This invention generally relates to coupling and control assemblies which include sensors.
Coupling assemblies such as clutches are used in a wide variety of applications to selectively couple power from a first rotatable driving member, such as a driving disk or plate, to a second, independently rotatable driven member, such as a driven disk or plate. In one known variety of clutches, commonly referred to as “one-way” or “overrunning” clutches, the clutch engages to mechanically couple the driving member to the driven member only when the driving member rotates in a first direction relative to the driven member. Further, the clutch otherwise permits the driving member to freely rotate in the second direction relative to the driven member. Such “freewheeling” of the driving member in the second direction relative to the driven member is also known as the “overrunning” condition.
One type of one-way clutch includes coaxial driving and driven plates having generally planar clutch faces in closely spaced, juxtaposed relationship. A plurality of recesses or pockets is formed in the face of the driving plate at angularly spaced locations about the axis, and a strut or pawl is disposed in each of the pockets. Multiple recesses or notches are formed in the face of the driven plate and are engageable with one or more of the struts when the driving plate is rotating in a first direction. When the driving plate rotates in a second direction opposite the first direction, the struts disengage the notches, thereby allowing freewheeling motion of the driving plate with respect to the driven plate.
When the driving plate reverses direction from the second direction to the first direction, the driving plate typically rotates relative to the driven plate until the clutch engages. As the amount of relative rotation increases, the potential for an engagement noise also increases.
Controllable or selectable one-way clutches (i.e., OWCs) are a departure from traditional one-way clutch designs. Selectable OWCs add a second set of locking members in combination with a slide plate. The additional set of locking members plus the slide plate adds multiple functions to the OWC. Depending on the needs of the design, controllable OWCs are capable of producing a mechanical connection between rotating or stationary shafts in one or both directions. Also, depending on the design, OWCs are capable of overrunning in one or both directions. A controllable OWC contains an externally controlled selection or control mechanism. Movement of this selection mechanism can be between two or more positions which correspond to different operating modes.
U.S. Pat. No. 5,927,455 discloses a bi-directional overrunning pawl-type clutch, U.S. Pat. No. 6,244,965 discloses a planar overrunning coupling, and U.S. Pat. No. 6,290,044 discloses a selectable one-way clutch assembly for use in an automatic transmission. U.S. Pat. Nos. 7,258,214 and 7,344,010 disclose overrunning coupling assemblies, and U.S. Pat. No. 7,484,605 discloses an overrunning radial coupling assembly or clutch.
A properly designed controllable OWC can have near-zero parasitic losses in the “off” state. It can also be activated by electro-mechanics and does not have either the complexity or parasitic losses of a hydraulic pump and valves.
In a powershift transmission, tip-in clunk is one of most difficult challenges due to absence of a torque converter. When the driver tips-in, i.e., depresses the accelerator pedal following a coast condition, gear shift harshness and noise, called clunk, are heard and felt in the passenger compartment due to the mechanical linkage, without a fluid coupling, between the engine and powershift transmission input. Tip-in clunk is especially acute in a parking-lot maneuver, in which a vehicle coasting at low speed is then accelerated in order to maneuver into a parking space.
In order to achieve good shift quality and to eliminate tip-in clunk, a powershift transmission should employ a control strategy that is different from that of a conventional automatic transmission. The control system should address the unique operating characteristics of a powershift transmission and include remedial steps to avoid the objectionable harshness yet not interfere with driver expectations and performance requirements of the powershift transmission. There is a need to eliminate shift harshness and noise associated with tip-in clunk in a powershift transmission.
For purposes of this disclosure, the term “coupling” should be interpreted to include clutches or brakes wherein one of the plates is drivably connected to a torque delivery element of a transmission and the other plate is drivably connected to another torque delivery element or is anchored and held stationary with respect to a transmission housing. The terms “coupling”, “clutch” and “brake” may be used interchangeably.
A pocket plate may be provided with angularly disposed recesses or pockets about the axis of the one-way clutch. The pockets are formed in the planar surface of the pocket plate. Each pocket receives a torque transmitting strut, one end of which engages an anchor point in a pocket of the pocket plate. An opposite edge of the strut, which may hereafter be referred to as an active edge, is movable from a position within the pocket to a position in which the active edge extends outwardly from the planar surface of the pocket plate. The struts may be biased away from the pocket plate by individual springs.
A notch plate may be formed with a plurality of recesses or notches located approximately on the radius of the pockets of the pocket plate. The notches are formed in the planar surface of the notch plate.
Another example of an overrunning planar clutch is disclosed in U.S. Pat. No. 5,597,057.
Some U.S. patents related to the present invention include: U.S. Pat. Nos. 4,056,747; 5,052,534; 5,070,978; 5,449,057; 5,486,758; 5,678,668; 5,806,643; 5,871,071; 5,918,715; 5,964,331; 5,979,627; 6,065,576; 6,116,394; 6,125,980; 6,129,190; 6,186,299; 6,193,038; 6,386,349; 6,481,551; 6,505,721; 6,571,926; 6,814,201; 7,153,228; 7,275,628; 8,051,959; 8,196,724; and 8,286,772.
Yet still other related U.S. patents include: U.S. Pat. Nos. 4,200,002; 5,954,174; and 7,025,188.
U.S. Pat. No. 6,854,577 discloses a sound-dampened, one-way clutch including a plastic/steel pair of struts to dampen engagement clunk. The plastic strut is slightly longer than the steel strut. This pattern can be doubled to dual engaging. This approach has had some success. However, the dampening function stopped when the plastic parts became exposed to hot oil over a period of time.
Metal injection molding (MIM) is a metalworking process where finely-powdered metal is mixed with a measured amount of binder material to comprise a ‘feedstock’ capable of being handled by plastic processing equipment through a process known as injection mold forming. The molding process allows complex parts to be shaped in a single operation and in high volume. End products are commonly component items used in various industries and applications. The nature of MIM feedstock flow is defined by a science called rheology. Current equipment capability requires processing to stay limited to products that can be molded using typical volumes of 100 grams or less per “shot” into the mold. Rheology does allow this “shot” to be distributed into multiple cavities, thus becoming cost-effective for small, intricate, high-volume products which would otherwise be quite expensive to produce by alternate or classic methods. The variety of metals capable of implementation within MIM feedstock are referred to as powder metallurgy, and these contain the same alloying constituents found in industry standards for common and exotic metal applications. Subsequent conditioning operations are performed on the molded shape, where the binder material is removed and the metal particles are coalesced into the desired state for the metal alloy.
Other U.S. patent documents related to at least one aspect of the present invention includes U.S. Pat. Nos. 9,255,614; 9,234,552; 9,127,724; 9,109,636; 8,888,637; 8,813,929; 8,491,440; 8,491,439; 8,286,772; 8,272,488; 8,187,141; 8,079,453; 8,007,396; 7,942,781; 7,690,492; 7,661,518; 7,455,157; 7,455,156; 7,451,862; 7,448,481; 7,383,930; 7,223,198; 7,100,756; and 6,290,044; and U.S. published application Nos. 2015/0061798; 2015/0000442; 2014/0305761; 2013/0277164; 2013/0062151; 2012/0152683; 2012/0149518; 2012/0152687; 2012/0145505; 2011/0233026; 2010/0105515; 2010/0230226; 2009/0233755; 2009/0062058; 2009/0211863; 2008/0110715; 2008/0188338; 2008/0185253; 2006/0124425; 2006/0249345; 2006/0185957; 2006/0021838, 2004/0216975; and 2005/0279602.
Some other U.S. patent documents related to at least one aspect of the present invention includes U.S. Pat. Nos. 8,720,659; 8,418,825; 5,996,758; 4,050,560; 8,061,496; 8,196,724; and U.S. published application Nos. 2014/0190785; 2014/0102844; 2014/0284167; 2012/0021862; 2012/0228076; 2004/0159517; and 2010/0127693.
As used herein, the term “sensor” is used to describe a circuit or assembly that includes a sensing element and other components. In particular, as used herein, the term “magnetic field sensor” is used to describe a circuit or assembly that includes a magnetic field sensing element and electronics coupled to the magnetic field sensing element.
As used herein, the term “magnetic field sensing element” is used to describe a variety of electronic elements that can sense a magnetic field. The magnetic field sensing elements can be, but are not limited to, Hall effect elements, magnetoresistance elements, or magnetotransistors. As is known, there are different types of Hall effect elements, for example, a planar Hall element, a vertical Hall element, and a circular vertical Hall (CVH) element. As is also known, there are different types of magnetoresistance elements, for example, a giant magnetoresistance (GMC) element, an anisotropic magnetoresistance element (AMR), a tunneling magnetoresistance (TMR) element, an Indium antimonide (InSb) sensor, and a magnetic tunnel junction (MTJ).
As is known, some of the above-described magnetic field sensing elements tend to have an axis of maximum sensitivity parallel to a substrate that supports the magnetic field sensing element, and others of the above-described magnetic field sensing elements tend to have an axis of maximum sensitivity perpendicular to a substrate that supports the magnetic field sensing element. In particular, planar Hall elements tend to have axes of sensitivity perpendicular to a substrate, while magnetoresistance elements and vertical Hall elements (including circular vertical Hall (CVH) sensing element) tend to have axes of sensitivity parallel to a substrate.
Magnetic field sensors are used in a variety of applications, including, but not limited to, an angle sensor that senses an angle of a direction of a magnetic field, a current sensor that senses a magnetic field generated by a current carried by a current-carrying conductor, a magnetic switch that senses the proximity of a ferromagnetic object, a rotation detector that senses passing ferromagnetic articles, for example, magnetic domains of a ring magnet, and a magnetic field sensor that senses a magnetic field density of a magnetic field.
An object of at least one embodiment of the present invention is to provide a low cost coupling and control assembly including a sensor which provides an electrical signal for electronic transmission control wherein a coupling member of the assembly carries or supports the sensor.
In carrying out the above object and other objects of at least one embodiment of the present invention, a coupling and control assembly including a sensor is provided. The sensor provides an electrical signal for electronic transmission control. The assembly includes a controllable coupling assembly including first and second coupling members supported for rotation relative to one another about a rotational axis. The first coupling member has a first coupling face oriented to face radially with respect to the axis and has a locking element and the sensor. The second coupling member has a second coupling face oriented to face radially with respect to the axis and has a set of ferromagnetic or magnetic locking formations. The first and second members are positioned relative to each other so that the locking element and the sensor are in close-spaced opposition to the locking formations. The assembly also includes an electromechanical component including a reciprocating member. The component is supported so that the reciprocating member moves the locking element across a gap between the coupling faces in response to the component receiving an electrical control signal. The locking element abuttingly engages one of the locking formations in a coupling position of the locking element to prevent relative rotation in one direction about the axis. The sensor senses magnetic flux to produce an electrical output signal indicative of a speed of the relative rotation. A variable magnetic field is generated in response to rotation of the locking formations past the sensor.
The sensor may include a magnetic field sensing element.
The sensor may be back-biased wherein the locking formations are ferromagnetic.
The locking formations may comprise radially extending, angularly-spaced teeth.
The component may comprise a solenoid.
The locking element may be a radial pawl.
The second coupling member has a width wherein each locking formation extends the entire width of the second coupling member.
The first coupling member may be an outer coupling member and the second coupling member may be an inner coupling member.
The assembly may further include a biasing member to bias one of the reciprocating member and the locking member.
The biasing member may bias the locking member towards an uncoupling position or may bias the reciprocating member to an extended position.
The reciprocating member and the locking element may be connected together so that the reciprocating member moves the locking element across the gap.
Further in carrying out the above object and other objects of at least one embodiment of the present invention, a coupling and control assembly including a sensor is provided. The sensor provides an electrical signal for electronic transmission control. The assembly includes a controllable coupling assembly including first and second coupling members mounted for rotation relative to one another about a rotational axis. The first coupling member has a first coupling face oriented to face axially in a first direction with respect to the axis and a second coupling face oriented to face radially with respect to the axis and which has a locking element and a sensor. The second coupling member has a third coupling face oriented to face axially in a second direction opposite the first direction with respect to the axis and fourth coupling face oriented to face radially with respect to the axis and having a set of ferromagnetic or magnetic locking formations. The assembly also includes an electromechanical component including a reciprocating member. The component is positioned relative to the second coupling member so that both the locking member and the sensor are in close-spaced opposition to the fourth coupling face of the second coupling member. The reciprocating member moves the locking element across a gap between the second and fourth coupling faces in response to the component receiving an electrical control signal. The locking element abuttingly engages one of the ferromagnetic or magnetic locking formations to prevent relative rotation in one direction about the axis in a coupling position of the locking element. The sensor senses magnetic flux to produce an electrical output signal indicative of a speed of the relative rotation. A variable magnetic field is generated in response to rotation of the set of ferromagnetic or magnetic locking formations past the sensor.
The second coupling member has a width wherein each locking formation extends the entire width of the second coupling member.
The sensor may include a magnetic field sensing element.
The sensor may be back-biased wherein the locking formations are ferromagnetic.
The set of ferromagnetic or magnetic locking formations may comprise radially extending, angularly-spaced teeth.
The component may comprise a solenoid.
The locking element may be a radial pawl.
The first coupling member may be an outer coupling member and the second coupling member may be an inner coupling member.
The reciprocating member and the locking element may be connected together so that the reciprocating member moves the locking element across the gap.
The assembly may further comprise a biasing member to bias one of the reciprocating member and the locking member.
The biasing member may bias the locking member towards an uncoupling position or the biasing member may bias the reciprocating member to an extended position.
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
Referring now to the drawing figures, there is illustrated one embodiment of an electronic vehicular transmission, generally indicated at 10 in
The transmission 10 also includes an electromechanical component, generally indicated at 14, which is capable of operating in the hostile environment of the case 40. The component 14 may be referred to herein below as an SSI (i.e. selectable solenoid insert). The component 14 is inserted through the bore 41 and held therein by threaded fasteners (not shown) which extend through holes 46 formed through an annular flange 44 of a housing, generally indicated at 48, of the component 14. The fasteners extend into threshold holes 42 formed in the case 40 about the bore 41 to secure the component 14 to the case 40.
Referring now to
The coupling assembly 12 also includes a set of forward locking elements or struts 20 which are received within angularly spaced pockets 26 formed in the face 23 of the coupling member 22. The coupling member 22 has a set of splines 28 formed on its inner diameter for drivingly engaging a drive or driven member (not shown) for rotation about the axis 16.
The assembly 12 also includes a locking ring or plate, generally indicated at 24, for insertion into an annular groove 36 of an axially extending wall 37 of the coupling member 18 to hold the coupling members 18 and 22 together. The locking plate 24 has a circumferential cutout 34 which coincides or is aligned with a circumferential cutout 32 provided in the wall 37 of the member 18 when the plate 24 is inserted into the groove 36. This feature allows a locking element or strut 52 of the component 14 to engage the teeth 30 of the member 22 as shown in
The housing part or housing 48 has an outer coupling face 49 (
The outer coupling face 49 of the housing part 48 has a single, T-shaped recess or pocket 51. The recess 51 defines a load-bearing first surface shoulder 53. The coupling face 25 of the member 22 has a plurality of reverse notches or teeth 30. Each tooth of the teeth 30 defines a load-bearing second surface or shoulder 31.
The locking strut or element 52 is capable of extending between the coupling faces 25 and 49 of the member 22 and the part 48, respectively, between coupling and uncoupling positions when the assembly 12 and case 40 are assembled together as is shown in
The element 52 may comprise a ferromagnetic locking element or strut movable between first and second positions. The first position (i.e. coupling position) is characterized by abutting engagement of the locking element 52 with the load-bearing surface or shoulder 31 of one of the teeth 30 and the shoulder 53 of the pocket 51 formed in an end wall of the housing part 48. The second position (i.e. non-coupling position) is characterized by non-abutting engagement of the locking element 52 with a load-bearing shoulder 31 of at least one of the teeth 30 and the end wall of the housing part 48.
The electromechanical component or apparatus (i.e. SSI) 14 includes the housing part 48 which has a closed axial end including the end wall. The end wall has the outer coupling face 49 with the single pocket 51 which defines the load-bearing shoulder 53 which is in communication with an inner face of the end wall. The housing part 48 may be a metal (such as aluminum) injection molded (MIM) part.
The apparatus 14 also includes an electromagnetic source, including at least one excitation coil 62 which is at least partially surrounded by a skirt of the housing part 48.
Electrical insulated wiring 64 supplies electrical power to the coil 62 from a power source located outside the hot oil environment. The wiring 64 extends from the coil 62, through a hole 65 (
The strut 52 is retained within the pocket 51 by a clevis-shaped retainer 50. The strut 52 is movable outwardly from the pocket 51 to its extended, coupling position characterized by abutting engagement of the strut 52 with a load-bearing surface or shoulder 31 of one of the teeth 30.
The apparatus 14 also includes a reciprocating plunger, generally indicated at 70, arranged concentrically relative to the at least one excitation coil 62 and is axially movable when the at least one excitation coil 62 is supplied with current via the wires 64. The coil 62 is wound or located about an actuator core or armature 76 and is potted between plates 60 and 78. The armature 76 is also axially movable upon coil excitation. The plate 60 abuts against the inner face of the housing end wall. The plunger 70 extends through a hole 61 (
The element 52 is pivotally connected to the apertured leading end 72 of the plunger 70 wherein the plunger 70 pivotally moves the element 52 within the pocket 51 in response to reciprocating movement of the plunger 70 which, in turn, moves axially in response to reciprocating movement of the armature 76.
The apparatus 14 also preferably includes a return spring 66, which extends between the plate 60 and a shoulder in the outer surface of the actuator core or armature 76, to return the plunger 70 and the armature 76 to their home position when the coil 62 is de-energized, thereby returning the element 52 to its uncoupling position. The apparatus 14 also includes a spring 74 which urges the plunger 70 to move the element 52 towards its coupling position. In other words, the biasing member or spring 66, urges the plunger 70 via the armature 76 to a return position which corresponds to its uncoupling position of the element 52 while the biasing member or spring 66 urges the plunger 70 and its connected element 52 to its coupled position.
The housing part 48 and/or the plate 78 may have holes (not shown) to allow oil to circulate within the housing part 48. Preferably, the at least one coil 62, the housing part 48, the armature 76 and the plunger 70 comprise a low profile solenoid. The locking element 52 may be a metal (such as aluminum) injection molded (i.e. MIM) strut.
The element 52 includes at least one and, preferably, two projecting leg portions 55 which provide an attachment location for the leading end 72 of the plunger 70. Each leg portion 55 has an aperture 57. The apparatus 14 further comprises a pivot pin 54 received within each aperture 57 and the aperture formed in the leading end 72 to allow rotational movement of the element 52 in response to reciprocating movement of the plunger 70 wherein the leading end 72 of the plunger 70 is connected to the element 52 via the pivot pin 54.
Preferably, each aperture 55 is an oblong aperture which receives the pivot pin 54 to allow both rotation and translational movement of the element 52 in response to reciprocating movement of the plunger 70. Each locking strut 52 may comprise any suitable rigid material such as ferrous metal, (i.e. steel).
The component 14 also includes a magnetic field speed sensor or device 56 which may comprise a differential Hall-effect device which senses speed of the teeth 30 as they rotate past the sensor 56. The teeth 30 may carry or support a rare-earth, automotive grade, magnet or pellet (not shown) which may be embedded in a hole formed in the outer surface of the teeth. In that case, the teeth 30 may be non-ferrous teeth such as aluminum teeth. Alternatively, and preferably, the teeth 30 are ferromagnetic teeth.
The device 56 is typically back-biased, has two wires 58 (
The sensor 56 is typically back-biased when the teeth 30 are ferromagnetic and typically includes a Hall sensor or sensing element mounted on a circuit board on which other electronics or components are mounted, as is well-known in the art. The sensor 56 is preferably back-biased in that it includes a rare-earth magnet which creates a magnetic flux or field which varies as the teeth 30 move past the sensor 56. The sensor 56 may comprise a back-biased, differential Hall Effect device.
In other words, the device 56 is preferably a back-biased device wherein the device 56 includes a rare earth pellet or magnet whose magnetic field varies as the teeth 30 move therepast. The variable magnetic field is sensed by the magnetic sensing element of the device 56.
The output signal from the device 56 is a feedback signal which is received by the solenoid controller. By providing feedback, the resulting closed-loop control system provides for true speed operation.
As described above, the number of forward struts (i.e. 14) is greater than the number of reverse struts (i.e. one or two). Also, the number of reverse notches is greater than the number of forward notches. In this situation, there is a possibility of a coupling assembly such as the coupling assembly 12 to enter a “lock-lock” condition wherein the transitional backlash (i.e., distance the clutch can move between forward and reverse directions) is extremely low. This results in the locking elements not being allowed to drop out of their coupling positions upon command.
In order to avoid the above-described problem, the number of reverse struts and notches and the number of forward struts and notches are chosen so that the forward backlash is a non-zero integer multiple (i.e. “N”) of the reverse backlash and the forward pockets are uniformly angularly spaced about the axis 16. The following is a table of 36 entries wherein only entries 11, 14 and 15 do not satisfy the above criteria.
General Advantages
Wiring is outside the transmission.
Eliminates the difficulty in routing lead wires from the clutch around rotating parts to the bulk head inside the box.
Does not impact the number of wires passing through the bulk head connector.
Coils are potted, leads are over molded, connector is external, completely segregated from the hot oil environment which prevents:
Long term embrittlement of connector and wire insulation from hot oil exposure;
Eliminates the possibility of contamination in oil shorting the circuit to power; and
Vibration failures are greatly reduced (potted and over molded).
High Power Density—every surface of the inner and outer race is used. The radial surfaces are for reverse and the planar surfaces are for 1st gear. They are independent and do not compete for the same real estate in the races. The concentric design competes for radial cross section and co-planar designs add a PM race. The largest possible strut/cam geometry can be used in a smaller package. This increases the power density of the clutch.
Using the SSI 14 as a common electro-mechanical component.
Tend to make it a high volume commodity thus reducing cost.
Streamlines design, validation, and manufacturing—one and done approach.
Better resource allocation. Engineering can focus on clutch design without the burden of designing a new electro-mechanical solution for each unique application.
Eliminate the slide plate and failure modes associated with the slide plate.
Traditional MD approach—no concentric, co-planar design. Tried and true approach.
Cost competitive—highest power density, 2 races, and an across the board approach for controls using the SSIs 14.
Reduction of partial engagements.
The SSI 14 strut 52 turns on faster than a hydraulic design using a slide plate.
The SSI 14 can be turned on closer to the sync point when doing a rolling forward reverse shift because it takes only 20 ms or less to fire on. No hydraulic delay or temperature effects.
Soft turn off capable reduces impact loads when turning off
No special driver is required. The SSI 14 can fire initially and can be PWMed down to hold on. The higher pulse is to overcome a return spring designed for a 20 g impact.
NVH Advantages—Maximizing cams is great approach to reducing backlash. Many more cams can be formed into the race in the radial direction as opposed to the planar direction. Using the SSI 14 in the radial direction takes advantage of this feature.
Usually there is one outer race where the forward and reverse flanks of a spline are the path to ground. This design splits the paths. There is no backlash in the reverse direction as the path passes through a press fit SSI 14 into the case 40. The SSI 14 only reacts reverse torque. The outer race for the passive clutch conversely only sees forward reaction torque. The result is a system where the clutch does not travel through an external lash. The drive side spline stays on the drive side and the reverse drive path is in a press fit SSI 14. This reduces tick/clunk in the splines. A rubber washer/spring clip can be added to the coast side of the spline to keep the spline engaged with the case at all times. It never experiences reverse torque.
Advantages Over Hydraulic
Temperature insensitive.
Faster reaction time with small tolerance (20 ms or less).
Much less energy to operate over life of application.
Easier to route wires outside of box compared to packaging worm trails.
Easy for diagnostic—software maintenance loop with a trickle voltage can measure resistance for temperature, continuity, or a short instantly setting a code.
Contamination insensitive
Advantages of Two Springs
If the armature 76 was directly connected to the strut 52 with a single return spring, a constant high current would have to be applied to ensure the device turns ON. The lowest stroking force occurs initially at the highest gap when the armature 76 is in the OFF position. If the armature 76 was directly attached to the strut 52 and the strut 52 was in between notches or teeth 30, a high current would have to be held to ensure the device would always stroke to ON eventually. The cam plate 22 would have to rotate so the strut 52 could drop in. So a consistently high current would have to be maintained as long as the solenoid 14 was ON. This is a problem. The solenoid 14 could overheat using this approach. The solution is to use two springs 66 and 76, an actuator core or armature 76, and a second internal piston called the plunger 70 that attaches to the strut 52 via a clevis connection. In this arrangement, the armature 76 always strokes ON and travels the full 3 mm closing the gap independent of the position of the strut 52 relative to the cams or teeth 30. The forces keeping the armature 76 in the ON position increase by a magnitude when the gap is closed. The armature 76 pushes the second spring 74 that pushes the plunger 70 attached to the strut 52.
Once the armature 76 strokes the 3 mm, the current can be dropped to a holding current that is a fraction of the initial pulse current. The strut 52 is loaded by the second spring 74 in the apply direction. If the strut 52 is in between cams or teeth 30, there is a second spring force pushing the strut 52 into the ON position as soon as the cam plate 22 rotates. The armature 70 is now independent of strut position and can be PWMed.
If one used a single spring in a tooth butt condition, the armature 76 would only stroke 1.3 mm and stop with a force of about 2 lbs. In a two-spring system the armature 76 always strokes the full 3 mm in 20 ms allowing the current to drop to a holding current. The second spring 74 applies the force to exit tooth butt.
Advantages of Speed Sensor with the Component (i.e. SSI)
The prior art has a speed sensor that passes through the outside of the outer race of the clutch to sense the speed of the inner race. It was presumed that it is for the non-sync reverse shift when rolling in the forward direction.
At least one embodiment of the present invention provides the structure for a speed sensor chip set. It is possible to pot in a speed sensor chip set right into the SSI 14. This has the advantage of flexing the structure of the SSI 14 to not only lock the inner race to ground in reverse, but also to sense the inner race speed all in the same part. This would eliminate the stand alone speed sensor, case machining and clutch machining to accommodate the stand alone speed sensor. This is a significant cost save.
Referring now to
Also, parts of a second or third embodiment have the same reference number but a single or double prime designation, respectively.
A coupling and control assembly, generally indicated at 112, includes a speed sensor 156 (
The assembly 112 includes a controllable coupling assembly, having first and second coupling members 118 and 122, respectively, supported for rotation relative to one another about a rotational axis 116. The electrical signal from the speed sensor 156 is based on the relative rotary speed of the second coupling member 122.
The first coupling member 118 has a first coupling face 149 (
The second coupling member 122 has a set of splines 128 formed on its inner diameter (
The first and second members 118 and 122, respectively, are positioned relative to each other so that the locking element 152 (or the locking elements 152′ and 152″) and the sensor 156 are in close-spaced opposition to the locking formations 130.
The assembly 112 also includes a locking ring or plate 124 for insertion into an annular groove 136 formed in an axially extending wall 137 of the coupling member 118 to hold the coupling members 118 and 122 together.
The first coupling member 118 includes a cutout or hole 132 which extends into a raised portion 135 of the member 118. A slit 127 extends completely through the member 118 from the hole 132 to the face 149.
The assembly 112 also includes an electromechanical component, generally indicated at 114 and 114′ (
The component 114′ is preferably generally of the type disclosed in published U.S. patent application No. 2015/0061798. As described therein, the component 114′ is an electromagnetic solenoid 114′ including a housing 148′ and having a bottom part 160′ with an aperture 161′ in which the member 170′ reciprocates at a first end and a magnetic coil 162′ supported within the housing 148′ An armature 176′ is supported for axial movement within the housing 148′ between first and second positions when the coil 162′ is energized with a predetermined electrical current. The distance between the first and second positions defines a stroke length wherein the armature 176′ exerts a substantially constant force along its stroke length during axial movement of the armature 176′ between the first and second positions. A pin or the reciprocating member 170′ is biased by a spring 174′ which extends between the member 170′ and the armature 176′ to move axially between first and second positions. The spring 174′ biases the member 170′ towards the second coupling member 122.
The sensor 156 senses magnetic flux to produce an electrical output signal indicative of a speed of the relative rotation of the second coupling member 122. A variable magnetic field is generated in response to rotation of the locking formations 130 past the sensor 156.
The sensor 156 preferably includes a magnetic field sensing element. The sensor 156 may be back-biased wherein the locking formations 130 are ferromagnetic. The sensor 156 has wires 158 which together with the wires (not shown) of the coil 162 extend through a cavity 186 of an overmold 184 and are coupled to a solenoid controller.
The locking formations 130 may comprise radially extending, angularly-spaced teeth 130.
The locking element 152 or 152′ or 152″ is preferably a radial pawl.
As best shown in
The first coupling member 118 preferably is an outer coupling member and the second coupling member 122 is preferably an inner coupling member.
The assembly 112 may further comprise a spring or biasing member 166 or 166′ to bias the locking member 152 or 152′ or 152″ towards an uncoupling position as shown in
The biasing member 174′ biases the reciprocating member 170′ to its extended position as shown in
A reciprocating member 170″ and a locking element 152″ of a different embodiment may be connected together as shown in
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.
This application is a continuation-in-part of U.S. application Ser. Nos. 14/675,850 and 14/675,853 both filed Apr. 1, 2015. Those applications are continuation-in-part of U.S. application Ser. No. 14/288,819 filed May 28, 2014, now U.S. Pat. No. 9,234,552, which claims benefit of U.S. provisional application Ser. No. 61/941,741 filed Feb. 19, 2014. This application is also related to U.S. application Ser. Nos. 15/078,171 and 15/078,334, filed on the same date as this application.
Number | Name | Date | Kind |
---|---|---|---|
2960287 | Barlow | Nov 1960 | A |
3130989 | Lannen | Apr 1964 | A |
4050560 | Torstenfelt | Sep 1977 | A |
4056747 | Orris et al. | Nov 1977 | A |
4200002 | Takahashi | Apr 1980 | A |
4340133 | Blersch | Jul 1982 | A |
5052534 | Gustin et al. | Oct 1991 | A |
5070978 | Pires | Dec 1991 | A |
5206573 | McCleer et al. | Apr 1993 | A |
5231265 | Hackett et al. | Jul 1993 | A |
5362293 | Romanauskas | Nov 1994 | A |
5387854 | McCleer et al. | Feb 1995 | A |
5394321 | McCleer et al. | Feb 1995 | A |
5449057 | Frank | Sep 1995 | A |
5453598 | Hackett et al. | Sep 1995 | A |
5486758 | Hammerle | Jan 1996 | A |
5597057 | Ruth et al. | Jan 1997 | A |
5638929 | Park | Jun 1997 | A |
5642009 | McCleer et al. | Jun 1997 | A |
5678668 | Sink | Oct 1997 | A |
5806643 | Fitz | Sep 1998 | A |
5847469 | Tabata et al. | Dec 1998 | A |
5856709 | Ibaraki et al. | Jan 1999 | A |
5871071 | Sink | Feb 1999 | A |
5898249 | Boggs, III | Apr 1999 | A |
5918715 | Ruth et al. | Jul 1999 | A |
5927455 | Baker et al. | Jul 1999 | A |
5954174 | Costin | Sep 1999 | A |
5964331 | Reed et al. | Oct 1999 | A |
5979627 | Ruth et al. | Nov 1999 | A |
5996758 | Baxter, Jr. | Dec 1999 | A |
6019699 | Hoshiya et al. | Feb 2000 | A |
6065576 | Shaw et al. | May 2000 | A |
6075302 | McCleer | Jun 2000 | A |
6116394 | Ruth | Sep 2000 | A |
6121454 | Zoghbi | Sep 2000 | A |
6125980 | Ruth et al. | Oct 2000 | A |
6129190 | Reed et al. | Oct 2000 | A |
6186299 | Ruth | Feb 2001 | B1 |
6193038 | Scott | Feb 2001 | B1 |
6237931 | Marola | May 2001 | B1 |
6244965 | Klecker et al. | Jun 2001 | B1 |
6290044 | Burgman et al. | Sep 2001 | B1 |
6306057 | Morisawa et al. | Oct 2001 | B1 |
6344008 | Nagano et al. | Feb 2002 | B1 |
6386349 | Welch | May 2002 | B1 |
6481551 | Ruth | Nov 2002 | B1 |
6503167 | Sturm | Jan 2003 | B1 |
6505721 | Welch | Jan 2003 | B1 |
6571926 | Pawley | Jun 2003 | B2 |
6814201 | Thomas | Nov 2004 | B2 |
6846257 | Baker et al. | Jan 2005 | B2 |
6854577 | Ruth | Feb 2005 | B2 |
6953409 | Schmidt et al. | Oct 2005 | B2 |
6982502 | Sendaula et al. | Jan 2006 | B1 |
7025188 | Lindenschmidt et al. | Apr 2006 | B2 |
7093512 | Ibamoto et al. | Aug 2006 | B2 |
7100756 | Kimes et al. | Sep 2006 | B2 |
7153228 | Fujiu et al. | Dec 2006 | B2 |
7198587 | Samie et al. | Apr 2007 | B2 |
7201690 | Miura et al. | Apr 2007 | B2 |
7223198 | Kimes et al. | May 2007 | B2 |
7223200 | Kojima et al. | May 2007 | B2 |
7255186 | Wakuta et al. | Aug 2007 | B2 |
7256510 | Holmes et al. | Aug 2007 | B2 |
7258214 | Pawley et al. | Aug 2007 | B2 |
7275628 | Pawley et al. | Oct 2007 | B2 |
7344010 | Fetting, Jr. et al. | Mar 2008 | B2 |
7383930 | Kimes et al. | Jun 2008 | B2 |
7393296 | Kano et al. | Jul 2008 | B2 |
7397296 | Kiani | Jul 2008 | B1 |
7426971 | Kano et al. | Sep 2008 | B2 |
7448481 | Kimes et al. | Nov 2008 | B2 |
7451862 | Kimes et al. | Nov 2008 | B2 |
7455156 | Kimes et al. | Nov 2008 | B2 |
7455157 | Kimes et al. | Nov 2008 | B2 |
7464801 | Wittkopp | Dec 2008 | B2 |
7484605 | Pawley et al. | Feb 2009 | B2 |
7491151 | Maguire et al. | Feb 2009 | B2 |
7614466 | Kano et al. | Nov 2009 | B2 |
7621359 | Kano et al. | Nov 2009 | B2 |
7661518 | Kimes | Feb 2010 | B2 |
7690455 | Kano et al. | Apr 2010 | B2 |
7690492 | Gooden et al. | Apr 2010 | B2 |
7806795 | Oba et al. | Oct 2010 | B2 |
7942781 | Kimes | May 2011 | B2 |
8007396 | Kimes et al. | Aug 2011 | B2 |
8051959 | Eisengruber | Nov 2011 | B2 |
8061496 | Samie et al. | Nov 2011 | B2 |
8079453 | Kimes | Dec 2011 | B2 |
8187141 | Goleski et al. | May 2012 | B2 |
8196724 | Samie et al. | Jun 2012 | B2 |
8272488 | Eisengruber et al. | Sep 2012 | B2 |
8286772 | Eisengruber | Oct 2012 | B2 |
8324890 | Lin | Dec 2012 | B2 |
8418825 | Bird | Apr 2013 | B2 |
8491439 | Kimes | Jul 2013 | B2 |
8491440 | Kimes et al. | Jul 2013 | B2 |
8720659 | Pawley | May 2014 | B2 |
8813929 | Kimes | Aug 2014 | B2 |
8888637 | Kimes | Nov 2014 | B2 |
9109636 | Kimes et al. | Aug 2015 | B2 |
9127724 | Kimes et al. | Sep 2015 | B2 |
9234552 | Kimes | Jan 2016 | B2 |
9255614 | Kimes | Feb 2016 | B2 |
20020000724 | Kalargeros et al. | Jan 2002 | A1 |
20030126870 | Meckstroth et al. | Jul 2003 | A1 |
20040159517 | Thomas | Aug 2004 | A1 |
20040216975 | Ruth | Nov 2004 | A1 |
20050279602 | Ruth | Dec 2005 | A1 |
20060021838 | Kimes et al. | Feb 2006 | A1 |
20060124425 | Fetting et al. | Jun 2006 | A1 |
20060138777 | Hofbauer et al. | Jun 2006 | A1 |
20060185957 | Kimes et al. | Aug 2006 | A1 |
20060249345 | Ruth | Nov 2006 | A1 |
20070056825 | Fetting, Jr. et al. | Mar 2007 | A1 |
20070107960 | Takami et al. | May 2007 | A1 |
20070278061 | Wittkopp et al. | Dec 2007 | A1 |
20080093190 | Belmont | Apr 2008 | A1 |
20080110715 | Pawley | May 2008 | A1 |
20080135369 | Meier | Jun 2008 | A1 |
20080169165 | Samie et al. | Jul 2008 | A1 |
20080169166 | Wittkopp et al. | Jul 2008 | A1 |
20080185253 | Kimes | Aug 2008 | A1 |
20080188338 | Kimes et al. | Aug 2008 | A1 |
20080196990 | Cali | Aug 2008 | A1 |
20080223681 | Stevenson et al. | Sep 2008 | A1 |
20080245360 | Almy et al. | Oct 2008 | A1 |
20090062058 | Kimes et al. | Mar 2009 | A1 |
20090084653 | Holmes | Apr 2009 | A1 |
20090098970 | Kimes | Apr 2009 | A1 |
20090127059 | Knoblauch | May 2009 | A1 |
20090133981 | Tarasinski et al. | May 2009 | A1 |
20090142207 | Ring et al. | Jun 2009 | A1 |
20090159391 | Eisengruber | Jun 2009 | A1 |
20090194381 | Samie et al. | Aug 2009 | A1 |
20090211863 | Kimes | Aug 2009 | A1 |
20090233755 | Kimes | Sep 2009 | A1 |
20090255773 | Seufert et al. | Oct 2009 | A1 |
20090266667 | Samie et al. | Oct 2009 | A1 |
20100071497 | Reisch et al. | Mar 2010 | A1 |
20100105515 | Goleski et al. | Apr 2010 | A1 |
20100127693 | Wenzel et al. | May 2010 | A1 |
20100200358 | Eisengruber et al. | Aug 2010 | A1 |
20100230226 | Prout | Sep 2010 | A1 |
20100252384 | Eisengruber | Oct 2010 | A1 |
20110233026 | Pawley | Sep 2011 | A1 |
20120021862 | Isken et al. | Jan 2012 | A1 |
20120145505 | Kimes | Jun 2012 | A1 |
20120149518 | Kimes | Jun 2012 | A1 |
20120152683 | Kimes | Jun 2012 | A1 |
20120152687 | Kimes et al. | Jun 2012 | A1 |
20120228076 | Tate, Jr. et al. | Sep 2012 | A1 |
20120231913 | Samie et al. | Sep 2012 | A1 |
20130062151 | Pawley | Mar 2013 | A1 |
20130277164 | Prout et al. | Oct 2013 | A1 |
20130319812 | Wys et al. | Dec 2013 | A1 |
20140102844 | Greene et al. | Apr 2014 | A1 |
20140190785 | Fetting et al. | Jul 2014 | A1 |
20140238811 | Heuver | Aug 2014 | A1 |
20140284167 | Kimes | Sep 2014 | A1 |
20140305761 | Kimes | Oct 2014 | A1 |
20150000442 | Kimes et al. | Jan 2015 | A1 |
20150014116 | Kimes et al. | Jan 2015 | A1 |
20150060225 | Kimes | Mar 2015 | A1 |
20150061798 | Seid et al. | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
1007475 | Oct 1965 | GB |
2015030899 | Mar 2015 | WO |
Entry |
---|
International Search Report and Written Opinion; related application No. PCT/US2016/014236; date of mailing Mar. 24, 2016. |
International Search Report and Written Opinion; related application No. PCT/US2016/014243; date of mailing Mar. 24, 2016. |
International Preliminary Report on Patentability; related International application No. PCT/US2014/056716; date of issuance of report Mar. 29, 2016. |
International Preliminary Report on Patentability; related International application No. PCT/US2014/056749; date of issuance of report Mar. 29, 2016. |
International Preliminary Report on Patentability; related International application No. PCT/US2014/057140; date of issuance of report Mar. 29, 2016. |
International Search Report and Written Opinion; related International application No. PCT/US2016/013836; date of mailing Mar. 30, 2016. |
Office Action; related application U.S. Appl. No. 14/882,505; notification date May 19, 2016. |
Notice of Allowance and Fee(s) Due; related U.S. Appl. No. 14/882,505; dated Aug. 1, 2016. |
International Search Report and Written Opinion; International application No. PCT/US2011/036634; date of mailing Aug. 25, 2011. |
International Preliminary Report on Patentability; International application No. PCT/US2011/036634; date of issuance of report Jun. 12, 2013. |
International Search Report and Written Opinion; International application No. PCT/US12/050742; date of mailing Nov. 20, 2012. |
International Search Report and Written Opinion; International application No. PCT/US2014/041631; date of mailing Oct. 9, 2014. |
International Search Report and Written Opinion; International application No. PCT/US2014/049044; Date of mailing Nov. 24, 2014. |
Notice of Allowance and Issue Fee(s) Due; corresponding U.S. Appl. No. 13/992,785; date of mailing Jan. 30, 2015. |
Notice of Allowance and Fee(s) Due; related U.S. Appl. No. 14/086,202; dated Sep. 14, 2015. |
Notice of Allowance and Fee(s) Due; related U.S. Appl. No. 14/675,840; date of mailing Dec. 3, 2015. |
International Preliminiary Report on Patentability; related International application No. PCT/US2014/041631; date of issuance of report Mar. 1, 2016. |
International Search Report and Written Opinion; International application No. PCT/US16/14063; date of mailing Mar. 16, 2016. |
Number | Date | Country | |
---|---|---|---|
20160201739 A1 | Jul 2016 | US |
Number | Date | Country | |
---|---|---|---|
61941741 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14675850 | Apr 2015 | US |
Child | 15078154 | US | |
Parent | 14288819 | May 2014 | US |
Child | 14675850 | US | |
Parent | 15078154 | US | |
Child | 14675850 | US | |
Parent | 14675853 | Apr 2015 | US |
Child | 15078154 | US | |
Parent | 14288819 | May 2014 | US |
Child | 14675853 | US |