Claims
- 1. A waveguide laser comprising:
- a first optical cavity including a gain medium disposed within an optical waveguide having a predetermined transverse dimension, said cavity being bounded by a diffraction grating disposed a predetermined distance from a first end of said waveguide along an axis passing through said waveguide and a first partially reflective element disposed along said axis adjacent a second end of said waveguide; and
- a second optical cavity disposed along said axis and containing polarization-dependent means for coupling radiation out of said laser at an angle with respect to said axis, said second cavity being optically coupled to said first cavity by said first partially reflective element and containing an electro-optic modulator disposed between said polarization dependent means and a substantially 100% reflective element terminating said second optical cavity, in which said first optical cavity is divided into a gain cavity including said waveguide and bounded by said first partially reflective element and a second partially reflective element having a reflectivity of approximately 95% that is positioned adjacent said first end of said waveguide and a line control cavity comprising said diffraction grating and said second partially reflective element, whereby a portion of radiation in said gain medium is reflected with a predetermined frequency dependence from said gain cavity into and out of said line control cavity, so that a spectral line determined by said diffraction grating is enhanced in power, thereby determining the frequency of operation of said laser.
Government Interests
The Government has rights in this invention pursuant to Contract No. DAAK80-79-C-0302 awarded by the Department of the Army.
US Referenced Citations (5)