This application is related to co-pending U.S. patent application Ser. No. 11/112,931, filed on Apr. 21, 2005 and Ser. No. 11,451,996, filed on Jun. 12, 2006.
The present invention is directed to a method and apparatus for sealingly coupling two containers, each holding a different material, to enable the mixture of the different materials.
Frequently, materials that are to be placed in use, must be compounded or mixed just prior to use because one or both materials are not stable, must be maintained in a sterile environment, is reactive with air and/or water, or the like. Such materials include pharmaceuticals, such as insulin, food products, such as chocolate flavored milk powder, chemical compositions, such as silver salt, hydride salts, and the like, hair dyes, epoxy cements, and the like. These are frequently referred to as two-component compositions. Frequently, one component must be maintained in the sealed state for stability, sterility, or the like. The other component frequently is stable and can be a solvent, such as water, or alcohol, propylene glycol, milk, and the like.
Traditionally, two-component compositions are furnished in two separate containers. One or both of the containers may be sealed to maintain its respective contents in a sealed environment. To mix the composition, each sealed container is broken open and its contents are mixed with the other component.
This has never been an ideal situation. One major drawback in this conventional approach consists of the probability of spills. If one of the materials is caustic, or flammable, or extremely reactive, a spill can lead to fire, or the like. If the two components must be mixed in stoichio metric amounts, the loss of a portion of one component can prevent successful mixing and preparation of the desired two-component composition. This is especially true for chemical compositions and a number of pharmaceutical compositions. The transfer of one component to another component also raises the problem of sterility. The air has literally millions of microbes per cubic centimeter. When one component is passed into the container for the other component, or a third container, microbes are carried along into the mixture, contaminating the composition. If either of the components are reactive or sensitive to oxygen, carbon dioxide, water vapor, or air, the mixing has an inherent disadvantage of exposing the component to such materials when blending the two components together.
There is a need for a sealed container which can be opened without exposure to the general environment to permit the mixing of two components together between the sealed container and the second container without exposing the component in the sealed container to the outside environment.
It is an object of the present invention to provide a sealed container having a coupler which threadingly receives a second container.
It is a further object of the present invention that when the sealed container is joined with the second container, the act of joining breaks the seal of the sealed container permitting communication between the first container and the second container.
It is still a further object of the present invention to provide a means of joining two containers together, one container being sealed, the joining causing the sealed container to be breached permitting communication between the joined first and second container so that the components of each container may be mixed.
It is an even further object of the present invention to provide a sealed container having a large seal which can be ruptured when the first container threadingly receives a second container to permit the easy flow of the component from the first container into the second container and the flow of the component of the second container into the first container to ensure thorough mixing.
The present invention provides structures and methods which overcome the deficiencies in the prior art.
The present invention is directed to a coupling assembly for connecting first and second containers comprising a hollow housing having a conduit with a wall, a first open end and a second open end, and a seal extending across the conduit separating the two open ends, the first end adapted to receive a first container, and the second end adapted to receive a second container; and a hollow bushing positioned in the conduit and adapted to be advanced toward the second end when the housing receives the first container in the first open end to breach the seal and open communication between the two open ends.
The second end of the coupling assembly is adapted to receive a second container and seal off the second container.
The conduit can be joined at its second open end with a second container and act as a closure for the second container sealing the second container.
The second container has a first opening in communication with the second open end of the conduit when the second container is joined to the coupling assembly. The second container can have a second opening. Preferably the second opening is closed off with a removal closure, such as a threaded cap.
The conduit, and the second open end have a common longitudinal axis. Preferably the seal is connected by its periphery to the conduit. The seal can be a membrane.
The seal can extend perpendicularly to the longitudinal axis of the conduit, or the seal can extend at an acute angle to the longitudinal axis of the conduit.
The hollow bushing has an open breaching end and an opposing open working end, the longitudinal axis of the bushing and the conduit have a common longitudinal axis. The open breaching end of the hollow bushing can be perpendicular to the longitudinal axis, or the open breaching end of the hollow bushing can be at an acute angle to the longitudinal axis. The open breaching end of the hollow bushing can have a cutting edge.
Preferably the seal is a membrane and is adapted to be torn around the greater portion of its periphery connected to the conduit when the seal is breached by the open breaching end of the bushing leaving at least a portion of its periphery connected to the wall of the conduit.
In another embodiment, the seal is adapted to be torn across its diameter and around the greater portion of two opposing peripheral sides connected to the conduit when the seal is breached into two segments leaving portions of its periphery connected to the wall of the conduit and to each segment.
In another embodiment, the seal is adapted to be torn into at least three pie-shaped segments extending from its center to its periphery and around a greater portion of the peripheral side of each pie-shaped segment connected to the wall of the conduit when the seal is breached leaving portions of its periphery connected to the wall of the conduit and to each segment.
Preferably the first open end of the conduit is threaded to receive the threaded nozzle of a first container. The open working end of the hollow bushing is adapted to form a sealing contact with the end of the threaded nozzle of the first container.
Preferably the second open end of the conduit is threaded to receive the threaded nozzle of a second container. The open breaching end of the bushing is adapted to form a seal with the interior wall of the conduit when the bushing is fully advanced into the conduit
Another embodiment of the present invention is directed to a storage container with a coupling assembly for connecting to a first container comprising a hollow housing having a storage plenum with a first opening, a conduit with a wall, a first open end, a second open end communicating with the first opening, and a seal extending across the conduit separating the first opening from the first open end, the first open end adapted to receive a first container; and a hollow bushing positioned in the conduit and adapted to be advanced toward the second open end when the hollow housing receives the first container to breach the seal and open communication between the storage plenum and the first open end. The plenum storage can have a second opening. Preferably the second opening can be closed off with a closure.
The conduit, and the first open end have a common longitudinal axis.
The hollow bushing has an open breaching end and an opposing open working end with open communication between the two open ends. The open breaching end of the hollow bushing can be perpendicular to the longitudinal axis, or the open breaching end of the hollow bushing can be at an acute angle to the longitudinal axis. The open breaching end of the hollow bushing can have a cutting edge to aid in breaching the seal.
The seal can extend perpendicularly to the longitudinal axis of the conduit, or the seal can extend at an acute angle to the longitudinal axis of the conduit. Normally if the open breaching end is at an acute angle to the longitudinal axis, the seal will extend across to the conduit perpendicularly to the longitudinal axis, or vice versa.
The seal is preferably connected by its periphery to the conduit. The seal can be a membrane.
Preferably the bushing, the conduit, the open breaching end, and the open working end of the bushing having a common longitudinal axis.
Preferably the seal is adapted to be torn around the greater portion of its periphery connected to the conduit when the seal is breached leaving at least a portion of its periphery connected to the conduit. Preferably the portion of the periphery of the seal connected to the conduit after the seal is breached is thicker than the portion of the periphery of the seal torn when the seal is breached.
The seal is adapted to be torn across its diameter and around the greater portion of two opposing peripheral sides connected to the conduit when the seal is breached into two segments leaving two portions of its periphery connected to the wall of the conduit and to each segment
The two portions of the periphery of the seal connected to the conduit after the seal is breached are thicker than the two opposing peripheral sides of the seal torn when the seal is breached.
The seal may also be adapted to be torn into at least three pie-shaped segments extending from its center to its periphery and around a greater portion of the peripheral side of each pie-shaped segment connected to the wall of the conduit when the seal is breached leaving portions of the seals' periphery connected to the conduit and to each segment.
The portion of the periphery of each pie-shaped segment of the seal connected to the conduit after the seal is breached is thicker than the greater portion of the peripheral side of each pie-shaped segment when the seal is breached.
Preferably the first open end of the conduit is threaded to receive the threaded nozzle of a first container.
The open working end of the hollow bushing is adapted to form a sealing contact with the end of the threaded nozzle of the first container, and the open breaching end of the bushing is adapted to form a seal with the interior wall of the conduit when the bushing is full advanced into the conduit to prevent leakage of the contents from the joined first and second containers with the coupling assembly.
A first preferred embodiment of a mixing unit is illustrated in
Though the first opening 24 and the external opening 28 are illustrated with threaded connections in the preferred embodiment, it is to be expressly understood that a variety of fastening and/or joining mechanisms may be employed to couple these openings 24, 28 to other structures.
In
When the seal 48 is breached, ruptured, torn, or the like, from its sealed connection to the interior of the coupling assembly via the peripheral seal wall 50, the seal remains tethered to the coupler 20 via hinge 52. Hinge 52 is designed with an undercut so that it rotates outwardly (shown upwardly in
In
Initially, the first end 60 of the bushing 22 is spaced away or back from the seal 48 as shown in
Preferably, the longitudinal axes of the threaded necks of the seal container and second container, the axial passage of the coupler, and the longitudinal axis at the bushing are coaxial. As the bushing 22 is advanced toward the seal 48, it contacts the portion of the seal 48 closest to the second end 38. The first end 60 of the bushing 22 engages the seal 48 and forces the portion of the seal 48 in contact with the bushing 22 toward the first end portion 36 of the coupler 20 tearing the peripheral seal wall 50 at the point of contact. As the bushing 22 is further advanced toward the first end portion 36 of the coupler 20, the peripheral seal wall 50 is progressively ruptured around the periphery of the seal 48 until all that remains securing the broken seal 48 to the coupler 20 is hinge 52. In the preferred embodiment, the bushing 22 comprises a flat or round distal edge that pushes the seal 48 to cause the rupture. Alternatively, the bushing 22 may be formed with a distal cutting edge to assist in cutting the seal 48 to cause the rupture.
Thus, the bushing 22 keeps the hinged, ruptured seal 48 roughly parallel to the longitudinal axis of the axial passage 39 to furnish a relatively large passageway with minimal hindrance between the previously sealed container 12, now unsealed, with the second container 14. The bushing 22 now serves as a bridging conduit between the two containers 12, 14 to permit the mixing of materials between the first container 12 and the second container 14. The breached seal 48 is shown in
In the first preferred embodiment of the present invention, when the sealed container 12 is supplied apart from the second container 14, the second end portion 38 of the coupler 20 is capped off with a plug, friction fit or threaded, or with a temporary seal such as a paper seal, foil seal, plastic seal, or the like, to prevent contamination of the axial passageway 39.
To retain the bushing 22 within the coupler 20 and to provide an additional labyrinth seal for the bushing 22, the bushing 22 includes the annular ring seal 58 about the circumference of the outer wall of the body 56. This ring seal 58 rides in the inner wall 44 of the first annular wall 40. In
When the mixing unit 100 is joined together, the sealed container 12 and the second container 14 are fluid communication with each other while the coupler 20 seals the connection between the containers 12, 14 to prevent leakage. The threaded neck 26 of the first container 12 at the juncture between the first annular wall 40 and the second annular wall 42 of the coupler 20 has a transverse sealing surface 80 at the bottom of the annular channel 46. Similarly, in
The mixing unit 100 must have a sealed relationship between the sealed container 12, the coupler 20, and the second container 14 to prevent leakage. In other words, while there is fluid communication between the interiors of the container 12, coupler 20 and the second container 14 once the seal 48 is breached and the connection of the mixing unit 100 is established, this fluid communication must be sealed from an exterior of the mixing unit 100 in order to prevent leakage. The end of the threaded neck 26 of the sealed container 12 when fully engaged with the coupler 20 is seated against the first transverse sealing surface 80 to form a seal between the coupler 20 and the sealed container 12. In
In summary, three waterproof seals are formed in the preferred embodiment of the unit 100 when the temporary seal 48 is breached and the unit 100 is completely assembled: a first seal between the first container 12 and the coupler 20, a second seal between the bushing 22 and the coupler 20, and a third seal between the second container 14 and the bushing. The combination of these three seals forms a watertight package that enables the user to mix the contents without any spillage.
A preferred method of mixing contents in two separate containers is also provided according to the invention. In particular, the first container 12 may contain a first material that is originally sealed by the breakable seal 48. As an example and not by way of limitation, the first material may comprise dry contents, such as protein powders, milk powders, vitamin powders, herbal supplements, and the like. The first material may also comprise liquid or “wet” contents. Similarly, the second container 14 may contain a second material that is either dry or wet. In one preferred method of mixing, the second container 14 may comprise a standard 500 mL water bottle where the second material comprises drinking water. It will be appreciated, therefore, that by screwing the second container 14 of water to the coupler 20, a watertight mixing unit 100 is formed with a single motion. Now, the user is free to shake the unit 100 and mix the respective contents without any spillage.
A second preferred embodiment of the mixing unit is illustrated in
The sealing of the second container 14 with the sealed container 112 is equally important in this embodiment. There must be an adequate seal between the second container 14 and the coupling portion 120. On the inside of the coupler portion 120 at the juncture with the neck portion 124, there is a sealing surface 184 similar to sealing surface 84 in the first embodiment described above. The sealing surface 82B of the bushing 22 engages sealing surface 184 to form a seal when the bushing 22 is fully advanced into the originally sealed container 112. The end of the threaded neck 70 of the second container 14 engages the sealing surface 82B of the bushing 22. When the bushing 22 is fully engaged and advanced within the originally sealed container 12, a seal is formed between the sealing surface 82A and the end of the threaded nozzle 70 of the second container.
Although the invention is described with its specific embodiments, the invention also includes obvious variance of the embodiments described.
Referring to
Although the sealed containers 12 is shown with an external opening 28, it is to be expressly understood that the sealed containers can be manufactured without such openings.
To aid in the rupture of the seal, a portion of the seal should first be ruptured, torn, or breached and then the peripheral seal wall is progressively torn circumferentially around the seal.
An alternate embodiment of a breakable clip seal 200 is illustrated in
An alternative embodiment of a clip seal 300 is illustrated in
In the first preferred embodiment 100 of the mixing unit described above and illustrated in
Many alterations and modifications may be made by those having ordinary skill in the art without departing from the spirit and scope of the invention. Therefore, it must be understood that the illustrated embodiments have been set forth only for the purposes of examples and that they should not be taken as limiting the invention as defined by the following claims. For example, notwithstanding the fact that the elements of a claim are set forth below in a certain combination, it must be expressly understood that the invention includes other combinations of fewer, more or different elements, which are disclosed in above even when not initially claimed in such combinations.
The words used in this specification to describe the invention and its various embodiments are to be understood not only in the sense of their commonly defined meanings, but to include by special definition in this specification the generic structure, material or acts of which they represent a single species.
The definitions of the words or elements of the following claims are, therefore, defined in this specification to not only include the combination of elements which are literally set forth. In this sense it is therefore contemplated that an equivalent substitution of two or more elements may be made for any one of the elements in the claims below or that a single element may be substituted for two or more elements in a claim. Although elements may be described above as acting in certain combinations and even initially claimed as such, it is to be expressly understood that one or more elements from a claimed combination can in some cases be excised from the combination and that the claimed combination may be directed to a subcombination or variation of a subcombination.
Insubstantial changes from the claimed subject matter as viewed by a person with ordinary skill in the art, now known or later devised, are expressly contemplated as being equivalently within the scope of the claims. Therefore, obvious substitutions now or later known to one with ordinary skill in the art are defined to be within the scope of the defined elements.
The claims are thus to be understood to include what is specifically illustrated and described above, what is conceptionally equivalent, what can be obviously substituted and also what incorporates the essential idea of the invention.
Number | Name | Date | Kind |
---|---|---|---|
2631521 | Atkins | Mar 1953 | A |
2784949 | Dennon | Mar 1957 | A |
2876113 | Barton | Mar 1959 | A |
3404811 | Cernel | Oct 1968 | A |
4465183 | Saito et al. | Aug 1984 | A |
4757916 | Goncalves | Jul 1988 | A |
4982875 | Pozzi et al. | Jan 1991 | A |
4986322 | Chibret et al. | Jan 1991 | A |
5000314 | Fuller | Mar 1991 | A |
5186323 | Pfleger | Feb 1993 | A |
5209565 | Goncalves | May 1993 | A |
5277303 | Goyet et al. | Jan 1994 | A |
5297696 | Bernstein et al. | Mar 1994 | A |
5353928 | Schumacher | Oct 1994 | A |
5366114 | Bernstein et al. | Nov 1994 | A |
5465835 | Schumacher et al. | Nov 1995 | A |
5525299 | Lowe | Jun 1996 | A |
5735320 | Tune et al. | Apr 1998 | A |
5743423 | Franco | Apr 1998 | A |
5782345 | Guasch et al. | Jul 1998 | A |
5927549 | Wood | Jul 1999 | A |
5941380 | Rothman | Aug 1999 | A |
5984141 | Gibler | Nov 1999 | A |
6045254 | Inbar et al. | Apr 2000 | A |
6089389 | Sharon et al. | Jul 2000 | A |
6237649 | Moisio et al. | May 2001 | B1 |
6244433 | Vieu | Jun 2001 | B1 |
6390342 | Mabee | May 2002 | B1 |
6485479 | Knierbein | Nov 2002 | B1 |
6517878 | Heczko | Feb 2003 | B2 |
6527109 | Schoo et al. | Mar 2003 | B2 |
6527110 | Moscovitz | Mar 2003 | B2 |
6533113 | Moscovitz | Mar 2003 | B2 |
6540070 | Conwell | Apr 2003 | B1 |
6655524 | De Laforcade | Dec 2003 | B2 |
6668875 | Kojima et al. | Dec 2003 | B2 |
6709424 | Knierbein | Mar 2004 | B1 |
6814229 | Seckler | Nov 2004 | B2 |
7066323 | Reisman | Jun 2006 | B1 |
20030017236 | Makita et al. | Jan 2003 | A1 |
20030153865 | Connell et al. | Aug 2003 | A1 |
Number | Date | Country |
---|---|---|
0 692 235 | Jan 1996 | EP |
Number | Date | Country | |
---|---|---|---|
20070289670 A1 | Dec 2007 | US |