Coupler with threaded connection for pipe handler

Information

  • Patent Grant
  • 10704364
  • Patent Number
    10,704,364
  • Date Filed
    Monday, February 27, 2017
    8 years ago
  • Date Issued
    Tuesday, July 7, 2020
    4 years ago
Abstract
A coupler includes a housing having a bore therethrough, a lock member at least partially disposed within the bore of the housing and longitudinally movable relative to the housing between a locked position and an unlocked position, and an actuator at least partially disposed within the housing and configured to move the lock member. In another embodiment, a combined multi-coupler system includes a housing having a bore therethrough, an adapter of a tool dock, and a locking assembly including a lock member at least partially disposed within the bore of the housing and longitudinally movable relative to the housing between a locked position and an unlocked position.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

The present disclosure generally relates to methods and apparatus for coupling a top drive to a tool for use in a wellbore.


Description of the Related Art

A wellbore is formed to access hydrocarbon bearing formations, e.g. crude oil and/or natural gas, by the use of drilling. Drilling is accomplished by utilizing a drill bit that is mounted on the end of a tubular string, such as a drill string. To drill within the wellbore to a predetermined depth, the drill string is often rotated by a top drive or rotary table on a surface platform or rig, and/or by a downhole motor mounted towards the lower end of the drill string. After drilling to a predetermined depth, the drill string and drill bit are removed, and a section of casing is lowered into the wellbore. An annulus is thus formed between the string of casing and the formation. The casing string is temporarily hung from the surface of the well. The casing string is cemented into the wellbore by circulating cement into the annulus defined between the outer wall of the casing and the borehole. The combination of cement and casing strengthens the wellbore and facilitates the isolation of certain areas of the formation behind the casing for the production of hydrocarbons.


Top drives are equipped with a motor for rotating the drill string. The quill of the top drive is typically threaded for connection to an upper end of the drill pipe in order to transmit torque to the drill string. Conventional top drives also threadedly connect to tools for use in the wellbore. An operator on the rig may be required to connect supply lines, such as hydraulic, electric, pneumatic, data, and/or power lines, between conventional top drives and the tool to complete the connection. The threaded connection between top conventional top drives and tools allows only for rotation in a single direction. Manual connection of supply lines can be time-consuming and dangerous to rig personnel. Therefore, there is a need for improved apparatus and methods for connecting top drives to tools.


SUMMARY OF THE INVENTION

In one or more of the embodiments described herein, a coupler for a top drive includes a housing having a bore therethrough, a lock member at least partially disposed within the bore of the housing and longitudinally movable relative to the housing between a locked position and an unlocked position, and an actuator at least partially disposed within the housing and configured to move the lock member.


In another embodiment, a combined multi-coupler system includes, a coupler for a top drive having a housing with a bore therethrough, an adapter of a tool, and a lock member at least partially disposed within the bore of the housing and longitudinally movable relative to the housing to couple the housing and the adapter.


In another embodiment, a method for coupling a top drive to a tool includes inserting an adapter of a tool into a housing of a coupler for a top drive, moving a lock member longitudinally relative to the housing, and engaging the adapter with the lock member to couple the adapter and the housing.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.



FIG. 1 illustrates a cross-sectional view of a coupler for a top drive of a combined multi-coupler, according to one embodiment.



FIG. 2 illustrates a cross-sectional view of a tool dock of the combined multi-coupler.



FIG. 3A illustrates a bottom-up view of the coupler for a top drive of the combined multi-coupler.



FIG. 3B illustrates a top down view of the tool dock of the combined multi-coupler.



FIG. 4A illustrates an isometric view of the coupler for a top drive of the combined multi-coupler.



FIG. 4B illustrates an isometric view of the tool dock of the combined multi-coupler.



FIGS. 5A-D illustrate operation of the combined multi-coupler.





DETAILED DESCRIPTION


FIGS. 1 and 2 illustrate a combined multi-coupler (CMC) system, according to one embodiment. The CMC includes a coupler 110 for a top drive, a tool dock 120, and a locking assembly. The coupler 110 may be configured to connect to the top drive or other traveling member. The coupler 110 may be integrally formed with the top drive or other traveling member. The coupler 110 may include a housing 111. The housing 111 may be tubular having a bore therethrough. The housing 111 may include one or more sections 111a,b. The housing may have a tubular section 111a and a bell section 111b. The housing sections 111a,b may be integrally formed.


The housing section 111a may have a bore therethrough. An annular recess may be formed in an inner surface of the housing section 111a adjacent the bore. The annular recess may be configured to receive a seal 113. The seal 113 may be an elastomeric seal. The seal 113 may be an annular seal. The seal 113 may be configured to engage and seal against a sleeve 134. The seal 113 may be configured to prevent fluid within the bore of the housing section 111a from entering a bore of the housing section 111b. The bore of the housing section 111b may be greater than the bore of the housing section 111a. The housing section 111b may include a stepped cone profile 112. The stepped cone profile 112 may be formed along an inner surface of the housing section 111b. The stepped cone profile 112 may be disposed adjacent an opening of the bore of the housing section 111b. The stepped cone profile 112 may have a shoulder 114 formed at a longitudinal end thereof. The shoulder 114 may have a threaded surface formed along an inner surface thereof. The threaded surface may have female threads. The female threads may be trapezoidal, such as stub acme threads.


The tool dock 120 may be configured to connect to the tool. The tool dock 120 may be integrally formed with the tool. The tool dock 120 may include an adapter 121. The adapter 121 is configured to be inserted into the housing 111. The adapter 121 may be tubular and have a bore therethrough. The adapter 121 may include one or more sections 121a,b. A bore of the adapter section 121a may be larger than a bore of the adapter section 121b. Adapter section 121a may include a stepped cone 122. The stepped cone profile 112 of the housing section 111b may be configured to receive the stepped cone 122. An inner surface of the stepped cone 122 may include female threads. The female threads may be trapezoidal, such as stub acme threads. The adapter section 121a may have a shoulder 124 formed at a longitudinal end thereof. A recess may be formed in the bore of the adapter section 121a. The recess may be configured to receive a seal 123. The seal 123 may be an elastomeric seal. The seal 123 may be an annular seal. The seal 123 may be configured to engage and seal against a second sleeve 135. The adapter section 121b may be configured to connect to the tool.


The locking assembly may include a lock member, such as lock pin 131, a biasing member, such as spring 132, an actuator, a thrust bearing 133, a first sleeve 134, and a second sleeve 135. The lock pin 131 may be tubular having a bore therethrough. The lock pin 131 may be at least partially disposed in the bore of the housing 111. The lock pin 131 may be longitudinally movable relative to the housing 111. The lock pin 131 may be longitudinally movable within the bore of the housing between an unlocked position (FIG. 5B) and a locked position (FIG. 5D). The lock pin may be configured to longitudinally couple the housing 111 and the adapter 121 in the locked position. The lock pin 131 may include a gear section 131a and a screw section 131b. The gear section 131a may have a larger diameter than the screw section 131b. The gear section 131a may have gear teeth disposed along an outer circumference. The gear section 131a may have a bore therethrough. A recess may be formed through an inner wall of the gear section 131a adjacent the bore. The recess may be configured to receive a seal 136. The screw section 131b may have a threaded surface formed about an outer circumference thereof. The threaded surface may include male threads. The male threads may be trapezoidal, such as stub acme threads. The male threads may correspond to and be configured to engage the female threads of the adapter 121 and the shoulder 114 of the housing section 111b. The male and female threads may be configured to transfer the weight of the tool dock 120 and a connected tool to the top drive or other traveling member. The male threads may be configured to support the weight of the tool dock 120 and a connected tool. The male threads may begin at a lower longitudinal end of the screw section 131b and extend longitudinally along the outer circumference towards the gear section 131a. The male threaded surface may be configured to extend longitudinally along the outer circumference of the screw section 131b at least as long as the combined length of the female threads of the adapter 121 and the shoulder 114 of the housing section 111b.


Alternatively, the male threaded surface may be formed on the adapter 121 and the female threaded surface formed on the lock pin 131.


The spring 132 may be disposed around the screw section 131b. The spring 132 may be disposed between a lower longitudinal end of the gear section 131a and the thrust bearing 133. The spring 132 may bias the lock pin 131 towards the unlocked position. The thrust bearing 133 may be disposed adjacent the shoulder 114 of the housing section 111b. The thrust bearing 133 may facilitate rotation of the lock pin 131 relative to the housing 111. The thrust bearing 133 may be configured to receive a thrust load from the tool while the tool and top drive are longitudinally coupled by the locking assembly.


The first sleeve 134 may be disposed in the bore of the housing 111. The first sleeve 134 may be at least partially disposed in the bore of the lock pin 131. The first sleeve 134 may be connected to the lock pin 131. The first sleeve 134 may be longitudinally movable with the lock pin 131. The first sleeve 134 may be longitudinally movable relative to the housing 111. The first sleeve 134 may be disposed at an upper end of the lock pin 131. The first sleeve 134 may be configured to be at least partially disposed in the bore of the housing section 111a while moving longitudinally relative to the housing 111. The first sleeve 134 may be a sufficient length to remain at least partially disposed within the bore of the housing section 111a while the lock pin 131 moves the first sleeve 134. The first sleeve 134 may be configured to provide fluid communication between the bore of the housing section 111a and the lock pin 131. Seal 113 may be disposed between an outer surface of the first sleeve 134 and the inner surface of the bore of the housing section 111a. Seal 136 may be disposed between an outer surface of the first sleeve 134 and the inner surface of the bore of the lock pin 131. The first sleeve 134 and seals 113, 136 may be configured to prevent fluid from entering an annulus in the bore of the housing section 111b between the lock pin 131 and the inner wall of the bore of the housing section 111b.


Second sleeve 135 may be disposed at a lower end of the lock pin 131. The second sleeve 135 may be at least partially disposed in the bore of the lock pin 131. The second sleeve 135 may be connected to the lock pin 131. The second sleeve 135 may be longitudinally movable relative to the housing 111. The second sleeve 135 may be longitudinally movable with the lock pin 131. The second sleeve 135 may be at least partially disposed in a bore of the stepped cone profile 112. The second sleeve 135 may be configured to provide fluid communication between the bore of the lock pin 131 and the bore of the adapter 121. Seal 137 may be disposed in a recess of the lock pin 131 adjacent the second sleeve 135. The seal 137 may be configured to seal against an outer surface of the second sleeve 135. The bore of the adapter section 121a may be configured to receive the second sleeve 135. The bore of the adapter section 121 may have a smaller diameter than the bore of the stepped cone 122. Seal 123 may be configured to seal against the outer surface of the second sleeve 135 when the second sleeve 135 is disposed in the bore of the adapter section 121a. The second sleeve 135 and seal 137 may be configured to prevent fluid from entering an annulus between the second sleeve 135 and the stepped cone profile 112. The second sleeve 135 and seal 123 may be configured to prevent fluid from entering an annulus between the second sleeve 135 and the bore of the adapter section 121a.


The actuator may include at least one actuating gear 138, radial bearings 139a,b, and a motor (not shown). The actuating gear 138 may be at least partially disposed within the bore of the housing section 111b. The actuating gear 138 may be configured to rotate relative to the housing 111. The actuating gear 138 may be configured to connect to the motor at a longitudinal end thereof. The actuating gear 138 may have gear teeth formed along an outer circumference thereof. The gear teeth of the actuating gear 138 may correspond with and engage the gear teeth of the gear section 131a. The actuating gear 138 may be configured to actuate the lock pin 131. The actuating gear 138 may rotate the lock pin 131 relative to the housing 111. The motor may be disposed on an outer surface of the housing 111. Alternatively, the motor may be disposed on the top drive. The motor may be an electric motor. The motor may be configured to rotate the actuating gear 138 relative to the housing 111. Radial bearings 139a,b may facilitate rotation of the actuating gear 138. The bearing 139a may be disposed at a longitudinal end of the actuating gear 138 adjacent the motor. The bearing 139a may be disposed about a circumference of the actuating gear 138. The bearing 139b may be disposed at a longitudinal end of the actuating gear 138 opposite the bearing 139b. The bearing 139b may be received in a recess formed in the housing section 111b. The bearing 139b may be disposed about a circumference of the actuating gear 138.



FIG. 3A illustrates a bottom-up view of the top drive coupler 110 of the CMC. The housing section 111b may have a locating hole 116 formed through a wall thereof. The locating hole 116 may extend at least partially longitudinally into the housing section 111b. The locating hole 116 may have a stepped profile. The locating hole 116 may be configured to receive a locating pin 126 of the tool dock 120. Utility modules 117a-c may be disposed in a bottom surface of the housing section 111b. The utility modules 117a-c may be configured to transfer data, power, hydraulics, electric, and/or pneumatics between the top drive coupler 110 and the tool dock 120. Torque keys 115a-c may be formed along the bottom surface of the housing section 111b. Torque keys 115a-c may extend longitudinally from the bottom surface of the housing section 111b. Torque keys 115a-c may be trapezoidal in shape. Torque key 115a may have a larger cross-sectional area than torque keys 115b,c. The differing areas of the torque keys 115a-c may facilitate alignment of the top drive coupler 110 and the tool dock 120.



FIG. 3B illustrates a top-down view of the adapter 121 of the tool dock 120. The adapter 121 may include a locating pin 126 formed at a longitudinal end thereof. The locating pin 126 may extend longitudinally away from the adapter 121. The locating pin 126 and locating hole 116 may facilitate alignment of the top drive coupler 110 and the tool dock 120. Torque slots 125a-c may be formed at a longitudinal end of the adapter 121. The torque slots 125a-c may extend partially through an outer surface of the adapter 121. Torque slots 125a-c may correspond to the torque keys 115a-c, respectively. Torque slot 125a may be configured to receive the torque key 115a. The torque slots 125a-c and torque keys 115a-c may be configured to provide bidirectional rotational coupling between the housing 111 and the tool dock 120. Engagement of the torque slots 125a-c with the torque keys 115a-c may torsionally couple the top drive to the tool. Utility connectors 127a-c may be disposed at a longitudinal end of the adapter adjacent the torque slots 125a-c. Utility connectors 127a-c may be configured to connect to corresponding utility modules 117a-c. The utility connectors 127a-c and utility modules 117a-c may be configured to transfer data, power, hydraulics, electric and/or pneumatics between the tool and the top drive. The torque keys 115a-c may be configured to align the utility modules 117a-c and the corresponding utility connectors 125a-c.



FIG. 4A illustrates an isometric view of the top drive coupler 110. The housing section 111b may have a groove 111g formed along an outer surface thereof. The groove 111g may be configured to receive a supply line. The supply line may be configured to transfer power, data, hydraulics, electric, and/or pneumatics between the top drive and the utility modules 117a-c. A recess 119 may be formed through the outer wall of the housing 111b. The recess 119 may be aligned with the groove 111g. The recess 119 may be configured to receive the utility module 117b. Corresponding recesses may be formed through the outer wall of the housing section 111b spaced circumferentially around the housing section 111b from the recess 119. The corresponding recesses may be configured to receive corresponding utility modules 117a,c. Utility module 117b may be aligned with the groove 111g formed along the outer surface of the housing section 111b. Utility module 117b may be configured to connect to the supply line disposed in the groove 111g. Utility modules 117a,c may be aligned with corresponding grooves formed along the outer surface of the housing section 111b. Utility modules 117a,c may be configured to connect to corresponding supply lines disposed in the grooves. At least one port 118 may be formed through a wall of the housing section 111b. The at least one port 118 may be formed through an upper wall of the housing section 111b. A longitudinal end of the actuating gear 138 may be at least partially disposed in the at least one port 118 of the housing section 111b. The bearing 139a may be at least partially disposed in the at least one port 118 of the housing section 111b. Torque keys 115a-c may be formed at a longitudinal end of the housing section 111b. The torque keys 115a-c may project longitudinally from the lower longitudinal end of the housing section 111b.



FIG. 4B illustrates an isometric view of the tool dock 120. The adapter section 121a may include a recess 124 formed at an upper surface. The recess 124 may be formed partially through an outer circumference of the adapter section 121a. The recess 124 may be configured to receive the utility connector 127b. Corresponding recesses may be formed at the upper surface of the adapter section 121a and spaced circumferentially around the adapter section 121a from the recess 124. The corresponding recesses may be configured to receive the corresponding utility connectors 127a,c. The locating pin 126 may extend longitudinally from the upper surface of the adapter section 121a. A second locating pin may extend longitudinally from the upper surface of the adapter section 121a and be spaced circumferentially apart from the locating pin 126. The locating pin 126 may have a stepped profile corresponding to the stepped profile of the locating hole 116.


Alternatively, the torque keys may be formed on the adapter of the tool. The torque slots may be formed on the housing of the top drive coupler.



FIGS. 5A-5D illustrate operation of the CMC 100. First, the adapter 121 is aligned with and inserted into the bore of the housing 111. The top drive coupler 110 may be moved by the traveling member over the tool dock 120. The tool dock 120 may be raised and/or the top drive coupler 110 lowered to begin the process. As the adapter 121 is inserted into the bore of the housing 111, the stepped cone 122 of the adapter 121 and stepped cone profile 112 facilitate alignment of the top drive coupler 110 and the tool dock 120. The stepped cone 122 is received within the stepped cone profile 112. The locating pin 126 and locating hole 116 further facilitate alignment of the top drive coupler 110 and the tool dock 120. The locating pin 126 is received in the locating hole 116. Finally, the differing sizes of the torque keys 115a-c ensures the correct utility modules 117a-c are aligned with the corresponding utility connectors 127a-c.



FIG. 5B illustrates the adapter 121 inserted into the bore of the housing 111. The torque keys 115a-c enter the corresponding torque slots 125a-c, thereby providing bidirectional torsional coupling between the top drive coupler 110 and the tool dock 120. The utility modules 117a-c connect to the corresponding utility connectors 127a-c, thereby providing data, power, hydraulics, electric and/or pneumatics transfer between the top drive coupler 110 and the tool dock 120. The lock pin 131 is in the unlocked position.



FIG. 5C illustrates operation of the locking assembly of the CMC to longitudinally couple the housing 111 and the adapter 121. Once the adapter 121 is fully inserted into the housing 111 of the top drive coupler 110, the motor is actuated to begin the process of longitudinally coupling the top drive coupler 110 and the tool dock 120. The motor rotates the actuating gear 138 relative to the housing 111. The gear teeth of the actuating gear 138 engage corresponding gear teeth on the gear section 131a of the lock pin 131. The lock pin 131 rotates relative to the housing 111. The male threads of the screw section 131b move through the female threads of the shoulder 114 of the housing 111. The lock pin 131 moves longitudinally through the bore of the housing 111 until reaching the lower end of the shoulder 114. The male threads of the screw section 131b catch and engage the female threads of the adapter 121. Engagement of the male threads and the female threads longitudinally moves the lock pin 131 relative to the housing 111. The lock pin 131 moves longitudinally against the biasing force of the spring 132. The lock pin 131 moves longitudinally through the bore of the adapter 121 until reaching a lower end of the bore of the stepped cone 122. The sleeves 134, 135 move longitudinally with the lock pin 131. The sleeves 134, 135 and the bore of the lock pin 131 fluidly couple the top drive and the tool dock. Drilling fluid may be pumped from the top drive through the housing 111 and the adapter 121 to the tool when the lock pin 131 is in the locked position.


The lock pin 131 has moved to the locked position, as shown in FIG. 5D. The first sleeve 134 is at least partially disposed in the bore of the housing section 111a. The second sleeve 135 is at least partially disposed in the bore of the adapter section 121a. The seal 123 engages the outer surface of the second sleeve 135. The male and female threads provide longitudinal coupling between the top drive coupler 110 and the tool dock 120. Engagement of the male and female threads may provide support for a weight of the tool dock 120 and a connected tool.


In order to decouple the adapter 121 and the housing 111, the process described above is reversed. The motor rotates the actuating gear 138 in an opposite direction as the coupling process. The rotation of the actuating gear 138 causes the lock pin 131 to rotate in an opposite direction from before. The lock pin 131 moves longitudinally relative to the housing 111 and away from the adapter 121. The male threads of the lock pin 131 move through the female threads of the adapter 121 until the lock pin 131 returns to the unlocked position shown in FIG. 5B. Next, the adapter 121 and the housing 111 are separated. The utility modules 117a-c disconnect from the utility connectors 127a-c. The torque keys 115a-c move out of the corresponding torque slots 125a-c, thereby torsionally decoupling the adapter 121 and the housing 111.


In one or more of the embodiments described herein, a coupler for a top drive includes a housing having a bore therethrough, a lock member at least partially disposed within the bore of the housing and longitudinally movable relative to the housing between a locked position and an unlocked position, and an actuator at least partially disposed within the housing and configured to move the lock member.


In one or more of the embodiments described herein, the lock member is rotatable relative to the housing.


In one or more of the embodiments described herein, the lock member is at least partially disposed within an adapter of a tool in the locked position.


In one or more of the embodiments described herein, the lock member is configured to longitudinally couple the housing and an adapter of a tool in the locked position.


In one or more of the embodiments described herein, the coupler for a top drive includes a biasing member disposed within the bore of the housing and configured to bias the lock member towards the unlocked position.


In one or more of the embodiments described herein, the coupler for a top drive includes a utility module disposed on an outer surface of the housing and configured to transfer at least one of power, data, hydraulics, electric, and pneumatics to a tool.


In one or more of the embodiments described herein, the actuator includes a gear rotatable relative to the housing to longitudinally move the lock member.


In one or more of the embodiments described herein, the coupler for a top drive includes a torque key formed on an outer surface of the housing and configured to provide torsional coupling between the housing and an adapter of a tool.


In one or more of the embodiments described herein, a combined multi-coupler system includes a coupler having a housing with a bore therethrough, an adapter of a tool, and a lock member at least partially disposed within the bore of the housing and longitudinally movable relative to the housing to couple the housing and the adapter.


In one or more of the embodiments described herein, the adapter is configured to be inserted into the housing.


In one or more of the embodiments described herein, the combined multi-coupler system includes a utility module disposed on an outer surface of the housing, and a utility connector disposed on an outer surface of the adapter, wherein the utility connector is configured to connect to the utility module.


In one or more of the embodiments described herein, the combined multi-coupler includes a torque key formed on the housing, and a torque slot formed through a wall of the adapter and configured to receive the torque key.


In one or more of the embodiments described herein, the lock member includes a lock pin rotatable relative to the housing.


In one or more of the embodiments described herein, the lock member is longitudinally movable between a locked position and an unlocked position.


In one or more of the embodiments described herein, the lock member is engaged with the adapter in the locked position.


In one or more of the embodiments described herein, the lock member is configured to longitudinally couple the housing and the adapter in the locked position.


In one or more of the embodiments described herein, the lock member includes a first threaded surface.


In one or more of the embodiments described herein, the adapter includes a second threaded surface.


In one or more of the embodiments described herein, the first threaded surface is configured to engage the second threaded surface.


In one or more of the embodiments described herein, the first threaded surface is configured to support a weight of the adapter and the tool.


In one or more of the embodiments described herein, a method for coupling a top drive to a tool includes inserting an adapter of a tool into a housing of a coupler for a top drive, moving a lock member longitudinally relative to the housing, and engaging the adapter with the lock member to couple the adapter and the housing.


In one or more of the embodiments described herein, the method includes rotating the lock member relative to the housing to move the lock member longitudinally.


In one or more of the embodiments described herein, the method includes engaging a torque slot of the adapter with a torque key of the housing, thereby torsionally coupling the adapter and the housing.


In one or more of the embodiments described herein, the method includes rotating an actuating gear to move the lock member.


In one or more of the embodiments described herein, the method includes transferring at least one of power, data, hydraulics, electric, and pneumatics between the adapter and the housing.


While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims
  • 1. A coupler for a top drive, comprising: a housing;a lock member at least partially disposed within the housing and longitudinally movable relative to the housing between a locked position and an unlocked position, the lock member having a bore, the housing having an axial central bore having an inside diameter in fluid communication with the bore of the lock member; andan actuator at least partially disposed within the housing and configured to rotate the lock member, thereby longitudinally moving the lock member relative to the housing.
  • 2. The coupler of claim 1, wherein the lock member is rotatable relative to the housing.
  • 3. The coupler of claim 1, wherein the lock member is engaged within an adapter of a tool in the locked position.
  • 4. The coupler of claim 1, wherein the lock member is configured to longitudinally couple the housing and an adapter of a tool in the locked position.
  • 5. The coupler of claim 1, further comprising a biasing member configured to bias the lock member towards the unlocked position.
  • 6. The coupler of claim 1, further comprising a utility module coupled to the housing and configured to transfer at least one of power, data, hydraulics, electric, and pneumatics to a tool.
  • 7. The coupler of claim 6, further comprising a torque key formed on an outer surface of the housing and configured to engage a slot in an adapter of a tool to provide torsional coupling between the housing and the adapter.
  • 8. The coupler of claim 7, wherein the torque key is configured to align the utility module and a utility connector of the adapter.
  • 9. The coupler of claim 1, the actuator further comprising a gear rotatable relative to the housing to longitudinally move the lock member.
  • 10. A combined multi-coupler system, comprising: a coupler for a top drive having a housing;an adapter of a tool, the adapter having a bore; anda lock member at least partially disposed within the housing and longitudinally movable relative to the housing to connect the housing to the adapter, the lock member having a bore, the housing having an axial central bore having an inside diameter in fluid communication with the bore of the lock member and the bore of the adapter.
  • 11. The combined multi-coupler system of claim 10, wherein the adapter is configured to be inserted into the housing.
  • 12. The combined multi-coupler system of claim 10, further comprising: a utility module disposed on an outer surface of the housing; anda utility connector disposed on an outer surface of the adapter, wherein the utility connector is configured to connect to the utility module.
  • 13. The combined multi-coupler system of claim 10, further comprising: a torque key formed on the housing; anda torque slot formed through a wall of the adapter and configured to receive the torque key.
  • 14. The combined multi-coupler system of claim 10, the lock member is rotatable relative to the housing while moving longitudinally relative to the housing.
  • 15. The combined multi-coupler system of claim 14, further comprising an actuator at least partially disposed within the housing and configured to engage a gear of the lock member to rotate the lock member relative to the housing.
  • 16. The combined multi-coupler system of claim 15, further comprising a torque key formed on an outer surface of the housing and configured to engage a slot in the adapter of a tool to provide torsional coupling between the housing and the adapter.
  • 17. The combined multi-coupler system of claim 10, wherein the lock member is longitudinally movable between a locked position in which the lock member is attached to the adapter, and an unlocked position in which the adapter is released from the lock member.
  • 18. The combined multi-coupler system of claim 10, further comprising: the lock member having a first threaded surface;the adapter having a second threaded surface, wherein the first threaded surface is configured to engage the second threaded surface when the lock member moves longitudinally relative to the housing.
  • 19. The combined multi-coupler system of claim 18, wherein the first threaded surface is configured to support a weight of the adapter and the tool.
  • 20. A method for coupling a top drive to a tool, comprising: inserting an adapter of a tool into a housing of a coupler for a top drive, the adapter having a bore;moving a lock member longitudinally relative to the housing; andconnecting the adapter with the lock member to attach the adapter to the housing while moving the lock member longitudinally, whereby a bore of the lock member is placed in fluid communication with an inside diameter of the bore of the adapter.
  • 21. The method of claim 20, further comprising rotating the lock member relative to the housing to move the lock member longitudinally.
  • 22. The method of claim 20, further comprising, while inserting the adapter into the housing, engaging a torque slot of the tool with a torque key of the housing, thereby torsionally coupling the adapter and the housing.
  • 23. The method of claim 20, further comprising rotating an actuating gear to move the lock member.
  • 24. The method of claim 20, further comprising transferring at least one of power, data, hydraulics, electric, and pneumatics between the adapter and the housing.
US Referenced Citations (331)
Number Name Date Kind
1367156 McAlvay et al. Feb 1921 A
1610977 Scott Dec 1926 A
1822444 MacClatchie Sep 1931 A
2370354 Hurst Feb 1945 A
3147992 Haeber et al. Sep 1964 A
3354951 Savage et al. Nov 1967 A
3385370 Knox et al. May 1968 A
3662842 Bromell May 1972 A
3698426 Litchfield et al. Oct 1972 A
3747675 Brown Jul 1973 A
3766991 Brown Oct 1973 A
3774697 Brown Nov 1973 A
3776320 Brown Dec 1973 A
3842619 Bychurch, Sr. Oct 1974 A
3888318 Brown Jun 1975 A
3899024 Tonnelli et al. Aug 1975 A
3913687 Gyongyosi et al. Oct 1975 A
3915244 Brown Oct 1975 A
3964552 Slator Jun 1976 A
4022284 Crow May 1977 A
4051587 Boyadjieff Oct 1977 A
4100968 Delano Jul 1978 A
4192155 Gray Mar 1980 A
4199847 Owens Apr 1980 A
4235469 Denny et al. Nov 1980 A
4364407 Hilliard Dec 1982 A
4377179 Giebeler Mar 1983 A
4402239 Mooney Sep 1983 A
4449596 Boyadjieff May 1984 A
4478244 Garrett Oct 1984 A
4497224 Jürgens Feb 1985 A
4593773 Skeie Jun 1986 A
4762187 Haney Aug 1988 A
4776617 Sato Oct 1988 A
4779688 Baugh Oct 1988 A
4791997 Krasnov Dec 1988 A
4813493 Shaw et al. Mar 1989 A
4815546 Haney et al. Mar 1989 A
4821814 Willis et al. Apr 1989 A
4844181 Bassinger Jul 1989 A
4867236 Haney et al. Sep 1989 A
4955949 Bailey et al. Sep 1990 A
4962819 Bailey et al. Oct 1990 A
4972741 Sibille Nov 1990 A
4981180 Price Jan 1991 A
4997042 Jordan et al. Mar 1991 A
5036927 Willis Aug 1991 A
5099725 Bouligny, Jr. et al. Mar 1992 A
5152554 LaFleur et al. Oct 1992 A
5172940 Usui Dec 1992 A
5191939 Stokley Mar 1993 A
5215153 Younes Jun 1993 A
5245877 Ruark Sep 1993 A
5282653 LaFleur et al. Feb 1994 A
5297833 Willis et al. Mar 1994 A
5348351 LaFleur et al. Sep 1994 A
5385514 Dawe Jan 1995 A
5433279 Tessari et al. Jul 1995 A
5441310 Barrett et al. Aug 1995 A
5456320 Baker Oct 1995 A
5479988 Appleton Jan 1996 A
5486223 Carden Jan 1996 A
5501280 Brisco Mar 1996 A
5509442 Claycomb Apr 1996 A
5577566 Albright et al. Nov 1996 A
5584343 Coone Dec 1996 A
5645131 Trevisani Jul 1997 A
5664310 Penisson Sep 1997 A
5682952 Stokley Nov 1997 A
5735348 Hawkins, III Apr 1998 A
5778742 Stuart Jul 1998 A
5839330 Stokka Nov 1998 A
5909768 Castille et al. Jun 1999 A
5918673 Hawkins et al. Jul 1999 A
5950724 Giebeler Sep 1999 A
5971079 Mullins Oct 1999 A
5992520 Schultz et al. Nov 1999 A
6003412 Dlask et al. Dec 1999 A
6053191 Hussey Apr 2000 A
6102116 Giovanni Aug 2000 A
6142545 Penman et al. Nov 2000 A
6161617 Gjedebo Dec 2000 A
6173777 Mullins Jan 2001 B1
6276450 Seneviratne Aug 2001 B1
6279654 Mosing et al. Aug 2001 B1
6289911 Majkovic Sep 2001 B1
6309002 Bouligny Oct 2001 B1
6311792 Scott et al. Nov 2001 B1
6328343 Hosie et al. Dec 2001 B1
6378630 Ritorto et al. Apr 2002 B1
6390190 Mullins May 2002 B2
6401811 Coone Jun 2002 B1
6415862 Mullins Jul 2002 B1
6431626 Bouligny Aug 2002 B1
6443241 Juhasz et al. Sep 2002 B1
6460620 LaFleur Oct 2002 B1
6527047 Pietras Mar 2003 B1
6536520 Snider et al. Mar 2003 B1
6571876 Szarka Jun 2003 B2
6578632 Mullins Jun 2003 B2
6595288 Mosing et al. Jul 2003 B2
6604578 Mullins Aug 2003 B2
6622796 Pietras Sep 2003 B1
6637526 Juhasz et al. Oct 2003 B2
6640824 Majkovic Nov 2003 B2
6666273 Laurel Dec 2003 B2
6675889 Mullins et al. Jan 2004 B1
6679333 York et al. Jan 2004 B2
6688398 Pietras Feb 2004 B2
6691801 Juhasz et al. Feb 2004 B2
6705405 Pietras Mar 2004 B1
6715542 Mullins Apr 2004 B2
6719046 Mullins Apr 2004 B2
6722425 Mullins Apr 2004 B2
6725938 Pietras Apr 2004 B1
6732819 Wenzel May 2004 B2
6732822 Slack et al. May 2004 B2
6742584 Appleton Jun 2004 B1
6742596 Haugen Jun 2004 B2
6779599 Mullins et al. Aug 2004 B2
6832656 Fournier, Jr. et al. Dec 2004 B2
6883605 Arceneaux et al. Apr 2005 B2
6892835 Shahin et al. May 2005 B2
6908121 Hirth et al. Jun 2005 B2
6925807 Jones et al. Aug 2005 B2
6938697 Haugen Sep 2005 B2
6976298 Pietras Dec 2005 B1
6994176 Shahin et al. Feb 2006 B2
7000503 Dagenais et al. Feb 2006 B2
7001065 Dishaw et al. Feb 2006 B2
7004259 Pietras Feb 2006 B2
7007753 Robichaux et al. Mar 2006 B2
7017671 Williford Mar 2006 B2
7021374 Pietras Apr 2006 B2
7025130 Bailey et al. Apr 2006 B2
7073598 Haugen Jul 2006 B2
7090021 Pietras Aug 2006 B2
7096948 Mosing et al. Aug 2006 B2
7114235 Jansch et al. Oct 2006 B2
7128161 Pietras Oct 2006 B2
7137454 Pietras Nov 2006 B2
7140443 Beierbach et al. Nov 2006 B2
7143849 Shahin et al. Dec 2006 B2
7147254 Niven et al. Dec 2006 B2
7159654 Ellison et al. Jan 2007 B2
7178612 Belik Feb 2007 B2
7213656 Pietras May 2007 B2
7219744 Pietras May 2007 B2
7231969 Folk et al. Jun 2007 B2
7270189 Brown et al. Sep 2007 B2
7281451 Schulze Beckinghausen Oct 2007 B2
7281587 Haugen Oct 2007 B2
7303022 Tilton et al. Dec 2007 B2
7325610 Giroux et al. Feb 2008 B2
7353880 Pietras Apr 2008 B2
7448456 Shahin et al. Nov 2008 B2
7451826 Pietras Nov 2008 B2
7490677 Buytaert et al. Feb 2009 B2
7503397 Giroux et al. Mar 2009 B2
7509722 Shahin et al. Mar 2009 B2
7513300 Pietras et al. Apr 2009 B2
7591304 Juhasz et al. Sep 2009 B2
7617866 Pietras Nov 2009 B2
7635026 Mosing et al. Dec 2009 B2
7665515 Mullins Feb 2010 B2
7665530 Wells et al. Feb 2010 B2
7665531 Pietras Feb 2010 B2
7669662 Pietras Mar 2010 B2
7690422 Swietlik et al. Apr 2010 B2
7694730 Angman Apr 2010 B2
7694744 Shahin Apr 2010 B2
7699121 Juhasz et al. Apr 2010 B2
7712523 Snider et al. May 2010 B2
7730698 Montano et al. Jun 2010 B1
7757759 Jahn et al. Jul 2010 B2
7779922 Harris et al. Aug 2010 B1
7793719 Snider et al. Sep 2010 B2
7817062 Li et al. Oct 2010 B1
7828085 Kuttel et al. Nov 2010 B2
7841415 Winter Nov 2010 B2
7854265 Zimmermann Dec 2010 B2
7866390 Latiolais, Jr. et al. Jan 2011 B2
7874352 Odell, II et al. Jan 2011 B2
7874361 Mosing et al. Jan 2011 B2
7878237 Angman Feb 2011 B2
7878254 Abdollahi et al. Feb 2011 B2
7882902 Boutwell, Jr. Feb 2011 B2
7896084 Haugen Mar 2011 B2
7918273 Snider et al. Apr 2011 B2
7958787 Hunter Jun 2011 B2
7971637 Duhon et al. Jul 2011 B2
7975768 Fraser et al. Jul 2011 B2
8118106 Wiens et al. Feb 2012 B2
8141642 Olstad et al. Mar 2012 B2
8210268 Heidecke et al. Jul 2012 B2
8281856 Jahn et al. Oct 2012 B2
8307903 Redlinger et al. Nov 2012 B2
8365834 Liess et al. Feb 2013 B2
8459361 Leuchtenberg Jun 2013 B2
8505984 Henderson et al. Aug 2013 B2
8567512 Odell, II et al. Oct 2013 B2
8601910 Begnaud Dec 2013 B2
8636067 Robichaux et al. Jan 2014 B2
8651175 Fallen Feb 2014 B2
8668003 Osmundsen et al. Mar 2014 B2
8708055 Liess et al. Apr 2014 B2
8727021 Heidecke et al. May 2014 B2
8776898 Liess et al. Jul 2014 B2
8783339 Sinclair et al. Jul 2014 B2
8839884 Kuttel et al. Sep 2014 B2
8893772 Henderson et al. Nov 2014 B2
9068406 Clasen et al. Jun 2015 B2
9206851 Slaughter, Jr. et al. Dec 2015 B2
9528326 Heidecke et al. Dec 2016 B2
9631438 McKay Apr 2017 B2
20020043403 Juhasz et al. Apr 2002 A1
20020074132 Juhasz et al. Jun 2002 A1
20020084069 Mosing et al. Jul 2002 A1
20020129934 Mullins et al. Sep 2002 A1
20020170720 Haugen Nov 2002 A1
20030098150 Andreychuk May 2003 A1
20030107260 Ording et al. Jun 2003 A1
20030221519 Haugen Dec 2003 A1
20040003490 Shahin et al. Jan 2004 A1
20040069497 Jones et al. Apr 2004 A1
20040216924 Pietras et al. Nov 2004 A1
20050000691 Giroux et al. Jan 2005 A1
20050173154 Lesko Aug 2005 A1
20050206163 Guesnon et al. Sep 2005 A1
20050257933 Pietras Nov 2005 A1
20050269072 Folk Dec 2005 A1
20050269104 Folk et al. Dec 2005 A1
20050269105 Pietras Dec 2005 A1
20050274508 Folk Dec 2005 A1
20060037784 Walter et al. Feb 2006 A1
20060124353 Juhasz et al. Jun 2006 A1
20060151181 Shahin Jul 2006 A1
20060180315 Shahin et al. Aug 2006 A1
20070030167 Li et al. Feb 2007 A1
20070044973 Fraser et al. Mar 2007 A1
20070074588 Harata et al. Apr 2007 A1
20070074874 Richardson Apr 2007 A1
20070102992 Jager May 2007 A1
20070131416 Odell, II et al. Jun 2007 A1
20070140801 Kuttel et al. Jun 2007 A1
20070144730 Shahin et al. Jun 2007 A1
20070158076 Hollingsworth, Jr. et al. Jul 2007 A1
20070251699 Wells Nov 2007 A1
20070251701 Jahn et al. Nov 2007 A1
20070257811 Hall et al. Nov 2007 A1
20080059073 Giroux et al. Mar 2008 A1
20080093127 Angman Apr 2008 A1
20080099196 Latiolais et al. May 2008 A1
20080125876 Boutwell May 2008 A1
20080202812 Childers et al. Aug 2008 A1
20080308281 Boutwell, Jr. et al. Dec 2008 A1
20090151934 Heidecke et al. Jun 2009 A1
20090159294 Abdollahi et al. Jun 2009 A1
20090200038 Swietlik et al. Aug 2009 A1
20090205820 Koederitz et al. Aug 2009 A1
20090205827 Swietlik et al. Aug 2009 A1
20090205836 Swietlik et al. Aug 2009 A1
20090205837 Swietlik et al. Aug 2009 A1
20090229837 Wiens et al. Sep 2009 A1
20090266532 Revheim et al. Oct 2009 A1
20090272537 Alikin et al. Nov 2009 A1
20090274544 Liess Nov 2009 A1
20090274545 Liess et al. Nov 2009 A1
20090316528 Ramshaw et al. Dec 2009 A1
20090321086 Zimmermann Dec 2009 A1
20100032162 Olstad et al. Feb 2010 A1
20100101805 Angelle et al. Apr 2010 A1
20100200222 Robichaux et al. Aug 2010 A1
20100206583 Swietlik et al. Aug 2010 A1
20100206584 Clubb et al. Aug 2010 A1
20100236777 Partouche et al. Sep 2010 A1
20110036586 Hart et al. Feb 2011 A1
20110039086 Graham et al. Feb 2011 A1
20110088495 Buck et al. Apr 2011 A1
20110214919 McClung, III Sep 2011 A1
20110280104 McClung, III Nov 2011 A1
20120048574 Wiens et al. Mar 2012 A1
20120152530 Vviedecke et al. Jun 2012 A1
20120160517 Bouligny et al. Jun 2012 A1
20120212326 Christiansen et al. Aug 2012 A1
20120234107 Pindiprolu et al. Sep 2012 A1
20120298376 Twardowski Nov 2012 A1
20130055858 Richardson Mar 2013 A1
20130056977 Henderson et al. Mar 2013 A1
20130062074 Angelle et al. Mar 2013 A1
20130075077 Henderson et al. Mar 2013 A1
20130075106 Tran et al. Mar 2013 A1
20130105178 Pietras May 2013 A1
20130207382 Robichaux Aug 2013 A1
20130207388 Jansson et al. Aug 2013 A1
20130233624 In Sep 2013 A1
20130269926 Liess et al. Oct 2013 A1
20130271576 Elllis Oct 2013 A1
20130275100 Ellis et al. Oct 2013 A1
20130299247 Küttel et al. Nov 2013 A1
20140090856 Pratt et al. Apr 2014 A1
20140116686 Odell, II et al. May 2014 A1
20140131052 Richardson May 2014 A1
20140202767 Feasey Jul 2014 A1
20140233804 Gustavsson et al. Aug 2014 A1
20140262521 Bradley et al. Sep 2014 A1
20140305662 Giroux et al. Oct 2014 A1
20140326468 Heidecke et al. Nov 2014 A1
20140352944 Devarajan et al. Dec 2014 A1
20140360780 Moss et al. Dec 2014 A1
20150014063 Simanjuntak et al. Jan 2015 A1
20150053424 Wiens et al. Feb 2015 A1
20150083391 Bangert et al. Mar 2015 A1
20150107385 Mullins et al. Apr 2015 A1
20150337648 Zippel et al. Nov 2015 A1
20160024862 Wilson et al. Jan 2016 A1
20160138348 Kunec May 2016 A1
20160145954 Helms et al. May 2016 A1
20160177639 McIntosh et al. Jun 2016 A1
20160215592 Helms et al. Jul 2016 A1
20160230481 Misson et al. Aug 2016 A1
20170037683 Heidecke et al. Feb 2017 A1
20170044854 Hebebrand et al. Feb 2017 A1
20170044875 Hebebrand et al. Feb 2017 A1
20170051568 Wern et al. Feb 2017 A1
20170067303 Thiemann et al. Mar 2017 A1
20170067320 Zouhair Mar 2017 A1
20170074075 Liess Mar 2017 A1
20170211327 Wern et al. Jul 2017 A1
20170211343 Thiemann Jul 2017 A1
20170284164 Holmes et al. Oct 2017 A1
Foreign Referenced Citations (36)
Number Date Country
2012201644 Apr 2012 AU
2013205714 May 2013 AU
2014215938 Sep 2014 AU
2 707 050 Jun 2009 CA
2 841 654 Aug 2015 CA
2944327 Oct 2015 CA
102007016822 Oct 2008 DE
0 250 072 Dec 1987 EP
1 619 349 Jan 2006 EP
1 772 715 Apr 2007 EP
1 961 912 Aug 2008 EP
1 961 913 Aug 2008 EP
2085566 Aug 2009 EP
2 322 357 May 2011 EP
3032025 Jun 2016 EP
1487948 Oct 1977 GB
2 077 812 Dec 1981 GB
2 180 027 Mar 1987 GB
2 228 025 Aug 1990 GB
2 314 391 Dec 1997 GB
2004079153 Sep 2004 WO
2004101417 Nov 2004 WO
2007001887 Jan 2007 WO
2007070805 Jun 2007 WO
2007127737 Nov 2007 WO
2008005767 Jan 2008 WO
2009076648 Jun 2009 WO
2012100019 Jul 2012 WO
2012115717 Aug 2012 WO
2014056092 Apr 2014 WO
2015000023 Jan 2015 WO
2015119509 Aug 2015 WO
2015127433 Aug 2015 WO
2015176121 Nov 2015 WO
2016197255 Dec 2016 WO
2017044384 Mar 2017 WO
Non-Patent Literature Citations (68)
Entry
A123 System; 14Ah Prismatic Pouch Cell; Nanophosphate® Lithium-Ion; www.a123systems.com; date unknown; 1 page.
Streicher Load/Torque Cell Systems; date unknown; 1 page.
3PS, Inc.; Enhanced Torque and Tension Sub with Integrated Turns; date unknown; 2 total pages.
Lefevre, et al.; Drilling Technology; Deeper, more deviated wells push development of smart drill stem rotary shouldered connections; dated 2008; 2 total pages.
PCT Invitaiton to Pay Additional Fees for International Application No. PCT/US2008/086699; dated Sep. 9, 2009; 7 total pages.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2008/086699; dated Sep. 11, 2009; 19 total pages.
National Oilwell Varco; Rotary Shoulder Handbook; dated 2010; 116 total pages.
Weatherford; TorkSub™ Stand-Alone Torque Measuring System; dated 2011-2014; 4 total pages.
Australian Examination Report for Application No. 2008334992; dated Apr. 5, 2011; 2 total pages.
European Search Report for Application No. 08 860 261.0-2315; dated Apr. 12, 2011; 4 total pages.
Eaton; Spool Valve Hydraulic Motors; dated Sep. 2011; 16 total pages.
European Extended Search Report for Application No. 12153779.9-2315; dated Apr. 5, 2012; 4 total pages.
Australian Examination Report for Application No. 2012201644; dated May 15, 2013; 3 total pages.
Warrior; 250E Electric Top Drive (250-TON); 250H Hydraulic Top Drive (250-TON); dated Apr. 2014; 4 total pages.
Hydraulic Pumps & Motors; Fundamentals of Hydraulic Motors; dated Jun. 26, 2014; 6 total pages.
Warrior; Move Pipe Better; 500E Electric Top Drive (500 ton—1000 hp); dated May 2015; 4 total pages.
Canadian Office Action for Application No. 2,837,581; dated Aug. 24, 2015; 3 total pages.
European Extended Search Report for Application No. 15166062.8-1610; dated Nov. 23, 2015; 6 total pages.
Australian Examination Report for Application No. 2014215938; dated Feb. 4, 2016; 3 total pages.
Rexroth; Bosch Group; Motors and Gearboxes; Asynchronous high-speed motors 1 MB for high speeds; dated Apr. 13, 2016; 6 total pages.
Canadian Office Action for Application No. 2,837,581; dated Apr. 25, 2016; 3 total pages.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2015/061960; dated Jul. 25, 2016; 16 total pages.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2016/049462; dated Nov. 22, 2016; 14 total pages.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2016/050542; dated Nov. 25, 2016; 13 total pages.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2016/046458; dated Dec. 14, 2016; 16 total pages.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2016/047813; dated Jan. 12, 2017; 15 total pages.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2016/050139; dated Feb. 20, 2017; 20 total pages.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2017/014646; dated Apr. 4, 2017; 14 total pages.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2017/014224; dated Jun. 8, 2017; 15 total pages.
European Extended Search Report for Application No. 17152458.0-1609; dated Jun. 8, 2017; 7 total pages.
Australian Examination Report for Application No. 2017200371; dated Sep. 19, 2017; 5 total pages.
European Extended Search Report for Application No. 17195552.9-1614; dated Dec. 4, 2017; 6 total pages.
Australian Examination Report for Application No. 2017200371; dated Feb. 8, 2018; 6 total pages.
Canadian Office Action for Application No. 2,955,754; dated Mar. 28, 2018; 3 total pages.
Australian Examination Report for Application No. 2017200371; dated May 2, 2018; 4 total pages.
Canadian Office Action for Application No. 2,974,298; dated May 16, 2018; 3 total pages.
Canadian Office Action in related application CA 2,955,754 dated Jul. 17, 2018.
EPO Extended European Search Report dated Jul. 19, 2018, for European Application No. 18159595.0.
EPO Extended European Search Report dated Jul. 17, 2018, for European Application No. 181580507.
Cookson, Colter, “Inventions Speed Drilling, Cut Costs,” The American Oil & Gas Reporter, Sep. 2015, 2 pages.
Ennaifer, Amine et al. , “Step Change in Well Testing Operations,” Oilfield Review, Autumn 2014: 26, No. 3, pp. 32-41.
Balltec Lifting Solutions, LiftLOK™ Brochure, “Highest integrity lifting tools for the harshest environments,” 2 pages.
Balltec Lifting Solutions, CoilLOK™ Brochure, “Highest integrity hand-held coiled tubing handling tools,” 2 pages.
Peters; Tool Coupler for Use With a Top Drive; U.S. Appl. No. 15/656,508, filed Jul. 21, 2017. (Application not attached to IDS.).
Fuehring et al.; Tool Coupler With Rotating Coupling Method for Top Drive; U.S. Appl. No. 15/445,758, filed Feb. 28, 2017. (Application not attached to IDS.).
Bell; Interchangeable Swivel Combined Multicoupler; U.S. Appl. No. 15/607,159, filed May 26, 2017 (Application not attached to IDS.).
Amezaga; Dual Torque Transfer for Top Drive System; U.S. Appl. No. 15/447,881, filed Mar. 2, 2017. (Application not attached to IDS.).
Zouhair; Coupler With Threaded Connection for Pipe Handler; U.S. Appl. No. 15/444,016, filed Feb. 27, 2017. (Application not attached to IDS.).
Liess; Downhole Tool Coupling System; U.S. Appl. No. 15/670,897, filed Aug. 7, 2017. (Application not attached to IDS.).
Muller et al; Combined Multi-Coupler With Rotating Locking Method for Top Drive; U.S. Appl. No. 15/721,216, filed Sep. 29, 2017. (Application not attached to IDS.).
Amezaga et al; Tool Coupler With Threaded Connection for Top Drive; U.S. Appl. No. 15/457,572, filed Mar. 13, 2017. (Application not attached to IDS.).
Wiens; Combined Multi-Coupler With Locking Clamp Connection for Top Drive; U.S. Appl. No. 15/627,428, filed Jun. 19, 2017. (Application not attached to IDS.).
Henke et al.; Tool Coupler With Sliding Coupling Members for Top Drive; U.S. Appl. No. 15/448,297, filed Mar. 2, 2017. (Application not attached to IDS.).
Schoknecht et al.; Combined Multi-Coupler With Rotating Fixations for Top Drive; U.S. Appl. No. 15/447,926, filed Mar. 2, 2017. (Application not attached to IDS.).
Metzlaff et al.; Combined Multi-Coupler for Top Drive; U.S. Appl. No. 15/627,237, filed Jun. 19, 2017. (Application not attached to IDS.).
Liess; Combined Multi-Coupler for Top Drive; U.S. Appl. No. 15/656,914, filed Jul. 21, 2017. (Application not attached to IDS.).
Liess et al.; Combined Multi-Coupler; U.S. Appl. No. 15/656,684, filed Jul. 21, 2017. (Application not attached to IDS).
Amezaga et al.; Tool Coupler With Data and Signal Transfer Methods for Top Drive; U.S. Appl. No. 15/730,305, filed Oct. 11, 2017. (Application not attached to IDS).
Liess; Tool Coupler With Threaded Connection for Top Drive; U.S. Appl. No. 15/806,560, filed Nov. 8, 2017. (Application not attached to IDS).
EPO Partial European Search Report dated Jul. 31, 2018, for European Application No. 18159597.6.
European Patent Office; Extended Search Report for Application No. 18160808.4; dated Sep. 20, 2018; 8 total pages.
EPO Partial European Search Report dated Oct. 4, 2018, for European Patent Application No. 18159598.4.
EPO Extended European Search Report dated Oct. 5, 2018, for European Patent Application No. 18173275.1.
EPO Extended European Search Report dated Nov. 6, 2018, for European Application No. 18159597.6.
International Search Report and Written Opinion in PCT/US2018/042812 dated Oct. 17, 2018.
Extended Search Report in application EP18177312.8 dated Nov. 6, 2018.
EPO Extended European Search Report dated Jun. 6, 2018, for European Application No. 18157915.2.
European OA in related application EP 18157915.2 dated Jul. 12, 2019.
Related Publications (1)
Number Date Country
20180245432 A1 Aug 2018 US