED EMBODIMENTS

The present patent application is related to U.S. patent application, Ser. No. 13/045,493 which shares at least one common inventor with the present application and has a common assignee. Said related application is hereby incorporated herein for all purposes by this reference.


If a load is connected to the secondary coil of a coupled inductor system, an electric current flows in the secondary coil, and electrical energy is then transferred from the primary coil through the secondary coil, and ultimately to a load connected to the secondary side. Generally, secondary side systems are designed to resonate at a particular frequency. This allows for more efficient transfer of energy at that particular frequency. In systems known in the art, the primary side coil is excited with a square wave, with the result that energy is radiated at multiple frequencies. Efforts to use a square wave result in wasted energy and radiated emissions. Energy is inevitably radiated at frequencies other than the intended square wave fundamental frequency, e.g., at harmonic frequencies, creating a multiple frequency input to the primary side inductor, which is additionally distorted due to coupling effects from the secondary side. Energy that is not at the particular resonant frequency of the secondary side system is dissipated or transferred with reduced efficiency. Regulation of the power transfer in such a system is achieved by modulating either the duty cycle, or the frequency of the primary side driver. In either case, the result is a non-optimized transfer of power in the system. Existing systems that control power transfer by modulating input power use a two-stage solution. The first stage provides the power conversion from some supply voltage to an adjustable voltage. The second stage is a full-bridge or half-bridge driver that drives the coils. The first stage in these systems introduces additional complexity, component count, and power dissipation.


The inventors have designed a system in which the primary side coil is driven in such a way that it radiates energy in the narrowest possibly frequency band, and in which the driver control is modulated in such a way as to maintain good frequency performance of the system. This is achieved in a system designed for driving the primary coil using a sine function. Power transfer is controlled by varying the amplitude of the primary side driver. Several alternative embodiments have been developed for generating a sine wave on the primary side coil. The presently preferred embodiments that address problems of primary side driver performance use a Class-D or Class-G amplifier to drive the primary side coil.


An example of a preferred embodiment of a coupled inductor system for wireless power transfer according to the invention is shown in FIG. 1. The system 100 includes a primary side 102 for providing power to a secondary side 104 receiver. On the primary side 102, a sine wave generator 106 is provided as a driver. Preferably, the sine wave generator 106 is capable of adjustment in terms of frequency and amplitude in order to adjust transmissions to the secondary side 104. Suitable startup circuitry 108 is provided to allow the system 100 to achieve appropriate bias levels prior to driving the primary side inductor coil 110. This provides the additional advantage of providing a smooth startup that mitigates or eliminates wasted energy and radiated emissions. Adjustable resistors, e.g., R1, R2 R3, R4, are preferably provided in order to regulate the sine wave amplitude for output at the primary side inductor 110. The secondary side 104 includes a secondary side inductor 112, inductively coupled to the primary side inductor 110 for receiving the sine wave output of the primary side 102. Preferably, the secondary side 104 also includes circuitry 114 suitable for generating feedback signals 116 such as power levels, load levels, and secondary side frequency, for use in making adjustments to the output of the sine wave generator 106.


It should be understood that the system 100 frequency may be adjusted in efforts to optimize power transfer. If the amplitude of the output is measured at different frequencies and found to vary in amplitude, then the frequency with the highest amplitude signal is recognized to represent the resonant point of the system 100 and may be used to optimize operation. The sine wave frequency at the primary side 102 sine wave generator 106 can also be adjusted to optimize the coupling to the secondary side 104. Preferably, during initial coupling, the frequency of the sine wave is varied, and amplitude and/or power transfer, preferably both, are measured in the secondary side 104 at various frequencies. The feedback information 116 thus obtained may then be used to determine the optimal frequency of the sine wave output of the driver 106 for maximum power transfer. The system 100 can also employ a multi-step setup using multiple parameters. For example, on initial power-up or characterization, the primary side 102 of the system 100 can determine its resonant frequency by iteratively adjusting frequency and measuring output at the primary side coil 110. After the power transfer link is established at some defined frequency, the system 100 operating frequency can shift back to the resonant frequency based on feedback 116 from the secondary side 104 for improved efficiency. At this point, the power transfer can be controlled by adjusting the sine wave generator 106 amplitude and maintaining operation at the resonant frequency. Instead of using the resonant frequency, the system 100 can optionally make use of one or more other selected frequency determined to be a preferred frequency based on efficiency, power transfer, EMI, or other parameter(s).


This exemplary coupled inductor system 100 for wireless power transfer illustrates several advantages common to preferred embodiments of the invention. Aspects of the invention lead to improved control and efficiency, including, low impedance switches, accurate signal generation, feedback to compensate for variations in secondary side load, precise control of the primary side coil voltage amplitude, and additional data transfer capabilities. As the energy transfer is improved, the coil resistance can be higher making a better system in terms of manufacturability and lower cost. The feedback loop provided to assist in generating the primary side sine wave can be closed using voltage or current feedback or some combination of both. An additional advantage of this system is that it provides the ability to generate an effective coil drive voltage or sine wave amplitude that is lower than the input voltage of the system. This eliminates the need for a separate power conversion stage that would be necessary to modulate input voltage to the primary coil driver.



FIG. 2 is an example of a coupled inductor power transfer system 200 in accordance with a preferred embodiment of the invention. The system 200 includes a Class G amplifier primary side 202 for providing power to a secondary side 204 receiver 214. On the primary side 202, a Switched Mode Power Supply (SMPS) 206 is provided for producing a sine wave output to the primary side inductor coil 210. A Low Drop Out (LDO) regulator 218 acts as a filter to minimize electromagnetic interference (EMI) at the output. As in the alternative preferred embodiment described with reference to FIG. 1, the sine wave generator, i.e., SMPS driver 206, is configured to be adjustable in terms of frequency and amplitude in order to adjust transmissions to the secondary side 204. As in the above example, suitable startup circuitry (not shown) may also be provided in order to allow the system 200 to achieve appropriate bias levels prior to driving the primary side inductor coil 210, providing similar advantages. The secondary side 204 includes an inductor 212 coupled to the primary side inductor 210 for receiving the sine wave output of the primary side 202. Preferably, the secondary side 204 also includes circuitry 214 suitable for generating feedback signals 216 such as power levels, load levels, and frequency, for use in making adjustments to the output of the power supply 206.



FIG. 3 is a diagram of a coupled inductor power transfer system 300 in accordance with an exemplary preferred embodiment of the invention. The system 300 includes a Class G amplifier primary side 302 for providing power to a secondary side 304 receiver 314. On the primary side 302, a Switched Mode Power Supply (SMPS) 306 is provided for producing sine wave outputs to the primary side inductor coil 310. Two LDOs 318, 320, provide differential outputs to the primary side coil 310. The LDOs 318, 320 act as filters to minimize electromagnetic interference (EMI) at the coil 310. In this system 300 configuration, the differential output may be used to provide approximately double the power output of the voltage supply, or may be used to provide a given output using approximately one half of the supply voltage along with correspondingly smaller components. The SMPS 306, is preferably adjustable as to output frequency and amplitude in order to adjust transmissions to the secondary side 304. As in the above examples, suitable startup circuitry (not shown) may also be provided in order to allow the system 300 to achieve appropriate bias levels prior to driving the primary side inductor coil 310, providing similar advantages. The secondary side 304 includes an inductor 312 coupled to the primary side inductor 310 for receiving the sine wave output of the primary side 302. Preferably, the secondary side 304 also includes circuitry 314 suitable for generating feedback signals 316 such as power levels, load levels, and frequency, for use in making adjustments to the output of the power supply 306.


Now referring to FIG. 4, a diagram of a coupled inductor power transfer system 400 in accordance with an exemplary preferred embodiment of the invention is shown. The system 400 includes a Class D amplifier primary side 402 for providing power to a secondary side 404 receiver 414. On the primary side 402, a suitable power supply 406 provides a high frequency Pulse Width Modulated (PWM) signal, such as a square wave, is provided an LC filter 408 for producing a sine wave output to the primary side inductor coil 410. The primary side 402 is shielded from the secondary side 404 to minimize electromagnetic interference (EMI) at the coupled coils 410, 412. Suitable startup circuitry (not shown) may also be provided in order to allow the system 400 to achieve appropriate bias levels prior to driving the primary side inductor coil 410, providing similar advantages. The secondary side 404 includes an inductor 412 coupled to the primary side inductor 410 for receiving the sine wave output of the primary side 402. Preferably, the secondary side 404 also includes circuitry 414 suitable for generating feedback signals 416 such as power levels, load levels, and frequency, for use in making adjustments to the output of the power supply 406.


An additional advantage of the invented coupled inductor power transmission systems is the ability to transmit data as well as power. In one example, the PWM signal used in the system 400 of FIG. 4 can be modulated to include data. The modulation can be amplitude, duty cycle, frequency, or any other modulation technique. For example, the primary side 402 can be switched at two different frequencies. A selected number of pulses at a lower frequency when detected at the secondary side 404 receiver 414 can represent a “one” and a selected number of pulses at a higher frequency when detected at the receiver 414 can represent a “zero”. The closed loop on the primary side 402 will guarantee that the power coil waveform (which is much lower frequency than the primary side switching frequency) will not be distorted significantly by the embedded data.


In another example of data transmission in a coupled inductor power transmission system, two coils can be driven in parallel using the same driver. Using a different coil and/or capacitor combination will result in a different frequency response. The coil/capacitor combinations can be tuned such that one is optimized for power transmission at the sine wave frequency (lower frequency) and the other is optimized for data transmission at the driver switching frequency (higher frequency). The coils in this approach provide a filter to eliminate unwanted frequency content. A similar approach can be used on the receiver-side of this system. Two coils in parallel can be used and tuned to the appropriate frequencies. Such two-coil (on each side, actually four-coils counting the primary and secondary sides) systems can be implemented using combinations of the coupled coil systems shown and described herein without departure from the invention.


While the making and using of various exemplary embodiments of the invention are discussed herein, it should be appreciated that the present invention provides inventive concepts which can be embodied in a wide variety of specific contexts. It should be understood that the invention may be practiced with coupled inductor systems having communications and power transfer functionality, such as for example, battery chargers, AC/DC converters, power supplies, and associated apparatus. For purposes of clarity, detailed descriptions of functions, components, and systems familiar to those skilled in the applicable arts are not included. The methods and apparatus of the invention provide one or more advantages including but not limited to, data transfer capabilities, managed power transfer capabilities, and enhanced energy utilization and conservation attributes. While the invention has been described with reference to certain illustrative embodiments, those described herein are not intended to be construed in a limiting sense. For example, variations or combinations of steps or materials in the embodiments shown and described may be used in particular cases without departure from the invention. Various modifications and combinations of the illustrative embodiments as well as other advantages and embodiments of the invention will be apparent to persons skilled in the arts upon reference to the drawings, description, and claims.

Claims
  • 1. A coupled inductor system for wireless power transfer comprising: a primary side having a plurality of half H bridge drivers coupled to a primary side inductor;a secondary side having a secondary side inductor;wherein the secondary side is adapted for receiving a power signal transmitted by the half H bridge drivers through the primary side inductor, and the one or more half H bridge drivers further comprise pulse width modulation data transmission functionality.
  • 2. The coupled inductor system for wireless power transfer according to claim 1 wherein the one or more half H bridge drivers further comprise a Class G amplifier and a low drop out regulator coupled between the Class G amplifier and the primary side inductor.
  • 3. The coupled inductor system for wireless power transfer according to claim 1 wherein the one or more half H bridge drivers further comprise a Class D amplifier.
  • 4. The coupled inductor system for wireless power transfer according to claim 1 wherein the one or more half H bridge drivers further comprise a differential amplifier.
  • 5. The coupled inductor system for wireless power transfer according to claim 1 wherein the secondary side further comprise circuitry for providing feedback to the primary side.
  • 6. The coupled inductor system for wireless power transfer according to claim 1 further comprising feedback circuitry adapted to determine a selected frequency characteristic of the primary side and to operate the one or more half H bridge drivers at the selected frequency.
  • 7. The coupled inductor system for wireless power transfer according to claim 1 further comprising feedback circuitry configured to determine a resonant frequency of the primary side and to operate the one or more half H bridge drivers at the resonant frequency.
  • 8. The coupled inductor system for wireless power transfer according to claim 1 wherein the primary side further comprises startup circuitry configured to reach a bias level prior to driving the primary side inductor.
  • 9. The coupled inductor system for wireless power transfer according to claim 1 wherein the secondary side further comprises data receiving functionality.
  • 10. The coupled inductor system for wireless power transfer according to claim 1 wherein the primary side is configured to control power transfer to the secondary side by adjusting the output amplitude of the one or more half H bridge drivers.
  • 11. A coupled inductor system for wireless power transfer comprising: a primary side having one or more half H bridge drivers coupled to logic, and a primary side inductor;a secondary side having a secondary side inductor;wherein the secondary side is configured to receive a power signal transmitted by the driver through the primary side inductor; andcircuitry configured to provide feedback from the secondary side to the primary side for controlling the one or more half H bridge drivers to adjust a frequency and an amplitude of a driver output, wherein the one or more half H bridge drivers further comprise pulse width modulation data transmission functionality.
  • 12. The coupled inductor system for wireless power transfer according to claim 11 wherein the circuitry is configured to determine a selected frequency characteristic of the primary side and to operate the one or more half H bridge drivers at the selected frequency.
  • 13. The coupled inductor system for wireless power transfer according to claim 11 further comprising feedback circuitry adapted to determine the resonant frequency of the primary side and to operate the driver at the resonant frequency.
  • 14. The coupled inductor system for wireless power transfer according to claim 11 wherein the one or more half H bridge drivers further comprise a Class G amplifier.
  • 15. The coupled inductor system for wireless power transfer according to claim 11 wherein the one or more half H bridge drivers further comprise a Class D amplifier.
  • 16. The coupled inductor system for wireless power transfer according to claim 11 wherein the one or more half H bridge drivers further comprise a differential amplifier.
  • 17. The coupled inductor system for wireless power transfer according to claim 11 wherein the secondary side further comprises data receiving functionality.
  • 18. A coupled inductor system for wireless power transfer comprising: a primary side having a Class G amplifier driver, the Class G amplifier operably coupled to a primary side inductor, logic operably coupled to the Class G amplifier, and half H bridge drivers coupled to the logic and the primary side inductor;a secondary side having a secondary side inductor:wherein the secondary side is configured to receive a power signal transmitted by the one of the drivers through the primary side inductor; andcircuitry whereby feedback from the secondary side is provided to the primary side for controlling one of the drivers to adjust a frequency and an amplitude of one of the drivers, and wherein the half H bridge drivers further comprise pulse width modulation data transmission functionality.
  • 19. The system of claim 18 wherein the half H bridge drivers further comprise a differential amplifier.
  • 20. The system of claim 18 wherein the secondary side further comprises data receiving functionality.
RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 13/309,406, filed Dec. 1, 2011, now U.S. Pat. No. 9,444,517, which claims priority to U.S, Provisional Patent Application Ser. No. 61/418,496, filed Dec. 1, 2010, which are hereby incorporated by reference for all purposes as if set forth herein in their entirety.

US Referenced Citations (82)
Number Name Date Kind
5883478 Thesling Mar 1999 A
7663502 Breed Feb 2010 B2
7808127 Teggatz et al. Oct 2010 B2
7827334 Teggatz et al. Nov 2010 B2
7859911 Teggatz et al. Dec 2010 B2
7982492 Atrash et al. Jul 2011 B2
8102713 Teggatz et al. Jan 2012 B2
8102718 Teggatz et al. Jan 2012 B2
8300375 Teggatz et al. Oct 2012 B2
8373436 Atrash et al. Feb 2013 B2
8408900 Teggatz et al. Apr 2013 B2
8441866 Teggatz et al. May 2013 B2
8461847 Teggatz et al. Jun 2013 B2
8497658 Von Novak Jul 2013 B2
8552336 Blackall et al. Oct 2013 B2
8583037 Atrash et al. Nov 2013 B2
8584961 Teggatz et al. Nov 2013 B2
8664745 Teggatz et al. Mar 2014 B2
8687385 Teggatz et al. Apr 2014 B2
8693261 Teggatz et al. Apr 2014 B2
8704450 Chen et al. Apr 2014 B2
8743522 Teggatz et al. Jun 2014 B2
8768455 Teggatz et al. Jul 2014 B2
8896318 Teggatz et al. Nov 2014 B2
8964418 Atrash et al. Feb 2015 B2
9083391 Teggatz et al. Jul 2015 B2
9089029 Teggatz et al. Jul 2015 B2
9106221 Atrash et al. Aug 2015 B2
9134741 Atrash et al. Sep 2015 B2
9214867 Teggatz et al. Dec 2015 B2
9225199 Teggatz et al. Dec 2015 B2
9225293 Teggatz et al. Dec 2015 B2
9231400 Chen et al. Jan 2016 B2
9343988 Teggatz et al. May 2016 B2
9354268 Teggatz et al. May 2016 B2
20020097090 Smedegaard-Pedersen Jul 2002 A1
20030058659 Klinkowstein Mar 2003 A1
20090243394 Levine Oct 2009 A1
20100036773 Bennett Feb 2010 A1
20100066176 Azancot Mar 2010 A1
20100084918 Fells Apr 2010 A1
20100214024 Jones et al. Aug 2010 A1
20100225173 Aoyama Sep 2010 A1
20110008527 Teggatz et al. Jan 2011 A1
20110051842 van der Heijden Mar 2011 A1
20110080056 Low Apr 2011 A1
20110148215 Marzetta Jun 2011 A1
20110149606 Ho Jun 2011 A1
20110230857 Herbst Sep 2011 A1
20110254377 Wildmer Oct 2011 A1
20120007679 Burgener Jan 2012 A1
20120025622 Kim Feb 2012 A1
20120025752 Teggatz et al. Feb 2012 A1
20120028845 Teggatz et al. Feb 2012 A1
20120116266 Houser May 2012 A1
20120139357 Teggatz et al. Jun 2012 A1
20120139358 Teggatz et al. Jun 2012 A1
20120188673 Teggatz et al. Jul 2012 A1
20120248893 Teggatz et al. Oct 2012 A1
20120274838 Teggatz et al. Nov 2012 A1
20130062967 Teggatz et al. Mar 2013 A1
20130175982 Teggatz et al. Jul 2013 A1
20130181724 Teggatz et al. Jul 2013 A1
20130193771 Teggatz Aug 2013 A1
20130224679 Teggatz et al. Aug 2013 A1
20130241465 Teggatz et al. Sep 2013 A1
20130257171 Teggatz et al. Oct 2013 A1
20130257172 Teggatz et al. Oct 2013 A1
20140062381 Teggatz et al. Mar 2014 A1
20140225447 Teggatz Aug 2014 A1
20140329720 Teggatz et al. Nov 2014 A1
20150171758 Atrash et al. Jun 2015 A1
20150256227 Teggatz et al. Sep 2015 A1
20150318899 Teggatz et al. Nov 2015 A1
20150326118 Teggatz et al. Nov 2015 A1
20150341087 Moore et al. Nov 2015 A1
20150372676 Teggatz et al. Dec 2015 A1
20160004267 Atrash et al. Jan 2016 A1
20160033979 Teggatz et al. Feb 2016 A1
20160105115 Teggatz et al. Apr 2016 A1
20160134099 Teggatz et al. May 2016 A1
20160134191 Teggatz et al. May 2016 A1
Foreign Referenced Citations (3)
Number Date Country
2015195403 Dec 2015 WO
2016019137 Feb 2016 WO
2016019139 Feb 2016 WO
Related Publications (1)
Number Date Country
20170005526 A1 Jan 2017 US
Provisional Applications (1)
Number Date Country
61418496 Dec 2010 US
Continuations (1)
Number Date Country
Parent 13309406 Dec 2011 US
Child 15264251 US