The invention relates to couplers for connecting buckets and other implements to earth moving or materials handling machines.
Buckets and other implements for earth moving or materials handling machines such as excavators may be formed with a pair of parallel pins for engaging with the arm of the machine. Quick couplers are sometimes used which couple to the parallel pins and also to the arm of the machine.
Quick couplers are thus attached to the machine's arm and allow implements to be easily attached or removed. A quick coupler allows an operator of a machine to attach and remove implements without moving from the cab or operating position of the machine.
In general, couplers include a pair of parallel pins for coupling to the machine's arm. A pair of recesses are formed in the coupler body and are configured to receive the parallel pins of the implement. One or more locking mechanisms lock the received pins into one or both of the recesses.
It is an object of the invention to provide an improved coupler or at least to provide the public with a useful choice.
In a first broad aspect the invention provides a coupler for coupling an implement to an earth moving or materials handling machine, including:
a coupler body;
a first recess formed in the coupler body and configured to engage with a first pin of an implement;
a second recess formed in the coupler body and configured to engage with a second pin of an implement;
a locking member configured to extend to lock a second pin of an implement into the second recess and to retract to allow movement of a second pin of an implement into or out of the second recess; and
a hydraulic cylinder body and shaft for extending or retracting the locking member, wherein the hydraulic cylinder body is formed integrally with one of the coupler body and the locking member.
Preferably the shaft is connected at one end to the other of the coupler body and the locking member.
Preferably the first pin is a front pin, the first recess is a front recess, the second pin is a rear pin and the second recess is a rear recess.
Preferably the rear and front recesses are positioned and dimensioned to engage with front and rear pins of implements over a range of front and rear pin diameters and/or spacings.
Preferably the pin spacing is in the range 100 mm to 400 mm
Preferably the pin diameter is in the range 30 mm to 60 mm.
Preferably the coupler is configured for attachment to an earth moving or materials handling machine having a weight less than 7,500 kg, more preferably in the range 700 to 7,500 kg.
Preferably the hydraulic cylinder body is formed integrally with the locking member. Preferably the cylinder body and locking member are cast as a single piece. Preferably the cylinder body and locking member are investment cast.
Preferably the coupler body is formed as a single piece. Preferably the coupler body is cast as a single piece.
Alternatively the hydraulic cylinder body is formed integrally with the coupler body. In this case the cylinder body and coupler body are preferably cast as a single piece. Also, in this case, the locking member will be separate from the hydraulic cylinder body.
Preferably the coupler includes a second locking member for locking a front pin of an implement into the front recess.
Preferably the coupler is a quick coupler.
Preferably the machine is an excavator.
In a second broad aspect, the invention provides a method of fabricating a coupler for coupling an implement to an earth moving or materials handling machine, the method including:
forming a hydraulic cylinder body integrally with either a body of the coupler or a locking member for locking a pin of an implement into a recess in the coupler body.
In a third broad aspect the invention provides a coupler for coupling an implement to an earth moving or materials handling machine, including:
a coupler body;
a first recess formed in the coupler body and configured to engage with a first pin of an implement;
a second recess formed in the coupler body and configured to engage with a second pin of an implement;
a locking member configured to extend to lock a second pin of an implement into the second recess and to retract to allow movement of a second pin of an implement into or out of the second recess; and
a hydraulic cylinder body and shaft for extending or retracting the locking member, wherein the locking member extends from the hydraulic cylinder body.
Preferably the shaft is connected at one end to the coupler body.
Preferably the first pin is a front pin, the first recess is a front recess, the second pin is a rear pin and the second recess is a rear recess.
Preferably the rear and front recesses are positioned and dimensioned to engage with front and rear pins of implements over a range of front and rear pin diameters and/or spacings.
Preferably the pin spacing is in the range 100 mm to 400 mm.
Preferably the pin diameter is in the range 30 mm to 60 mm.
Preferably the coupler is configured for attachment to an earth moving or materials handling machine having a weight less than 7,500 kg, more preferably in the range 700 to 7,500 kg.
Preferably the hydraulic cylinder body is formed integrally with the locking member. Preferably the cylinder body and locking member are manufactured as a single piece.
Preferably the coupler body is cast as a single piece.
Preferably the coupler includes a second locking member for locking a front pin of an implement into the front recess.
Preferably the coupler is a quick coupler.
Preferably the machine is an excavator.
In this specification, the term “hydraulic cylinder body” means the body in which the piston rides.
Earth moving or materials handling machines can be adapted for and/or used in various applications including construction, earthworks, demolition, forestry, drainage, quarrying, mining etc. The term “earth moving or materials handling machine” includes machines used in these and other applications. In particular, earth moving and materials handling machines include excavators and telehandlers.
The foregoing and other objectives, features, and advantages of the invention will be more readily understood upon consideration of the following detailed description of the invention taken in conjunction with the accompanying drawings.
The invention will now be described by way of example only, with reference to the accompanying drawings, in which:
As shown most clearly in
The coupler 20 also includes a lower section 25 configured to attach to an implement.
Suitable implements include buckets, tilt buckets, rippers, ploughs, rakes, spades, rollers or any other implements for attachment to earth moving or materials handling machines. Each implement includes a first, front pin and a second, rear pin. The diameter of the pins and spacing between the pins varies across different makes of implement.
The lower section 25 includes a first, front recess 26 which is configured to receive an implement's front pin. The front recess 26 may include a suitable locking mechanism 26A (
The lower section 25 also includes a second, rear recess 27 which is configured to receive an implement's rear pin. A locking mechanism (described below) locks the rear pin into this rear recess, such that the shape of the front recess 26 together with the locked rear pin securely attach the implement to the coupler 20.
The pins 23, 24 pass through bores 31, 32, 33, 34 formed in the coupler body 30. Each pin 23, 24 may be formed with a flange 35 which can be secured to the coupler body using fasteners 36 which engage with holes 37 in the coupler body 30. This both secures the pins 23, 24 in position and prevents rotation of the pins 23, 24 relative to the coupler body 30.
The locking mechanism 26A includes a locking member 40 which rotates about an axle 41 located in a bore 42 in the coupler body 30. The axle 41 is kept in position by retaining rings 43.
A coil spring 44 biases the locking member 40 into a locked position. A linear actuator 45 (such as a hydraulic ram) moves the locking member 40 into an unlocked position when required.
The locking mechanism 26A shown differs slightly from that disclosed in NZ App. No. 546893/552294. In NZ App. No. 546893/552294 the hydraulic ram drives a lug (marked 30 in NZ App. No. 546893/552294) which is fixed to the locking member. For reduced size and number of parts and for simplicity, in the coupler of
A second locking mechanism 50 is configured to lock an implement's rear pin into the rear recess 27 of the coupler body 30.
This locking mechanism 50 includes a locking member 51 which may be wedge shaped, as shown. The locking member 51 is preferably formed integrally with a hydraulic cylinder body 52. That is, the locking member and the hydraulic cylinder body may be formed as a single piece. The locking member 51 and hydraulic cylinder body 52 may be formed by any suitable casting process, such as investment casting.
Investment casting provides a high quality and accurate finish, making it particularly suitable for forming the bore of the hydraulic cylinder body 52.
The locking mechanism 50 thus extends from the hydraulic cylinder body 52.
A shaft is connected to a piston within the hydraulic cylinder body and the head 53 of the shaft may be shaped to reside within a slot 54 in the coupler body 30, as is clear from
The integral cylinder body 52 and locking member 51 is connected to the coupler body by attachment arrangement 55, which includes a cover plate 56 configured for attachment to the coupler body 30 using a number of fasteners 57.
The attachment arrangement 55 may also include a contact plate 58 which sits in a recess (not visible in
PTFE strips may also be provided between the lower surface 59 of the integral cylinder body 52 and locking member 51 and the coupler body 30, again in order to reduce friction.
The cylinder body 52 is formed with a pair of hydraulic ports 60 for feeding hydraulic fluid into or out of the cylinder, in a manner that will be easily understood by the skilled reader.
This cross-section also clearly shows the positions of the cover plate 56 and contact plate 58 with respect to the cylinder body 52.
In the position shown in
The coupler may then be manipulated such that the rear recess 27 engages with the implement's rear pin. When the pin is correctly positioned, a hydraulic actuator drives movement of the hydraulic cylinder body 52 with respect to the hydraulic shaft & piston assembly 61, from the position shown in
In
This coupler may have a length L (
The coupler may be configured to couple to a range of pin sizes. In particular, the implement's pins 62, 63 as an example may be between 35 mm and 40 mm in diameter. Alternative configurations could accommodate other combinations of pin diameters such as 40 mm and 45 mm etc.
The height H between the front pin 23 connecting the coupler to an earth moving or materials handling machine and the centre of the front recess 26 may be around 170 mm. The front recess 26 may be offset by a distance O behind the front pin 23. The distance O may be around 140 mm.
As shown in
In general, dimensions of couplers may vary depending on the size or type of earth moving or materials handling machine for which the coupler is designed.
Forming the cylinder body integrally with either the coupler body or the locking member reduces the number of parts in the coupler. This coupler is particularly suited to smaller earth moving or materials handling machines. With these machines the size of the coupler is limited and incorporating the hydraulic cylinder body into either the locking member or the coupler body enables the various components to be more easily contained in a smaller coupler. This is especially true of couplers suitable for a range of implements, since a greater range of displacement of the locking mechanism is required to accommodate a range of pin spacings and/or diameters, so that a long-stroke cylinder must be used.
The coupler is particularly suited to earth moving or materials handling machines having a weight less than 7,500 kg, particularly machines having a weight in the range 700 to 7,500 kg. However, the coupler may be used with earth moving or materials handling machines of any size.
The coupler body may be formed as a single piece. This eliminates many machining steps, making the coupler simpler and less costly to produce.
The coupler is configured to couple to a range of implements from different suppliers. These implements will have different pin diameters and pin spacings, but the coupler allows a range of implements to be used with a single coupler. For example, the coupler may accommodate pin spacings in the range 100 to 400 mm and pin diameters in the range 30 to 60 mm.
While the present invention has been illustrated by the description of the embodiments thereof, and while the embodiments have been described in detail, it is not the intention of the Applicant to restrict or in any way limit the scope of the invention to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details, representative apparatus and methods, and illustrative examples shown and described. Accordingly, departures may be made from such details without departure from the spirit or scope of the Applicant's general inventive concept.
The terms and expressions which have been employed in the foregoing specification are used therein as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims which follow.
Number | Date | Country | Kind |
---|---|---|---|
566528 | Mar 2008 | NZ | national |
This application is a continuation of pending U.S. patent application Ser. No. 12/598,018 filed Apr. 20, 2010, which is a National Stage Application of PCT/NZ2009/00030, filed Mar. 6, 2009, which claims benefit of Serial No. 566528, filed Mar. 7, 2008 in New Zealand and which application(s) are incorporated herein by reference. To the extent appropriate, a claim of priority is made to each of the above disclosed applications.
Number | Name | Date | Kind |
---|---|---|---|
3934738 | Arnold | Jan 1976 | A |
4034816 | Lutich et al. | Jul 1977 | A |
4311428 | Arnold | Jan 1982 | A |
5423625 | Gebauer et al. | Jun 1995 | A |
6332747 | Lee | Dec 2001 | B1 |
6619319 | Horton | Sep 2003 | B1 |
6691438 | Fatemi | Feb 2004 | B2 |
7770311 | Hahnel | Aug 2010 | B2 |
20050214105 | Steig et al. | Sep 2005 | A1 |
20070199214 | McCormick et al. | Aug 2007 | A1 |
20070248445 | Honeyman et al. | Oct 2007 | A1 |
20100183417 | Martin | Jul 2010 | A1 |
Number | Date | Country |
---|---|---|
2450127 | Dec 2008 | GB |
2006083172 | Aug 2006 | WO |
2007070941 | Jun 2007 | WO |
Entry |
---|
Australian Patent Office; International Search Report issued in Int'l app. No. PCT/NZ2009/000030; dated Jul. 20, 2009; 3 pages; Woden Act, Australia. |
Number | Date | Country | |
---|---|---|---|
20180127947 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12598018 | US | |
Child | 15862387 | US |