This invention will be better understood after reading the description of example embodiments given purely for guidance and are not to be limiting, with reference to the appended figures, wherein:
Identical, similar or equivalent parts of the different figures described below have the same reference numbers so as to facilitate reference from one figure to the next. The different parts shown in the figures are not necessarily at the same scale to make the figures more easily readable. The various variations and embodiments are not exclusive from each other, and can be combined together.
Referring first to
The coupled Lamb wave resonator filter 100 comprises a resonant layer 101 that may be based on a piezoelectric material such as aluminium nitride and/or zinc oxide or even PZT. Two electrodes 102 and 104 are arranged adjacent to each other on the resonant layer 101. In
A part 108 of the resonant layer 101 located between the two electrodes 102 and 103, called the first and second electrodes respectively, form a first Lamb wave resonator 106. Similarly, a part 109 of the resonant layer 101 located between the other two electrodes 104 and 105, called the third and fourth electrodes respectively, form a second Lamb wave resonator 107. A portion 110 of the resonant layer 101 between the two parts 108 and 109 of the resonant layer 101 provides acoustic coupling between the two Lamb wave resonators 106 and 107.
An input signal Vin, i.e., the signal to be filtered, is applied differentially as shown in
Symmetric Lamb waves of mode S0 contribute mainly to obtain the filtered signal. The filtered signal Vout is then recovered differentially between the electrodes 104 and 105 of the second Lamb wave resonator 107 as shown in
In this first embodiment, the coupled Lamb wave resonators filter 100 is made to obtain a narrow passband at the output centered around a central frequency equal to about
For example, in aluminium nitride fc is between about 100 MHz and 300 MHz, and c≈10000 m.s−1 for a symmetric Lamb wave of mode S0. When the central frequency goes outside this frequency range, the velocity c decreases due to frequency dispersion. This is done by sizing the two resonators 106, 107 such that the length of each is equal to about
for a central frequency fc. Thus, the lateral resonances of Lamb waves having a length equal to about λc are used to obtain a principal resonance with frequency fc. More generally, the resonator lengths 106 and 107, in other words the lengths of electrodes 102 to 105 and/or resonant layers 108 and 109 along the x axis in
where k is a non-zero natural integer number. The variable k is preferably odd.
In this first embodiment, the space between the two resonators 106 and 107, in other words the length of the portion of resonant material 110 making up the acoustic coupling between the two resonators 106 and 107, is minimized or reduced as much as possible to obtain the best possible precision on the central frequency fc of the passband obtained at the output. For example, a passband of about 1 MHz to 2 MHz is obtained for a frequency fc=100 MHz. This passband obtained is much narrower than that obtained, for example, with a CRF or SCF device according to the prior art. The result is parasitic resonance at frequencies
in the spectrum obtained at the output. This is due to resonance over the total length of the filter (resonators 106 and 107)
respectively.
The first step in making the coupled Lamb wave resonators filter 100 according to the first embodiment is to deposit metal such as aluminium, platinum, molybdenum and/or tungsten on the two faces of the layer 101 of resonant material that will hold the electrodes 102 to 105. The deposition may be by PVD deposition, for example. The next step is to etch metallic deposits made, for example by plasma etching, so as to form two electrodes 102, 104 and 103, 105 on each face of the layer 101. In this first embodiment, the electrodes 102 to 105 extend over the entire width of the layer 101 along the y axis, as illustrated in
The width of the resonators, in other words the dimension of the resonators along the y axis in
where
and ∈ is the dielectric constant of the resonant material, e is the thickness of the resonant layer, and S is the surface area of the resonance layer in the (x,y) plane in
In one variation of the first embodiment, it is possible that one electrode in each of the resonators 106 and 107 is adjacent to the other. For example, the second and fourth electrodes 103 and 105 are electrically connected to each other, thus forming only a single electrode. This variation can give an output signal for which the reference potential is similar to the reference potential of the input signal.
It is also possible to use a resonant material other than a piezoelectric material. For example, it is possible that the resonant layer 101 is based on an electrostrictive material, for example such as a BST (Barium Strontium Titanate) type material, strontium and barium titanate, strontium titanate, Rochelle Salt, PMN-PT, PST-PT, PSN-PT, PZN-PT and/or electrostrictive polymers. In this case, a DC control voltage is applied to the terminals of the resonator(s) based on an electrostrictive material. When the control voltage is zero, the signal obtained at the output is zero because resonance of the electrostrictive material is zero. When a non-zero control voltage is applied, coupling of the resonance is then proportional to this control voltage. In particular, this characteristic can be used to adjust resonance so as to refine the passband obtained on the output and add a switching function to the filter.
A single layer may be used to make the coupled Lamb wave resonators filter 100. Furthermore, the first layer 108, the second layer 109 and the portion of resonant material 110 forming the coupling between the two layers 108, 109 can have different acoustic impedance and/or be based on a different material so as to achieve the required coupling between the two resonators 106 and 107.
Referring now to
In this second embodiment, the coupled Lamb wave resonators filter 200 is made to obtain a narrow passband at the output centered around a central frequency equal to about
The periodic lattice 111 comprises a first pair of metal areas 112a, 112b arranged above and below the portion of resonant material 110, and are vertically aligned with each other. These metal areas 112a, 112b are arranged at a distance of about
from the first resonator 106. A second pair of metal areas 113a, 113b, similar to the first pair of metal areas 112a, 112b, is arranged at a distance of about
from the first pair of metal areas 112a, 112b. Finally, a third pair of metal areas 114a, 114b, also similar to the first pair of metal areas 112a, 112b, is arranged at a distance of about
from the second pair of metal areas 113a, 113b and the second resonator 107.
Therefore, the periodic lattice 111 alternately comprises portions of resonant material with a length of about
without metal areas and portions of resonant material with a length of about
arranged between metal areas, themselves with a length of about
In general, the length of the portion of resonant material 110 of the periodic lattice 111 may be equal to about
where
is the central frequency of the output spectrum from the coupled Lamb wave resonators filter 200. The portion of resonant material 110 is arranged between m pairs of metal areas 112a, 112b, 113a, 113b, 114a, 114b with a length of about
The two metal areas of each of the pairs are aligned one above the other. The metal areas 112a, 112b, 113a, 113b, 114a, 114b located on the same face of the portion of resonant material 110 are separated from each other and/or an electrode 102, 103, 104, 105 of one of the resonators 106, 107 by a distance equal to about
where m is a natural non-zero integer number. Thus, a periodic pattern of the lattice 111 can be defined as being a portion of resonant material with a length of about
on which a pair of metal areas with a length of about
is placed at one end.
Thus, by modifying the number of patterns in the periodic lattice 111, the coupling made between the two resonators 106 and 107 is modified. The result at the output is therefore a different passband depending on the total length of the layer of resonant material 101 produced. In the example in
and therefore it comprises three patterns like those defined above.
Use of the periodic lattice 111 enables an increase in the passband obtained at the filter output. The result is then a passband at the output between about 2 MHz and 3 MHZ at a frequency fc=100 MHz. A coupling can also be made with a layer 101 with a length of about
The impedance of the filter depends on the surface area of the resonant layer in the (x,y) plane as defined in
The signal applied to the input on the first resonator 106, and the signal obtained at the output on the second resonator 107 may or may not be differential. This depends on whether an electrode of the first and/or the second resonator 106, 107 is connected to a reference potential, such as a ground. It is possible to convert a differential signal into a non-differential signal, or a non-differential signal into a differential signal, through the galvanic isolation made between the input and output of the filter 200.
An example embodiment of this filter 200 according to the second embodiment will now be given. A metal deposit is made, for example aluminium, platinum, molybdenum and/or tungsten on the two faces of the layer 101 of the resonant material. This may be by PVD deposition. The next step is plasma etching of metallic deposits so as to form two electrodes 102, 104 and 103, 105 on each of the faces of the layer 101, and the metal areas 112 to 114 to form the periodic lattice 111 as shown in
In a variation of the second embodiment, the portion of the resonant material 110 of the periodic lattice 111 may comprise alternating parts with high and low acoustic impedance. Thus, coupling achieved between the two resonators 106 and 107 is further improved, and the passband obtained at the output from the filter 200 can be adjusted.
It is also possible for the electrodes and metal areas of the same face of the layer of resonant material 101, for example electrodes 103, 105 and metal areas 112a, 113a and 114a located below the layer of resonant material 101, to form a single electrode. This variation can be used to obtain an output signal for which the reference potential is similar to the reference potential of the input signal.
It is also possible to use periodic lattices to acoustically couple more than two resonators.
This filter 300 comprises a first Lamb wave resonator 106 coupled to a second Lamb wave resonator 107 by a first periodic lattice 111. These three elements may be similar to the elements shown in
In this embodiment, the layers 108, 109, 110, 122 and 126 of the resonant material are formed by a single layer 101 as shown in
Compared with the second embodiment, the addition of the third resonator can increase selectivity of the filter obtained by increasing the number of poles. A filter can be made comprising more than three Lamb wave resonators, for example acoustically coupled by periodic lattices to obtain an even greater selectivity.
The portion of resonant material 126 in the periodic lattice 125 may comprise alternating parts with high and low acoustic impedance. Thus, the coupling made between the two resonators 107 and 121 is further improved, and the passband obtained at the output from the filter 300 can be adjusted.
It is also possible that the electrodes and metal areas located on the same face of the layer of resonant material 101, for example electrodes 103, 105, 124 and metal areas 112a, 113a, 114a, 127a, 128a and 129a located below the layer of resonant material 101 form a single electrode. This variation can result in an output signal for which the reference potential is similar to the reference potential of the input signal.
The coupled Lamb wave resonator filter 400 is similar to the coupled Lamb wave resonators filter 200 in
from each of the resonators 106 and 107. Once again,
is the central frequency of the output spectrum from the coupled Lamb wave resonators filter 400.
Each of the Bragg mirrors 115 and 116 comprises a layer based on a resonant material 117 and 118, respectively. In the example in
In the same way as the periodic lattice 111, each Bragg mirror 115, 116 alternately comprises portions of resonant material with a length of about
located between the metal areas. For example, this includes the metal areas 119a, 119b, 120a and 120b shown in
without a metal area. Thus, a propagation medium can be created with an alternating high and low acoustic impedance.
Once again, the metal areas 119a, 119b, 120a, 120b of the Bragg mirrors 115 and 116 extend over the entire width of the layer 101 of the resonant material. The Bragg mirrors 115, 116 can reflect signals with a certain wavelength, for example the signals required at the output, but also can reduce parasitic resonances related to the
harmonics by dissipating them in the layer of resonant material 101. In this example, these mirrors 115 and 116 can eliminate parasitic frequencies equal to about
located in the output spectrum. For example, the length of each of these Bragg mirrors 115, 116 may be equal to about
The layer of resonant material 117, 118 is arranged between n pairs of metal areas 119a, 119b, 120a, 120b with a length of about
The two metal areas of each of the pairs are aligned one above the other. The metal areas located on the same face of the layer of resonant material are separated from each other and/or from an electrode of one of the resonators by a distance equal to about
where n is a non-zero natural integer number.
One example embodiment of this filter 400 according to the fourth embodiment will now be given. A metal deposit is made, for example such as aluminium, platinum, molybdenum and/or tungsten on the two faces of the layer 101 of the resonant material. This may be by PVD deposition. The next step is to etch the metallic deposits, for example by plasma etching, so as to form two electrodes 102, 104 and 103, 105 on each of the faces of the layer 101, the metal areas 112 to 114 to form the period lattice 111, and the metal areas of the Bragg mirrors 115 and 116 as shown in
In one variation of the fourth embodiment, the portions of the resonant material 117 and 118 of the Bragg mirrors 115 and 116 may comprise alternating parts with high and low acoustic impedances so as to adjust the reflection and dissipation properties of the Bragg mirrors 115 and 116.
In all four embodiments described, each electrode extends over the entire face of the resonant layer of the resonator on which it is located. It would also be possible for one or several electrodes to be made differently, without covering the entire faces of the resonant layers on which they are located.
Number | Date | Country | Kind |
---|---|---|---|
06 53488 | Aug 2006 | FR | national |