The present invention relates to a coupling compensation module and light emitting diode driver thereof, and more particularly, to a coupling compensation module and light emitting diode driver thereof capable of compensating the voltage variation of each channel due to capacitive coupling, and thus drives LED pixels of the LED panel to display desirable brightness.
In the art of light emitting diode (LED) driving, there are passive matrix common cathode driving structures and passive matrix common anode driving structures. Please refer to
Similarly, as shown in
Under the passive matrix driving structures, when a specific channel of the light emitting diode driver 10 or 20 is turned on, if another channel of the light emitting diode driver 10 or 20 is simultaneously switched from turned on to turned off or switched from turned off to turned on, a channel voltage of the specific channel will fall or rise due to capacitive coupling.
For example, please refer to
Under such a situation, when a specific channel (e.g. the channel chX) is turned on, if another channel (e.g. one of the channels ch1-ch3) is simultaneously switched from turned on to turned off, a channel voltage of the specific channel will fall due to capacitive coupling. For example, when the channel ch1 is switched from turned on to turned off at a time Tl, the channel voltage of the channel ch1 (connected to anodes of LED capacitors in the channel ch1) drops and thus voltages of scan lines S2-SY (connected to cathodes of the LED capacitors in the channel ch1) drop due to voltage coupling of the LED capacitors in the channel ch1. Since the scan lines S2-SY are connected to cathodes of the LED capacitors in the channels ch2-chX, the channel voltages of the channels ch2-chX (connected to anodes of the LED capacitors in the channels ch2-chX) drop due to voltage coupling of the LED capacitors in the channels ch2-chX, such that constant current sources of the channels ch2-chX need to provide currents to charge the LED capacitors in the scan line S1 as well as the scan lines S2-SY (as illustrated in the channel chX). By the same token, voltage variations of the channels chX+1-ch2X and the scan lines SX1-SXY can be derived.
Therefore, when the channels ch1-chX are turned on simultaneously and turned off according to respective conduction intervals, since the channel chX has a longest conduction interval, the channel voltage of the channel chX drops when the channels ch1-chX-1 are switched from turned on to turned off, respectively. As a result, even if the channels chX, chX+1 are configured with the same conduction interval (i.e. pulse width) to show the same brightness, since the channel voltage of the channel chX drops X−1 times during driving and the channel voltage of the channel chX+1 does not drop during driving, the area displayed by the channel chX is darker than the area displayed by the channel chX+1 and thus there is unsmooth in between as shown in
Similarly, please refer to
Therefore, it is necessary to improve the conventional technology.
It is therefore an objective of the present invention to provide a coupling compensation module and light emitting diode driver thereof capable of compensating the voltage variation of each channel due to capacitive coupling, and thus drives LED pixels of the LED panel to display desirable brightness.
The present invention discloses a coupling compensation module, for compensating a channel voltage of a channel outputted by a constant current circuit of a light emitting diode (LED) driver. The coupling compensation module includes a detecting circuit, for detecting a voltage variation of the channel voltage, to generate a detection result; and a compensation circuit, for compensating the voltage variation of the channel voltage according to the detection result.
The present invention further discloses alight emitting diode (LED) driver, for driving an LED panel. The LED driver includes a constant current circuit, for outputting a channel voltage of a channel; and a coupling compensation module. The coupling compensation module includes a detecting circuit, for detecting a voltage variation of the channel voltage, to generation a detection result; and a compensation circuit, for compensating the voltage variation of the channel voltage according to the detection result.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Please refer to
In detail, when the channel CH is turned on, and another channel of the light emitting diode driver 60 is simultaneously switched from turned on to turned off or switched from turned off to turned on, the channel voltage Vch of the channel CH falls or rises due to capacitive coupling. Under such a situation, the detection result indicates that the channel voltage Vch falls or rises, and the compensation circuit 606 raises or reduces the channel voltage Vch. As a result, the present invention may compensate the voltage variation of the channel voltage Vch, and thus drive LED pixels of the LED panel to display desirable brightness.
Specifically, in the constant current circuit 600, a constant current transistor MPS receives a fixed voltage at its gate to provide a constant channel current (i.e. a constant current source). A switch SW1 is coupled between a supply voltage and a gate of a pulse width modulation transistor MPWM, and is controlled by an inverted signal of a pulse width modulation signal SPWM, to control the gate of the pulse width modulation transistor MPWM to be at a high level (e.g. the supply voltage) or turned off when the pulse width modulation signal SPWM is at a low level. Another switch SW2 is coupled between an output terminal of an amplifier and the gate of the pulse width modulation transistor MPWM, and is controlled by the pulse width modulation signal SPWM, to form a negative feedback loop to lock a source voltage of the pulse width modulation transistor MPWM at a reference voltage VREF when the pulse width modulation signal PWM is at a high level, such that the pulse width modulation transistor MPWM is turned on to output the constant channel current to drive a corresponding LED and generate the channel voltage Vch (i.e. the conduction voltage of the LED).
Besides, the detecting circuit 604 includes sample circuits 608, 610, comparators 612, 614 and an inverter INV1, and the compensation circuit 606 includes transistors MP, MN. In detail, the sample circuit 608 samples and holds the channel voltage Vch when the channel CH is turned on, to generate a sample voltage Vsu. The comparator 612 compares the channel voltage Vch with the sample voltage Vsu, to generate a first comparison result indicating whether the channel voltage Vch is less than the sample voltage Vsu over a first threshold voltage difference ΔVth. The inverter INV1 receives the first comparison result to generate a first inverted signal as an undershoot detection DU of the detection result. When the undershoot detection DU indicates that the channel voltage Vch is less than the sample voltage Vsu over the threshold voltage difference ΔVth, the transistor MP provides currents to the channel CH to raise the channel voltage Vch. As a result, the present invention raises the channel voltage Vch when the channel CH is turned on and the channel voltage Vch falls more than the threshold voltage difference ΔVth (which avoids mistaken operation when there is no coupling from other channels).
On the other hand, the sample circuit 610 samples and holds the channel voltage Vch when the channel CH is turned on, to generate a sample voltage Vso. The comparator 612 compares the channel voltage Vch with the sample voltage Vso, to generate a second comparison result as an overshoot detection DO of the detection result indicating whether the channel voltage Vch is greater than the second sample voltage Vso over a second threshold voltage difference (e.g. the second threshold voltage difference is the same with the first threshold voltage difference ΔVth in this embodiment, but may be different from the first threshold voltage difference ΔVth in other embodiments). When the overshoot detection DO indicates that the channel voltage Vch is greater than the second sample voltage Vso over the threshold voltage difference ΔVth, the transistor MN drains currents from the channel CH to reduce the channel voltage Vch. As a result, the present invention reduces the channel voltage Vch when the channel CH is turned on and the channel voltage Vch raises more than the threshold voltage difference ΔVth.
In detail, please refer to
On the other hand, the sample circuit 610 includes inverters INV3, INV4, an OR gate OR2, a switch SW4 and a capacitor C2. The inverter INV3 receives the decouple enable signal DES to generate a third inverted signal. The inverter INV4 receives an undershoot detection DU to generate a fourth inverted signal. The OR gate OR2 receives the third inverted signal and the fourth inverted signal, to generate a second operational result. The switch SW4 is coupled between the channel CH and a negative input terminal of the comparator 614 and includes a control terminal for receiving the second operational result. The capacitor C2 is coupled between a ground and the negative input terminal of the comparator 614, and provides the sample voltage Vso.
Besides, the comparator 614 or 612 may be implemented by the circuit shown in the dotted box, and include a mismatched input pair, wherein a channel width of a transistor of the positive input terminal is less than a channel width of a transistor of the negative input terminal (0.9× vs. 1×). Thus, the comparator 614 or 612 outputs a comparison result with a high voltage level when a voltage of the positive input terminal is greater than a voltage of the negative input terminal over the threshold voltage difference ΔVth. Moreover, the transistors MP, MN have adjustable driving capabilities, and provide appropriate driving capabilities for different LEDs with different characteristics.
Under such a configuration, please refer to
On the other hand, please refer to
Please refer to
Noticeably, the above embodiment compensates the voltage variation of each channel due to capacitive coupling, and thus drives LED pixels of the LED panel to display desirable brightness. Those skilled in the art may make modifications or alterations accordingly. For example, each channel of the LED display panel 30 shown in
Moreover, in the above embodiment, the coupling compensation module 602 detects the voltage variation of the channel voltage Vch in the passive matrix common cathode driving structure, wherein the channel voltage Vch is an anode voltage of an anode of an LED. In other embodiments, the coupling compensation module 602 may also detect a voltage variation of a channel voltage in the passive matrix common anode driving structure as shown in
To sum up, the present invention compensates the voltage variation of each channel due to capacitive coupling, and thus drives LED pixels of the LED panel to display desirable brightness.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
20100123411 | Godbole | May 2010 | A1 |
20120268015 | Sun | Oct 2012 | A1 |
20140333217 | Lee | Nov 2014 | A1 |