The present invention relates to a coupling arrangement for use with flexible fluid lines, such as garden hoses. It will be convenient to describe the invention in relation to its use with garden hoses, although it should be appreciated that the invention can be employed in flexible fluid lines used for other purposes.
A popular form of connection between a hose and hose fittings employs click or snap connectors. While such connectors are easy to use, they typically are of relatively complex construction including several moving parts, so that they are relatively expensive to manufacture and are susceptible to damage or failure upon ingress of foreign matter such as soil.
International application WO91/00469 discloses a fluid line coupling developed by one of the inventors of the present application. That coupling includes two interconnecting parts, one of which is connectable to a fluid line and the other to either of a fluid supply or discharge facility. Drawbacks associated with this type of coupling is that the interconnecting parts are quite separate and include no common parts while it provides no interface with the popular form of snap-fit discharge nozzle which is so popular throughout the world. Thus, the coupling was usually only able to be coupled to a fluid discharge facility, i.e. a tap.
International application WO 98/41791 discloses a hose coupling having similar drawbacks to WO 91/00469 discussed above. Thus, the hose coupling of this reference requires a different connection to each of a fluid supply or discharge facility or a hose while, additionally, the sealing arrangement between the connectable coupling parts of the hose coupling is prone to leakage.
It is an object of the present invention to provide a coupling arrangement preferably for a flexible fluid line which is an improved coupling compared to prior art couplings.
In a broad form of the invention there is provided a coupling arrangement including a first coupling and a second coupling, the first and the second couplings being connectable together to form a joint, each of the first and second couplings defines a passage through which fluid can flow, and in a connected condition of the first and second couplings, the respective passages are in alignment to allow flow of fluid through the joint, each of the first and second couplings includes first and second interconnecting coupling parts, in which the first coupling part defines the passage of the coupling, the second coupling part of each coupling is connectable to the first coupling part of the coupling with which it is associated, and to the first coupling part of the other coupling of the joint, the first and second couplings are coupled together by releasable connection between the second coupling part of each coupling with the first coupling part of the mating coupling.
In a more specific form of the invention there is provided a coupling arrangement for coupling a flexible fluid line between a fluid supply facility or a fluid discharge facility, the coupling arrangement includes a first coupling which is connectable to the fluid supply facility or to the fluid discharge facility, and a second coupling which is connectable to an opposite end of the flexible fluid line, the first and the second couplings are connectable together to form a joint, each of the first and second couplings defines a passage through which fluid can flow, and in a connected condition of the first and second couplings, the respective passages are in alignment to allow flow of fluid through the joint, each of the first and second couplings includes first and second interconnecting coupling parts, in which the first coupling part defines the passage of the coupling, the first coupling part of the first coupling is connectable to one of the fluid supply or fluid discharge facilities, the second coupling part of each coupling is connectable to the first coupling part of the coupling with which it is associated, and to the first coupling part of the other coupling of the joint, the first and second couplings are coupled together by releasable connection between the second coupling part of each coupling with the first coupling part of the mating coupling.
In a still more specific form of the invention there is provided a coupling arrangement for coupling a flexible fluid line between a fluid supply facility and a fluid discharge facility. In above forms of the invention, the fluid supply facility can be a domestic garden tap for example, while the fluid discharge facility can be a spray nozzle or water sprinkler. The coupling arrangement includes a flexible fluid line between a fluid supply facility and a fluid discharge facility, the coupling arrangement includes a first coupling which is connectable to the fluid supply facility and to the fluid discharge facility, and a second coupling which is connectable to opposite ends of the flexible fluid line, the first and the second couplings are connectable together to form a joint, each of the first and second couplings defines a passage through which fluid can flow, and in a connected condition of the first and second couplings, the respective passages are in alignment to allow flow of fluid through the joint, each of the first and second couplings includes first and second interconnecting coupling parts, in which the first coupling part defines the passage of the coupling, the first coupling part of the first coupling is connectable to one of the fluid supply or fluid discharge facilities, the second coupling part of each coupling is connectable to the first coupling part of the coupling with which it is associated, and to the first coupling part of the other coupling of the joint, the first and second couplings are coupled together by releasable connection between the second coupling part of each coupling with the first coupling part of the mating coupling.
By the above arrangement, the second coupling parts of the first and second couplings of each joint can be of the same construction, or in other words, the second coupling parts can be a universal part regardless of whether it is associated with the first or second coupling. This is advantageous in relation to minimising the complexity of the couplings and the cost of manufacture, and reducing the overall number of parts required for couplings that connect to a fluid supply facility and to a fluid discharge facility. In this latter respect, it will become apparent from the discussion which follows that a significant advantage is provided by the invention compared to prior art couplings. For example, in a common domestic system, in which a hose is attached to a tap at one end and to a spray nozzle at the other end, a coupling arrangement of the invention can be applied so that the first coupling of each joint attaches respectively to the tap and the nozzle, and the second coupling attaches to each end of the hose. Thus, the first coupling of each joint is identical. Adaptors can be employed if necessary to assist connection between the first couplings and the tap and nozzle. Moreover, the second coupling of each joint is also identical if the hose diameters are identical, or if they are different, the first coupling parts of the second couplings are different, but the second coupling parts remain identical.
Where a system of the kind discussed above also employs a connection between two or more hoses, that connection can comprise a pair of second coupling attached together. Thus, in that system, the first couplings connect to the tap and nozzle, and the second couplings attach to each hose end. The system thus comprises only the first and second couplings, with adaptors employed as required.
Other aspects of the present invention are embodied in a seal provided for use in a coupling arrangement, in adaptors to facilitate connection of a coupling according to the invention to fluid supply or discharge facilities, particularly existing facilities that are not customised for use with a coupling according to the invention, and in a hose grip which is employed to grip the outside surface of one end of a hose to which a coupling is connected.
In one form of the invention, an adaptor is employed with the first coupling for connection of the first coupling to a fluid discharge facility. The use of an adaptor facilitates connection of the first coupling to fluid discharge facilities of various kinds and in particular, to such facilities that include connection arrangements for couplings having a different construction to the first coupling of the present invention, such as prior art couplings. As discussed earlier, a very popular form of connection arrangement particularly used for water nozzles, is a connector which includes a male tubular connector that extends from the nozzle. The male connector includes a coaxial flange and O-ring, which accepts a “click-on” female fitting which is attached to one end of a hose. While this arrangement is popular, for example for connecting water spray nozzles to hoses, the click-on nature of the arrangement introduces significant complexities into the parts of the connection arrangement, which increases both the cost of the arrangement and the likelihood of its failure. Nevertheless, the popularity of the arrangement is such that many households and businesses already have nozzles and other fittings of this kind and therefore it is anticipated that there would be a reluctance to dispose of these fittings in order to adopt the present invention. Accordingly, the adaptor of the invention advantageously permits continued use of existing fittings while adopting the coupling arrangement of the present invention.
An adaptor according to one form of the invention includes first and second portions. The first portion is arranged to be secured to the male connector of the fluid discharge facility, while the second portion is arranged to be connected to the first coupling part of the first coupling. The first portion includes an opening through which the male connector can be fed and an edge of the opening is arranged to bear against a bearing surface of a flange of the male connector. That bearing engagement resists removal of the male connector from the opening and thus it resists removal of the adaptor from the male connector. The arrangement is such that with the edge of the opening in bearing engagement with the bearing surface of the flange, and the first coupling part secured to the second portion of the adaptor, the first coupling is secured to the fluid discharge facility.
In a preferred arrangement, the opening includes two intersecting portions. A first portion is sized to accept the male connector when the connector is fed into the opening, while the second portion is sized and shaped for engagement with the bearing surface of the connector flange. For a male connector that is cylindrical, each portion can be circular, with the first portion having a diameter that is slightly greater than the maximum diameter of the portion of the male connector that is fed through the opening, and the second portion can be of a reduced diameter and complementary to the diameter of the section of the male connector from which the flange extends. In this arrangement, the circular edge of the second portion can bear radially against the outer surface of the male connector and axially against the bearing surface of the flange. In this arrangement, the axis of the second portion preferably is coaxial with the male connector, while the axis of the first portion is eccentric to the axis of the male connector. Thus the adaptor is shifted eccentrically from the position in which the male connector is fed into the opening, to the position in which the opening bears radially against the outer surface of the connector and axially against the flange.
The second portion of the adaptor can be arranged for connection to the first coupling part in any suitable manner. A bayonet or snap connection could be employed, although it is preferred that the connection be a threaded connection.
In the above form of adaptor, it is preferred that the adaptor be applied to the male connector first and that the first coupling part thereafter be connected to the adaptor.
An alternative form of adaptor also includes first and second portions of which the first portion is arranged to be secured to the male connector of the fluid discharge facility and the second portion is arranged to be connected to the first coupling part of the first coupling. In this alternative form of adaptor, the first portion includes a snap connector, which rides over the flange of the male connector and into bearing engagement with the bearing surface of the flange. The snap connector can include a pair of separate connector parts which engage different sections of the bearing surface, preferably sections which are diametrically opposed. The connector parts either are resiliently flexible or are supported by resiliently flexible elements, so that the parts can resiliently shift to ride over the flange and can then return to bear against the bearing surface.
In one arrangement, the second portion includes an annular wall and the snap connector or connector parts are connected to an internal surface of that wall. In this arrangement, a thread can be applied to the outer surface of the wall for threadably connecting the second portion to the first coupling part.
In the above alternative form of the adaptor, the snap connector or connectors can include levers for manually releasing the connectors from bearing engagement with the bearing surface, so as to release the adaptor from connection with the fluid discharge facility. Manual release may be by way of finger manipulation of the levers, or a tool, such as a screwdriver may be employed. The levers may be integrally formed with the snap connectors and in one form, the levers extend axially from the snap connectors to a position beyond one axial end of the annular wall of the second portion in the trailing direction of application of the adaptor to the male connector of the fluid discharge facility. In this arrangement, when the first coupling part is connected to the second portion of the adaptor, the first coupling part can enclose the levers against access for manual release.
An advantage of the alternative form of adaptor is that the adaptor can be fitted to the first coupling part first and thereafter, the combined adaptor and first coupling part can be fitted to the fluid discharge facility. In contrast, in the first form of the adaptor, the adaptor is fitted to the fluid discharge facility first and then the adaptor and the first coupling part are connected together.
The first coupling part preferably includes a connecting section which is connectable to the fluid supply or discharge facility. The connecting section can be arranged for that connection in any suitable manner, although the preferred arrangement includes an annular wall having an internal surface to which a helical thread is applied. The helical thread can be of a form to connect standard threads which are applied to fluid supply facilities such as taps.
The passage of the first coupling part can extend from an inboard end of the connection section. This is suitable for coupling parts which are configured for connection to a tap or discharge facility. Thus, the connecting section has an axial extent and the passage commences inboard of an axial end of that section. A seal can be accommodated between one end of the fluid supply facility and the first coupling part, to seal against flow of fluid other than into the passage. For this, a seat can be provided for a seal and in the preferred arrangement, the seat is annular and extends about the opening of the passage, between the passage opening and the connecting section.
A first coupling part which is arranged for connection to a flexible fluid line can include a hollow spigot for receipt within an end of the line. The spigot will be in fluid communication with the passage and preferably is coaxial therewith, for example an extension thereof. The spigot preferably tapers slightly to be narrower at its leading end than its trailing end, so that the end of the fluid line into which the spigot is inserted, leading end first, frictionally engages the external surface of the spigot progressively more the further the spigot is inserted. The spigot can be formed integrally with the first coupling part.
The passage extends through an interlocking portion of the first coupling part to which the second coupling part can be connected to form a coupling, and to which a second coupling part of another coupling can also be connected. Thus, the interlocking portion is arranged to interlock with the second coupling parts of each of the first and second couplings. The interlocking portion preferably is generally cylindrical and includes projections for interlocking with the respective second coupling parts. The interlocking portion can be in the form of a post or hollow spigot.
The interlocking portion can extend from the connecting section of the first coupling part and in a preferred arrangement, a shoulder is defined at the junction of the connecting section and the interlocking portion which extends transverse to and preferably substantially perpendicular to the axis of the passage and which forms an abutment surface for abutment with the second coupling part when the first and second coupling parts are connected together. The interlocking portion can include one or more locking projections spaced from the shoulder and the second coupling part can also include locking lugs that are received between the shoulder and one or more locking projections when the first and second coupling parts are connected together. The locking lugs of the second coupling part are configured to be received between the shoulder and the locking projections and the locking lugs can include abutments to abut one or either side of the locking projections to securely capture them in the appropriate position. The first and second coupling parts can be connected together by rotation, to bring the locking lugs to the position between the abutments and between the shoulder and the locking projections. One of the abutments may be formed at one end of a ramp, so that a locking lug rides over the ramp to be received between the abutments. In this arrangement, either the locking lug or the ramp, or both, are resiliently flexible to facilitate the lug riding over the ramp. Because of the resilient flexing of the locking lug and/or the ramp, this arrangement can be such that the first and second coupling parts are permanently coupled together by permitting flexing to occur in only one direction of rotation.
The second coupling part of each coupling includes at least one, but preferably two locking claws, for interlocking with the first coupling part of another coupling. The claws have an axially extending claw section and a radially inwardly extending claw section. The radially extending claw section preferably extends from a distal end of the axially extending section. The second coupling part can include an annular wall from which the locking claws extend and the locking lugs previously described can extend radially inwardly from the wall. The locking lugs and the radially extending claw sections are spaced apart axially.
The radially extending claw sections are arranged for locking engagement with further projections extending from the interlocking section of the first coupling part of a coupling. Pairs of projections which are spaced apart axially, can be provided for engagement with a locking lug of one second coupling part and with a radially extending claw section of another second coupling part.
The locking engagement between the locking claws and the first coupling part preferably comprises bringing a locking face of each of the radially extending claw section and a projection into engagement, preferably by rotation of the first coupling relative to the second coupling. It should be appreciated that the first and second couplings normally would themselves be fully assembled before being joined together and would be connected respectively to either the fluid supply or discharge facility, or to a hose end. The respective locking faces preferably have an interlocking profile so that the faces nest together in the interlocked position. One face could have a recess for example and the other face could have a protrusion, so that upon receipt of the protrusion within the recess, the radially extending claw section and the projection are locked together. Receipt of the protrusion within the recess preferably causes the first and second couplings to click together, so that a person who is assembling the joint receives a tactile indication that proper interlocking has occurred. The first and second couplings may also include mutually abutting surfaces in the interlocked position, to prevent rotation beyond that position. While the abutting surfaces may be provided in any suitable form, where the second coupling parts include locking claws, the axially extending sections of two locking claws of two separate second coupling parts may abut, preferably through side edges thereof.
The seals mounted at one end of a respective passage of the first and second couplings preferably engage sealingly when the first and second coupling are interlocked to form a joint. Preferably the pressure force between the seals increases as the pressure of fluid flowing through the joint increases. This can be achieved by a seal of the kind disclosed in International patent application PCT/AU90/00271, published under WO 91/00469. According to the present invention, a seal of that kind is modified to include a pair of coaxial annular flanges, preferably which extend generally in the direction of fluid flow through the passage.
The first flange is received in an annular recess formed in the wall of the passage. The second flange is radially outboard of the first flange and interlocks with an annular end section of the portion of the first coupling part which defines the passage. The interlock can be achieved in any suitable manner. In one form, the annular end section has a reduced diameter section that forms a neck and the neck is engaged by the second flange. To ensure a secure connection, the arrangement can be such as to require the seal to resiliently flex over the end section, whereafter resilient recovery of the seal results in engagement with the neck.
A seal according to the present invention includes a flexible annular lip that is engaged by fluid flowing through the passage, which causes the lip to splay outwardly. Movement of this kind occurs in the lip of each of the two facing seals and results in the lips dynamically engaging each other during fluid flow. This results in the pressure between the lips increasing as fluid pressure increases. The annular flanges of the seal extend from positions radially outwardly of the annular lip.
The present invention can include a hose grip for gripping the end of a flexible fluid line (hereinafter a hose) to which a second coupling of a joint is to be connected. The hose grip is annular to fit about the hose end and is radially expandable and contractible resiliently along its full axial length. The hose grip of the invention includes a plurality of hinged segments. Each segment is elongate and one end of each segment is hingedly connected to an adjacent end of an adjacent segment on one side thereof, while the opposite end is hingedly connected to the adjacent end of the segment on the opposite side thereof. The hose grip thus can expand and contract either uniformly from one end to the other, or the expansion or contraction can be tapered from one end to the other.
Preferably the hose grip is integrally formed and the segments extend generally parallel and in the general direction of fluid flow through the hose end.
The arrangement of the hose grip is that it is placed about one end of a hose and thereafter, a clamping nut is slid over the hose grip and is engaged with the connecting section of the first coupling part of the second coupling. The nut frictionally engages the hose grip and applies a load which tends to cause the hose grip to radially contract. By that connection, the hose grip is forced into gripping connection with the hose end to forcibly clamp the hose end about the spigot which extends from the connecting section of the first coupling part of the second coupling as previously described. The connecting section and the nut can be connected in any suitable manner, but preferably the connection is a threaded connection. Preferably as threaded engagement progresses between the nut and the connecting section, the radial force applied to the hose grip increases. For this, the nut can include a tapered internal wall which engages the radially external surface of the trailing end of the hose grip to progressively increase the radial force applied to the hose grip.
In a preferred arrangement, the first coupling part of the second coupling can include an annular ring that is concentric with and extends about the spigot of that part, for engagement with the leading end of the hose grip. The annular ring and the leading end of the hose grip can cooperate when assembled together to cause the leading end to radially contract so as to grip the hose end. The annular ring and the hose grip therefore can include faces which slidingly engage, with the faces being inclined, to cause radial contraction of the hose grip as sliding engagement between the faces progresses. The arrangement can be such that the clamping nut can cause radial contraction of one end of the hose grip while cooperation between the hose grip and the annular ring can cause radial contraction of the other end. By this arrangement each end of the hose grip can be radially contracted against the hose end to firmly grip the hose end, by the cooperation at one end of the hose grip with the nut, and at the other end by the annular ring. The annular ring can be integrally formed with the first coupling part.
In order to enhance the gripping qualities of the hose grip, the elements of the hose grip can include teeth which bite into the surface of the hose end. Preferably teeth are formed at the hinge connection between adjacent elements of one end of the hose grip. When a hose is fed through the hose grip, the hose preferably is fed first through the end of the hose grip remote at which the teeth are disposed.
For a better understanding of the invention and to show how it may be performed, embodiments thereof will now be described, by way of non-limiting example only, with reference to the accompanying drawings.
a illustrates an assembled form of the arrangement of
a is a cross-sectional view of a first coupling part of the coupling shown in
The figures to which the following discussion relates, show a complete coupling arrangement for a flexible fluid line. The parts which are discussed can be selected depending on the type of fluid line and it will be appreciated that all of the parts which are discussed are not necessarily required for each application of the coupling arrangement.
It will be convenient to commence discussion of the coupling system by reference to parts of the system as they apply to particular components of a flexible fluid line. Because the invention has been principally developed for use with domestic garden hoses, it will be convenient to describe the invention in relation to that application.
It will be apparent from the discussion that follows, that the respective joints 12, 15 and 16 each comprise two couplings. The joint 15 also includes an adaptor 17. The joints 12 and 15 comprise a coupling 12′ and a coupling 16′. The joint 16 comprises two of the couplings 16′. Accordingly, each joint comprises at least one common coupling 16′. The coupling 12′ of the joint 15 is connected by the adaptor 17 to the nozzle 14. The hoses 11, 11′ and 13 shown in
It will be convenient now to disclose the invention in relation to the different joints and couplings shown in
The adaptor 17 is connectable to the inlet member 18 of the nozzle 14. The inlet member 18 is cylindrical and includes an inlet passage (not shown), which is coaxial with the member 18 and which facilitates flow of fluid, such as water, into the nozzle 14 for egress through the opposite end 19.
The construction of the adaptor 17 is such that it can be secured to the inlet member 18 in a manner that will be discussed in relation to
With reference to
The opening 24 is arranged to be sufficiently large, that the inlet member 18 of the nozzle 14 can be fed therethrough. Referring to
Movement of the adaptor 17 into position on the inlet member 18, so that the edge 27 bears against the side wall of the neck section 31 and the bearing surface 32, is the first step in securing a coupling according to the invention to the nozzle 14. The next step is to bring the coupling part 20 into threaded engagement with the adaptor 17. A cross-sectional view of the coupling part 20 is shown in
By fitting the adaptor 17 to the inlet member 18, and thereafter by threadably connecting the coupling part 20 to the adaptor 17, the leading end 18a (
The coupling part 20 of
The end 48 of the neck 35 is configured for receipt and securement of a flexible seal 50 (
Referring back to
The
The grip 74 is radially expandable and contractable, by virtue of its material of construction, which typically will be a resilient plastic material. The grip 74 is formed into hinged segments of which several are identified by the reference numeral 77 and these segments are connected at hinge regions 78. Again, only a small number of the hinge regions are identified by reference numeral. By the construction of the hose grip 74, the grip can be fitted to hoses of different wall thickness, by radial expansion of contraction of the grip.
Radial contraction of the grip 74 can be caused by engaging either end of the grip 74, at one end by the nut 71 and at the other end by the coupling part 72 (
Returning to
Following on from the above sequence of connections, if the seal 50 is separate from the coupling part 72, then it is applied to the end 48 of that part in the manner described in relation to
The nozzle coupling assembly shown in
The joint 16 (
The joint 16 is comprised of two identical mating assemblies 91, 92 as follows. Each coupling assembly 91, 92 includes a nut 71 which is in threaded engagement with a coupling part 72. Each assembly further includes a hose grip 74 which, upon threaded connection between the nut 71 and the coupling part 72, bites into the surfaces of the hose 11 and 13 to secure the nut 71 and coupling part 72 in position relative to the hoses 11 and 13. In
The assemblies 91, 92 which make up the joint 16 further include a pair of coupling parts 60 and in relation to the coupling parts 60 and 72
It will be appreciated that the coupling assembly 91 and the coupling assembly 92 are identical. This is permitted because the hoses 11 and 13 are of the same diameter and thus the spigots 73 are also of the same diameter.
Advantageously, the arrangements of the invention minimise the number of different parts required to connect hose sections together. Moreover, it will be appreciated that the coupling part 60 which is illustrated in
Reference will now be made to
With reference to
A seal 102 is provided to engage against an end surface 103 of the tap 10 and against an internal surface of the coupling part 20. The coupling part 20 of
The coupling assembly applied to the tap 10 can be connected to a further coupling assembly connected to a hose, and for example, either of the coupling assemblies 91 and 92 illustrated in
The coupling arrangement hereinbefore described advantageously comprises a number of identical parts. Each of the coupling assemblies described includes the coupling part 60, and either the coupling part 20, 72 or 72′, depending on whether the coupling is to a hose, or to a nozzle or tap. It is to be appreciated that the coupling parts 20, 72 and 72′ differ as indicated previously. Thus there is significant similarity between each of the couplings which are applied to various parts of the domestic hose system illustrated in
A significant advantage of the coupling arrangement according to the invention, is that it can provide a significantly reliable seal between parts which are coupled together. Increasingly, water wastage through leakage losses are being targeted as a significant wastage of water and the elimination of leakage between coupled components is extremely desirable. With reference to
Returning to
Thus, the sealing arrangement of the present invention is considered to be secure against leakage and is not prone to leak when subjected to a combination of hot weather conditions and domestic water pressure. Additionally, the arrangement of the claws 65 is such as to increase the strength of the coupling between respective coupling assemblies 91 and 92, given that the projections 66 of the claws 65 more firmly engage the projections 41 of the coupling parts 20 or 72, as fluid pressure rises.
To couple together a system of the kind disclosed in
In a kit form, to connect a single hose between a tap and a nozzle, the kit would include the following components:
Adaptor 17×1
Coupling part 20×2
Seal 50×4
Coupling part 60×4
Coupling part 72×2
Hose grip 74×2
Hose nut 71×2
Seal 102×1
The duplication or commonality of parts is evident from the parts list above.
Where two hoses are employed then the additional connectors of
While the above discussion has been made principally in relation to existing tap and hose componentry, the present invention is equally applicable to custom made componentry and a nozzle 110 is illustrated in
As shown in
Clearly other nozzle devices can be employed with the present invention, but
An alternative form of adaptor is shown in
The adaptor 120 includes an annular wall 121 and a castellated flange 122 which is provided for ease of gripping. The flange 122 is connected to the wall 121 by four bridging connectors 123 which are disposed equidistantly about the flange 122 at 90° intervals. The bridging connectors 123 separate the annular flange 122 from the wall 121 to create an annular space S, small sections of which are evident in
The wall 121 includes four thread portions 124. The thread portions 124 are separated by gaps G, which provide space for the core of a mould to form the bridging connectors 123, although despite the gaps G, the thread portions 124 form a substantially continuous, single revolution helical thread.
Radially inwardly of the wall 121, are a pair of diametrically opposed and substantially identical snap portions 125. Each snap portion 125 includes engagement portions 126 which taper radially inwardly from the leading end 127 to the trailing end 128.
The snap portions 125 are connected to the internal surface of the wall 121 at hinges 129 (see
Upon application of the adaptor 120 to the inlet member 18, the coupling part 20 can be threadably connected to the adaptor 120 by threadably engaging the helical thread portions 124. Thereafter, the seal 50 and the coupling part 60 can be connected as described earlier.
Advantageously, the adaptor 120 can be removed from the inlet member 18 by manually gripping the levers 131 to resiliently flex the snap portions 125 to release them from engagement with the bearing surface 32. Thereafter, the adaptor 120 can be shifted axially off the inlet member 18.
The adaptor 120 is easy to manufacture and it contrasts with the adaptor 17, by the snap-on nature of its connection with the inlet member 18. It is considered that this aspect of the adaptor 120 might make it more attractive than the nut 17, although the nut 17 is considered to provide more secure connection. Accordingly, both forms of nut have advantages.
It is to be noted that the arrangements of
Likewise, with the coupling part 20 threadably connected to the adaptor 120, the levers 131 are concealed by the wall 22, so that access to those levers is not available. Accordingly, only after the coupling part 20 is unthreaded from the adaptor 120, can the levers 131 be accessed for removal of the adaptor 120. It is to be noted however, that the adaptor 120 will remain fixed to the inlet member 18 because of the snap fit engagement between those two parts, even though the coupling part 20 is removed from connection with the adaptor 120. In contrast, the adaptor 17 is not positively located on the inlet member 18 unless the coupling part 20 is threadably connected to the adaptor 17.
It should be noted that while the description of drawings has concentrated on a system of the kind shown in
Thus, with reference to
The invention described herein is susceptible to variations, modifications and/or additions other than those specifically described and it is to be understood that the invention includes all such variations, modifications and/or additions which fall within the spirit and scope of the above description.
Number | Date | Country | Kind |
---|---|---|---|
2006904512 | Aug 2006 | AU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/AU2007/001166 | 8/17/2007 | WO | 00 | 2/18/2009 |