This application is a U.S. National Stage Application of International Application No. PCT/EP2013/059094 filed May 2, 2013, which designates the United States of America, and claims priority to EP Application No. 12167095.4 filed May 8, 2012, the contents of which are hereby incorporated by reference in their entirety.
The invention relates to a coupling device for mechanically and hydraulically coupling a fuel injector to a fuel rail of a combustion engine. Furthermore, the invention relates to a fuel injector assembly with a fuel injector and a coupling device.
Coupling devices for mechanically and hydraulically coupling a fuel injector to a fuel rail are in widespread use, in particular for internal combustion engines. Fuel can be supplied from a fuel tank to an internal combustion engine by the fuel rail and the fuel injector.
In order to keep pressure fluctuations during the operation of the internal combustion engine at a very low level, internal combustion engines are supplied with a fuel accumulator to which the fuel injectors are connected and which has a relatively large volume. Such a fuel accumulator is often referred to as a common rail.
Known fuel rails comprise a hollow body with recesses in form of fuel injector cups, wherein the fuel injectors are arranged. The fuel injectors can be coupled to fuel injector cups in different manners. The coupling of the fuel injectors to the fuel injector cups that supply the fuel needs to be very precise to get a correct injection angle.
One embodiment provides a coupling device for mechanically and hydraulically coupling a fuel injector to a fuel rail of a combustion engine, the coupling device comprising a fuel injector cup having a central longitudinal axis and extending from an inlet side for hydraulically coupling to the fuel rail and an outlet side for engaging a fuel inlet portion of the fuel injector, and a collar element being fixedly coupled to the fuel injector cup, wherein the collar element comprises at least one leg portion having a bridge section and at least one branch section, wherein the bridge section extends radially away from the fuel injector cup, wherein the at least one branch section is arranged subsequent to the bridge section in a radial direction away from the fuel injector cup, and wherein the at least one branch section projects beyond the bridge section in a tangential direction which is perpendicular to the radial direction and perpendicular to the longitudinal axis and in a direction along the longitudinal axis which is directed from the inlet side to the outlet side.
In a further embodiment, the at least one branch section extends beyond the fuel injector cup in the direction along the longitudinal axis which is directed from the inlet side to the outlet side.
In a further embodiment, the collar element is in one piece with the fuel injector cup.
In a further embodiment, the leg portion is L-shaped in top view along the longitudinal axis, each of the bridge section and the branch section representing one side of the L-shape.
In a further embodiment, the at least one leg portion has two branch sections projecting beyond the bridge section at opposite sides in the tangential direction so that the leg portion is T-shaped in top view along the longitudinal axis.
In a further embodiment, the collar element comprises two leg portions, each having at least one branch section which projects beyond the respective bridge section in a tangential direction which is perpendicular to the respective radial direction and perpendicular to the longitudinal axis and in a direction along the longitudinal axis which is directed from the inlet side to the outlet side, the two leg portions being arranged axially symmetric with respect to the central longitudinal axis.
In a further embodiment, two branch section represent a bracket for enclosing a portion of the fuel injector or of a spring element of the coupling device.
Another embodiment provides a fuel injector assembly with a fuel injector and a coupling device as disclosed above, wherein the coupling device is mechanically coupled to the fuel injector in such fashion that a rotational movement of the fuel injector relative to the fuel injector cup with respect to the direction of the central longitudinal axis is blocked by means of the at least one leg portion.
In a further embodiment, the at least one branch section of the collar element is in engagement with a contact surface of the fuel injector in a manner that a rotational movement of the fuel injector relative to the fuel injector cup with respect to the direction of the central longitudinal axis is blocked.
In a further embodiment, the fuel injector assembly comprises a spring element being arranged axially between the fuel injector and the fuel injector cup, and the spring element is coupled to the fuel injector in a manner that a rotational movement of the spring element relative to the fuel injector with respect to the direction of the central longitudinal axis is blocked, and the at least one branch section is in engagement with a contact surface of the spring element in a manner that a rotational movement of the fuel injector cup relative to the spring element with respect to the direction of the central longitudinal axis is blocked.
In a further embodiment, a clip element is in engagement with the fuel injector cup and with the fuel injector in a manner that the fuel injector is retained in the fuel injector cup in direction of the central longitudinal axis.
Example embodiments of the invention are explained below with reference to the drawings, in which:
Embodiments of the invention provide a coupling device for mechanically and hydraulically coupling a fuel injector to a fuel rail which is simply to be manufactured and which facilitates a reliable and precise coupling between the fuel injector and the fuel injector cup.
Some embodiments provide a coupling device for mechanically and hydraulically coupling a fuel injector to a fuel rail of a combustion engine. The coupling device comprises a fuel injector cup having a central longitudinal axis and extending from an inlet side for hydraulically coupling to the fuel rail to an outlet side for engaging a fuel inlet portion of the fuel injector. The coupling device comprises a collar element which is fixedly coupled to the fuel injector cup and is in particular extending radially away from the fuel injector cup. The collar element comprises at least one leg portion which is in particular designed to be coupled to the fuel injector in a manner that a rotational movement of the fuel injector relative to the fuel injector cup with respect to the direction of the central longitudinal axis is blocked, i.e. in particular prevented.
This has the advantage that a fast and secure coupling of the fuel injector in the fuel injector cup is possible. Furthermore, a defined positioning of the fuel injector relative to the fuel injector cup in circumferential direction is possible. Additionally, a low cost solution for the coupling device may be obtained.
The leg portion—or each or the leg portions, respectively—has a bridge section and at least one branch section. The bridge section extends radially away from the fuel injector cup. The at least one branch section is arranged subsequent to the bridge section in a radial direction away from the fuel injector cup.
The at least one branch section may project beyond the bridge section in a tangential direction which is perpendicular to the radial direction and perpendicular to the longitudinal axis. In this way, a particular efficient leverage may be achievable, so that the rotational locking between the fuel injector cup and the fuel injector by be particularly stable and/or precise.
Alternatively or additionally, the at least one branch section may project beyond the bridge section, and preferably beyond the fuel injector cup, in a direction along the longitudinal axis which is directed from the inlet side to the outlet side. In this way, the rotational locking function of the collar element may, with advantage, be usable already during mounting of the fuel injector cup with the fuel injector. In particular, the leg portion may couple to the fuel injector for blocking relative rotational movement via the branch portion when the fuel injector is inserted into the fuel injector cup before the fuel injector has reached its final mounting position within the fuel injector cup.
In one embodiment the collar element is in one piece with the fuel injector cup. This has the advantage that a simple construction of the coupling device is possible which allows carrying out a fast and secure coupling of the fuel injector in the fuel injector cup. Furthermore, the fuel injector cup with the collar element may be manufactured in a simple process, in particular a deep drawn process.
In a further embodiment the at least one leg portion is L-shaped, in particular in top view along the longitudinal axis. This has the advantage that the at least one leg portion may be manufactured in a simple manner. Each of the bridge section and the branch section may represent one side of the L-shape, in other words one leg of the “L”.
In a further embodiment the at least one leg portion is T-shaped, in particular in top view along the longitudinal axis. This has the advantage that the collar element may be coupled to the fuel injector in a very secure manner. Specifically, the T-shaped leg portion may have two branch sections which project beyond the bridge section in the tangential direction at opposite sides of the bridge section to form the T-shape together with the bridge section.
In a further embodiment the collar element comprises two leg portions which are in particular arranged axially symmetric with respect to the central longitudinal axis. This enables a very secure coupling of the fuel injector to the fuel injector cup in two areas which are located opposite to each other relative to the central longitudinal axis.
In embodiments of the coupling device in which the collar element has at least two branch section—for example in embodiments having a leg portion comprising two branch sections which project beyond the bridge section in the tangential direction at opposite sides of the bridge section to form a T-shape together with the bridge section in top view along the longitudinal axis or in embodiments in which the collar element has two leg portions, each having at least one branch section which projects beyond the respective bridge section in a tangential direction which is perpendicular to the respective radial direction and perpendicular to the longitudinal axis and in a direction along the longitudinal axis which is directed from the inlet side to the outlet side—the two branch sections may be arranged to represent a bracket for enclosing a portion of the fuel injector or of a spring element of the coupling device for blocking rotational movement of the fuel injector cup in two opposite directions with respect to the fuel injector or the spring element, respectively.
Other embodiments provide a fuel injector assembly with a fuel injector and a coupling device according to the first aspect. Expediently, the coupling device (40) is mechanically coupled to the fuel injector (20) in such fashion that a rotational movement of the fuel injector (20) relative to the fuel injector cup (44) with respect to the direction of the central longitudinal axis (L) is blocked by means of the at least one leg portion (52, 54). The longitudinal axis of the fuel injector cup preferably also represents a longitudinal axis of the fuel injector.
In one embodiment, the at least one leg portion—in particular the at least one branch section thereof—is in engagement with a contact surface of the fuel injector in a manner that a rotational movement of the fuel injector relative to the fuel injector cup with respect to the direction of the central longitudinal axis is blocked or prevented. Particularly, the at least one leg portion is in form-fit engagement with the contact surface of the fuel injector. This has the advantage that the defined positioning of the fuel injector relative to the fuel injector cup in circumferential direction may be carried out in a simple manner.
In a further embodiment, the fuel injector assembly comprises a coupling device with a spring element. The spring element is arranged axially between the fuel injector and the fuel injector cup, and the spring element is coupled to the fuel injector in a manner that a rotational movement of the spring element relative to the fuel injector with respect to the direction of the central longitudinal axis is blocked or prevented, wherein the at least one leg portion—in particular the at least one branch section thereof—is in engagement with a contact surface of the spring element in a manner that a rotational movement of the fuel injector relative to the fuel injector cup with respect to the direction of the central longitudinal axis is prevented by means of mechanical interaction via the spring element. Particularly, the at least one leg portion is in form-fit engagement with the contact surface of the spring element to block rotational movement of the fuel injector cup with respect to the spring element. This has the advantage that the spring element may be used to carry out the defined positioning of the fuel injector relative to the fuel injector cup in circumferential direction in a simple manner.
In a further embodiment a clip element is in engagement with the fuel injector cup and with the fuel injector in a manner that the fuel injector is retained in the fuel injector cup in direction of the central longitudinal axis. This has the advantage that a movement of the fuel injector relative to the fuel injector cup in direction of the central longitudinal axis may be prevented. Furthermore, the orientation of the fuel injector relative to the fuel injector cup in circumferential direction may be secured in a simple manner.
A fuel feed device 10 is assigned to an internal combustion engine 22 (
Furthermore, the fuel injector 20 comprises a valve needle 30 taken in a cavity 32 of the fuel injector body 24. The cavity 32 is axially led through the fuel injector body 24. On a free end of the fuel injector 20 an injection nozzle 34 is formed which is closed or opened by an axial movement of the valve needle 30. In a closing position a fuel flow through the fuel outlet portion 28 and the injection nozzle 34 is prevented. In an opening position fuel can flow through the fuel outlet portion 28 and the injection nozzle 34 into the combustion chamber of the internal combustion engine 22.
The coupling device 40 comprises a fuel injector cup 44. The fuel injector cup 44 is mechanically and hydraulically coupled to the fuel rail 18 at an inlet side 441. The fuel injector cup 44 comprises an inner surface 46, the inner surface 46 in particular defining a recess of the fuel injector cup 44. The fuel injector cup 44 is in engagement with the fuel inlet portion 26 of the fuel injector 20 at an outlet side 442 of the fuel injector cup 44. In particular, the fuel injector 20 is inserted into the recess of the fuel injector cup 44 from the outlet side 442. The fuel inlet portion 26 of the fuel injector 20 comprises a sealing ring 48. In an assembled state the inner surface 46 of the fuel injector cup 44 is in sealing contact with the sealing ring 48 (
The coupling device 40 comprises a collar element 50. The collar element 50 is fixedly coupled to the fuel injector cup 44. The collar element 50 is extending radially away from the fuel injector cup 44. In The collar element 50 is in one piece with the fuel injector cup 44. In further embodiments of the coupling device 40 the collar element 50 may be designed as a separate part from the fuel injector cup 44.
The collar element 50 comprises two leg portions 52. In further embodiments the collar element 50 may comprise one leg portion 52, 54 or more than two leg portions 52, 54.
Each of the leg portions has a bridge section 55A and one branch section 55B. The bridge sections 55A and the branch sections 55B are indicated with dashed lines in
The bridge section 55A extends radially away from the fuel injector cup 44 in each case. The branch section 55B follows the bridge section 55A in a radial direction R away from the fuel injector cup 44. In a tangential direction T, the branch section 55B in each case projects beyond the bridge portion 55A. The tangential direction T is a direction which is perpendicular to the radial direction R and to the longitudinal axis (see, for example,
The leg portions 52 are L-shaped in top view along the longitudinal axis L. One side of the L-shape is parallel to the radial direction R and represented by the respective bridge portion 55A. One side of the L-shape is parallel to the tangential direction T and represented by the respective branch portion 55B.
The leg portions 52 are arranged axially symmetric relative to the central longitudinal axis L. The two branch sections 55B are arranged to constitute a bracket. This enables a very good coupling between the coupling device 40 and the fuel injector 20.
The fuel injector assembly 100 has a spring element 56. The spring element 56 is arranged axially between the fuel injector 20 and the fuel injector cup 44. The spring element 56 may limit a movement of the fuel injector 20 relative to the fuel injector cup 44 in direction of the central longitudinal axis L, specifically by means of mechanical interaction between the fuel injector 20 and the fuel injector cup 44 via the spring element 56. The fuel injector body 24 of the fuel injector 20 has a projection 58. The spring element 56 is in form-fit engagement with the projection 58 so that a rotational movement of the spring element 56 relative to the fuel injector 20 with respect to the central longitudinal axis L is prevented.
The leg portions 52 of the collar element 50 are in form-fit engagement with contact surfaces 60 of the spring element 56, so that the bracket formed by the branch sections 55B embraces the spring element 56 (
By this a rotation of the fuel injector 20 around the longitudinal axis L may be avoided. This enables an indexing of the fuel injector 20.
In the present embodiment of the fuel injector assembly 100, the fuel injector assembly 100 comprises a clip element 64, as shown in
In contrast to the first embodiment, the collar element 50 only comprises one leg portion 54 in the present embodiment. The leg portion 54 it T-shaped in top view along the longitudinal axis L. The T-shape is constituted by the bridge section 55A which extends in a radially outward direction R and by two branch sections 55B which follow the bridge section 55A in this direction and which—slightly—project beyond the bridge section 55A in tangential direction T, i.e. in a direction perpendicular to the radially outward direction R and to the longitudinal axis L, on opposite sides of the bridge portion 55A. The bridge section 55A represents the “vertical” line of the T-shape, the “cross-beam” of the “T” is formed by means of the branch sections 55B. In an alternative embodiment, the branch sections 55B do not project beyond the bridge section 55A in the tangential direction T. The branch sections 55B have a main extension direction along the longitudinal axis L and are spaced apart from each other in a side view of the longitudinal axis along the radial direction R to form a bracket. The leg portion 54 is in form-fit engagement with contact surfaces 62 of the fuel injector 20 by means of the bracket embracing a part of an injector housing, for example an electrical connection port. By this a direct contact between the leg portion 54 and the fuel injector body 24 is enabled, and a rotational movement of the fuel injector 20 relative to the fuel injector cup 44 around the central longitudinal axis L may be avoided. The collar element 50 with the T-shaped leg portions 54 may prevent a rotation of the fuel injector 20 relative to the fuel injector cup 44 in a very secure manner.
The collar element 50 of the present embodiment further comprises tabs extending in opposite radial directions. The tabs are provided for supporting a spring element 56 of the fuel injector assembly 100. The spring element 56 is, for example, provided for forcing the fuel injector 20 in contact with a cylinder head of the internal combustion engine 22.
The coupling device 40 according to the present embodiment has two legs 54, protruding radially outward in axially symmetric fashion relative to the central longitudinal axis L. Each leg 54 has a bridge section 55A, the bridge sections 55A extending away from the fuel injector cup 44 in a radial direction R. The coupling device may have mirror symmetry in a plane comprising the longitudinal axis L and being perpendicular to the radial direction R.
Each leg 54 has two branch sections 55B which laterally project beyond the respective bridge section 55A on opposite sides of the bridge section 55A, i.e. they project beyond the bridge section 55A in a tangential direction T being perpendicular to the radial direction R and to the longitudinal axis L. In this way, a T-shape of the respective leg 54 is constituted by the bridge section 55A and the branch sections 55B in top view along the longitudinal axis L.
In the course away from the bridge section 55A along the tangential direction T, the branch sections 55B are curved in a direction away from the inlet side 441 so that they project beyond the bridge section 55A and the fuel injector cup 44 in a direction along the longitudinal axis L which is directed from the inlet side 441 to the outlet side 442. In a side view along the radial direction R, the branch sections 55B together have a U-shape which opens towards the outlet side 442. In this way, a particularly secure rotational locking of the fuel injector cup 44 is achievable.
The proposed fuel injector assembly 100 has the advantage that the collar element 50 may operate as an indexing feature of the fuel injector cup 44. Furthermore, the collar element 50 may be manufactured together with the fuel injector cup 44 in a deep drawn process without any additional component. This enables a very simple process handling and an economical benefit. Furthermore, a packaging benefit may be obtained by carrying out the indexing on side faces of the fuel injector 20.
The invention is not limited to specific embodiments by the description on the basis of said exemplary embodiments but comprises any combination of elements of different embodiments. Moreover, the invention comprises any combination of claims and any combination of features disclosed by the claims.
Number | Date | Country | Kind |
---|---|---|---|
12167095 | May 2012 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/059094 | 5/2/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/167447 | 11/14/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5005878 | Smith | Apr 1991 | A |
5038738 | Hafner | Aug 1991 | A |
5520151 | Gras | May 1996 | A |
6382187 | Scollard | May 2002 | B1 |
6457456 | Scollard | Oct 2002 | B1 |
6481420 | Panasuk | Nov 2002 | B1 |
6668803 | McClean | Dec 2003 | B1 |
6874478 | Minoura | Apr 2005 | B2 |
7360524 | Zdroik | Apr 2008 | B2 |
7398767 | Kondo | Jul 2008 | B2 |
7415970 | Zdroik | Aug 2008 | B2 |
7438055 | Xu | Oct 2008 | B1 |
7467618 | Zdroik | Dec 2008 | B2 |
7556022 | Doherty | Jul 2009 | B1 |
7942453 | Grandi | May 2011 | B2 |
20040237939 | Kondo et al. | Dec 2004 | A1 |
20060137659 | Zdroik et al. | Jun 2006 | A1 |
20070175450 | Eckbauer | Aug 2007 | A1 |
20080105236 | Scheffel | May 2008 | A1 |
20080302336 | Fuerst | Dec 2008 | A1 |
20090056674 | Furst | Mar 2009 | A1 |
20090173317 | Doherty | Jul 2009 | A1 |
20100012093 | Pepperine | Jan 2010 | A1 |
20100218743 | Marc | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
1793122 | Jun 2007 | EP |
1892408 | Feb 2008 | EP |
2324337 | Oct 1998 | GB |
WO 2011144411 | Nov 2011 | WO |
2013167447 | Nov 2013 | WO |
Entry |
---|
European Search Report, Application No. 12167095.4, 5 pages, dated Oct. 26, 2012. |
International Search Report and Written Opinion, Application No. PCT/EP2013/059094, 9 pages, dated Nov. 5, 2014. |
European Office Action, Application No. 13720374.1, 3 pages, dated Jul. 21, 2017. |
Number | Date | Country | |
---|---|---|---|
20150128908 A1 | May 2015 | US |