The present disclosure generally relates to methods and apparatus for coupling a top drive to a tool for use in a wellbore.
A wellbore is formed to access hydrocarbon bearing formations, e.g. crude oil and/or natural gas, by the use of drilling. Drilling is accomplished by utilizing a drill bit that is mounted on the end of a tubular string, such as a drill string. To drill within the wellbore to a predetermined depth, the drill string is often rotated by a top drive or rotary table on a surface platform or rig, and/or by a downhole motor mounted towards the lower end of the drill string. After drilling to a predetermined depth, the drill string and drill bit are removed, and a section of casing is lowered into the wellbore. An annulus is thus formed between the string of casing and the formation. The casing string is temporarily hung from the surface of the well. The casing string is cemented into the wellbore by circulating cement into the annulus defined between the outer wall of the casing and the borehole. The combination of cement and casing strengthens the wellbore and facilitates the isolation of certain areas of the formation behind the casing for the production of hydrocarbons.
Top drives are equipped with a motor for rotating the drill string. The quill of the top drive is typically threaded for connection to an upper end of the drill pipe in order to transmit torque to the drill string. Conventional top drives also threadedly connect to tools for use in the wellbore. An operator on the rig may be required to connect supply lines, such as hydraulic, electric, pneumatic, data, and/or power lines, between conventional top drives and the tool to complete the connection. The threaded connection between top conventional top drives and tools allows only for rotation in a single direction. Manual connection of supply lines can be time-consuming and dangerous to rig personnel. Therefore, there is a need for improved apparatus and methods for connecting top drives to tools.
In one or more of the embodiments described herein, a coupler for a top drive includes a housing having a bore therethrough, a lock member at least partially disposed within the bore of the housing and longitudinally movable relative to the housing between a locked position and an unlocked position, and an actuator at least partially disposed within the housing and configured to move the lock member.
In another embodiment, a combined multi-coupler system includes, a coupler for a top drive having a housing with a bore therethrough, an adapter of a tool, and a lock member at least partially disposed within the bore of the housing and longitudinally movable relative to the housing to couple the housing and the adapter.
In another embodiment, a method for coupling a top drive to a tool includes inserting an adapter of a tool into a housing of a coupler for a top drive, moving a lock member longitudinally relative to the housing, and engaging the adapter with the lock member to couple the adapter and the housing.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
The housing section 111a may have a bore therethrough. An annular recess may be formed in an inner surface of the housing section 111a adjacent the bore. The annular recess may be configured to receive a seal 113. The seal 113 may be an elastomeric seal. The seal 113 may be an annular seal. The seal 113 may be configured to engage and seal against a sleeve 134. The seal 113 may be configured to prevent fluid within the bore of the housing section 111a from entering a bore of the housing section 111b. The bore of the housing section 111b may be greater than the bore of the housing section 111a. The housing section 111b may include a stepped cone profile 112. The stepped cone profile 112 may be formed along an inner surface of the housing section 111b. The stepped cone profile 112 may be disposed adjacent an opening of the bore of the housing section 111b. The stepped cone profile 112 may have a shoulder 114 formed at a longitudinal end thereof. The shoulder 114 may have a threaded surface formed along an inner surface thereof. The threaded surface may have female threads. The female threads may be trapezoidal, such as stub acme threads.
The tool dock 120 may be configured to connect to the tool. The tool dock 120 may be integrally formed with the tool. The tool dock 120 may include an adapter 121. The adapter 121 is configured to be inserted into the housing 111. The adapter 121 may be tubular and have a bore therethrough. The adapter 121 may include one or more sections 121a,b. A bore of the adapter section 121a may be larger than a bore of the adapter section 121b. Adapter section 121a may include a stepped cone 122. The stepped cone profile 112 of the housing section 111b may be configured to receive the stepped cone 122. An inner surface of the stepped cone 122 may include female threads. The female threads may be trapezoidal, such as stub acme threads. The adapter section 121a may have a shoulder 124 formed at a longitudinal end thereof. A recess may be formed in the bore of the adapter section 121a. The recess may be configured to receive a seal 123. The seal 123 may be an elastomeric seal. The seal 123 may be an annular seal. The seal 123 may be configured to engage and seal against a second sleeve 135. The adapter section 121b may be configured to connect to the tool.
The locking assembly may include a lock member, such as lock pin 131, a biasing member, such as spring 132, an actuator, a thrust bearing 133, a first sleeve 134, and a second sleeve 135. The lock pin 131 may be tubular having a bore therethrough. The lock pin 131 may be at least partially disposed in the bore of the housing 111. The lock pin 131 may be longitudinally movable relative to the housing 111. The lock pin 131 may be longitudinally movable within the bore of the housing between an unlocked position (
Alternatively, the male threaded surface may be formed on the adapter 121 and the female threaded surface formed on the lock pin 131.
The spring 132 may be disposed around the screw section 131b. The spring 132 may be disposed between a lower longitudinal end of the gear section 131a and the thrust bearing 133. The spring 132 may bias the lock pin 131 towards the unlocked position. The thrust bearing 133 may be disposed adjacent the shoulder 114 of the housing section 111b. The thrust bearing 133 may facilitate rotation of the lock pin 131 relative to the housing 111. The thrust bearing 133 may be configured to receive a thrust load from the tool while the tool and top drive are longitudinally coupled by the locking assembly.
The first sleeve 134 may be disposed in the bore of the housing 111. The first sleeve 134 may be at least partially disposed in the bore of the lock pin 131. The first sleeve 134 may be connected to the lock pin 131. The first sleeve 134 may be longitudinally movable with the lock pin 131. The first sleeve 134 may be longitudinally movable relative to the housing 111. The first sleeve 134 may be disposed at an upper end of the lock pin 131. The first sleeve 134 may be configured to be at least partially disposed in the bore of the housing section 111a while moving longitudinally relative to the housing 111. The first sleeve 134 may be a sufficient length to remain at least partially disposed within the bore of the housing section 111a while the lock pin 131 moves the first sleeve 134. The first sleeve 134 may be configured to provide fluid communication between the bore of the housing section 111a and the lock pin 131. Seal 113 may be disposed between an outer surface of the first sleeve 134 and the inner surface of the bore of the housing section 111a. Seal 136 may be disposed between an outer surface of the first sleeve 134 and the inner surface of the bore of the lock pin 131. The first sleeve 134 and seals 113, 136 may be configured to prevent fluid from entering an annulus in the bore of the housing section 111b between the lock pin 131 and the inner wall of the bore of the housing section 111b.
Second sleeve 135 may be disposed at a lower end of the lock pin 131. The second sleeve 135 may be at least partially disposed in the bore of the lock pin 131. The second sleeve 135 may be connected to the lock pin 131. The second sleeve 135 may be longitudinally movable relative to the housing 111. The second sleeve 135 may be longitudinally movable with the lock pin 131. The second sleeve 135 may be at least partially disposed in a bore of the stepped cone profile 112. The second sleeve 135 may be configured to provide fluid communication between the bore of the lock pin 131 and the bore of the adapter 121. Seal 137 may be disposed in a recess of the lock pin 131 adjacent the second sleeve 135. The seal 137 may be configured to seal against an outer surface of the second sleeve 135. The bore of the adapter section 121a may be configured to receive the second sleeve 135. The bore of the adapter section 121 may have a smaller diameter than the bore of the stepped cone 122. Seal 123 may be configured to seal against the outer surface of the second sleeve 135 when the second sleeve 135 is disposed in the bore of the adapter section 121a. The second sleeve 135 and seal 137 may be configured to prevent fluid from entering an annulus between the second sleeve 135 and the stepped cone profile 112. The second sleeve 135 and seal 123 may be configured to prevent fluid from entering an annulus between the second sleeve 135 and the bore of the adapter section 121a.
The actuator may include at least one actuating gear 138, radial bearings 139a,b, and a motor (not shown). The actuating gear 138 may be at least partially disposed within the bore of the housing section 111b. The actuating gear 138 may be configured to rotate relative to the housing 111. The actuating gear 138 may be configured to connect to the motor at a longitudinal end thereof. The actuating gear 138 may have gear teeth formed along an outer circumference thereof. The gear teeth of the actuating gear 138 may correspond with and engage the gear teeth of the gear section 131a. The actuating gear 138 may be configured to actuate the lock pin 131. The actuating gear 138 may rotate the lock pin 131 relative to the housing 111. The motor may be disposed on an outer surface of the housing 111. Alternatively, the motor may be disposed on the top drive. The motor may be an electric motor. The motor may be configured to rotate the actuating gear 138 relative to the housing 111. Radial bearings 139a,b may facilitate rotation of the actuating gear 138. The bearing 139a may be disposed at a longitudinal end of the actuating gear 138 adjacent the motor. The bearing 139a may be disposed about a circumference of the actuating gear 138. The bearing 139b may be disposed at a longitudinal end of the actuating gear 138 opposite the bearing 139b. The bearing 139b may be received in a recess formed in the housing section 111b. The bearing 139b may be disposed about a circumference of the actuating gear 138.
Alternatively, the torque keys may be formed on the adapter of the tool. The torque slots may be formed on the housing of the top drive coupler.
The lock pin 131 has moved to the locked position, as shown in
In order to decouple the adapter 121 and the housing 111, the process described above is reversed. The motor rotates the actuating gear 138 in an opposite direction as the coupling process. The rotation of the actuating gear 138 causes the lock pin 131 to rotate in an opposite direction from before. The lock pin 131 moves longitudinally relative to the housing 111 and away from the adapter 121. The male threads of the lock pin 131 move through the female threads of the adapter 121 until the lock pin 131 returns to the unlocked position shown in
In one or more of the embodiments described herein, a coupler for a top drive includes a housing having a bore therethrough, a lock member at least partially disposed within the bore of the housing and longitudinally movable relative to the housing between a locked position and an unlocked position, and an actuator at least partially disposed within the housing and configured to move the lock member.
In one or more of the embodiments described herein, the lock member is rotatable relative to the housing.
In one or more of the embodiments described herein, the lock member is at least partially disposed within an adapter of a tool in the locked position.
In one or more of the embodiments described herein, the lock member is configured to longitudinally couple the housing and an adapter of a tool in the locked position.
In one or more of the embodiments described herein, the coupler for a top drive includes a biasing member disposed within the bore of the housing and configured to bias the lock member towards the unlocked position.
In one or more of the embodiments described herein, the coupler for a top drive includes a utility module disposed on an outer surface of the housing and configured to transfer at least one of power, data, hydraulics, electric, and pneumatics to a tool.
In one or more of the embodiments described herein, the actuator includes a gear rotatable relative to the housing to longitudinally move the lock member.
In one or more of the embodiments described herein, the coupler for a top drive includes a torque key formed on an outer surface of the housing and configured to provide torsional coupling between the housing and an adapter of a tool.
In one or more of the embodiments described herein, a combined multi-coupler system includes a coupler having a housing with a bore therethrough, an adapter of a tool, and a lock member at least partially disposed within the bore of the housing and longitudinally movable relative to the housing to couple the housing and the adapter.
In one or more of the embodiments described herein, the adapter is configured to be inserted into the housing.
In one or more of the embodiments described herein, the combined multi-coupler system includes a utility module disposed on an outer surface of the housing, and a utility connector disposed on an outer surface of the adapter, wherein the utility connector is configured to connect to the utility module.
In one or more of the embodiments described herein, the combined multi-coupler includes a torque key formed on the housing, and a torque slot formed through a wall of the adapter and configured to receive the torque key.
In one or more of the embodiments described herein, the lock member includes a lock pin rotatable relative to the housing.
In one or more of the embodiments described herein, the lock member is longitudinally movable between a locked position and an unlocked position.
In one or more of the embodiments described herein, the lock member is engaged with the adapter in the locked position.
In one or more of the embodiments described herein, the lock member is configured to longitudinally couple the housing and the adapter in the locked position.
In one or more of the embodiments described herein, the lock member includes a first threaded surface.
In one or more of the embodiments described herein, the adapter includes a second threaded surface.
In one or more of the embodiments described herein, the first threaded surface is configured to engage the second threaded surface.
In one or more of the embodiments described herein, the first threaded surface is configured to support a weight of the adapter and the tool.
In one or more of the embodiments described herein, a method for coupling a top drive to a tool includes inserting an adapter of a tool into a housing of a coupler for a top drive, moving a lock member longitudinally relative to the housing, and engaging the adapter with the lock member to couple the adapter and the housing.
In one or more of the embodiments described herein, the method includes rotating the lock member relative to the housing to move the lock member longitudinally.
In one or more of the embodiments described herein, the method includes engaging a torque slot of the adapter with a torque key of the housing, thereby torsionally coupling the adapter and the housing.
In one or more of the embodiments described herein, the method includes rotating an actuating gear to move the lock member.
In one or more of the embodiments described herein, the method includes transferring at least one of power, data, hydraulics, electric, and pneumatics between the adapter and the housing.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.