Coupling device for light guides

Information

  • Patent Grant
  • 11828994
  • Patent Number
    11,828,994
  • Date Filed
    Thursday, February 3, 2022
    2 years ago
  • Date Issued
    Tuesday, November 28, 2023
    5 months ago
  • Inventors
    • Möhlinger; Eugen
  • Original Assignees
  • Examiners
    • Bello; Agustin
    Agents
    • Volpe Koenig
Abstract
A coupling device (9) for light guides (8), including a light entrance (11) and a light-guide space (12) aligned at the light entrance (11), and including a clamping device with a first roller pair (20) with two opposing rollers (21; 32), between which an inserted light guide (8) can be clamped. The coupling device (9) has a second roller pair (26) with two opposing rollers (21), and the second roller pair (26) is arranged closer to the light entrance (11) than the first roller pair (20).
Description
INCORPORATION BY REFERENCE

The following documents are incorporated herein by reference as if fully set forth: German Patent Application No. 10 2021 102 887.6, filed Feb. 8, 2021.


TECHNICAL FIELD

The invention relates to a coupling device for light guides, comprising a light entrance and a light-guide space aligned at the light entrance, and comprising a clamping device with a first roller pair with two opposing rollers, between which an inserted light guide can be clamped.


BACKGROUND

By way of example, such coupling devices are used in endoscopes to feed light from a light source into a light guide that leads to an endoscope.


In such coupling devices there is the risk of the light guide possibly slipping at a free end at the light entrance as a result of a lateral load on the light guide, and so the optimal position for the entry of light into the light guide is no longer maintained. As a result, the full luminous power is no longer available and light can reach into the light-guide space next to the light guide. This free light may emerge from the coupling device and may represent a risk to persons, particularly in the case of laser light.


SUMMARY

The invention considers the improvement of a coupling device of the aforementioned type.


According to the invention, this object is achieved by a coupling device having one or more of the features disclosed herein.


Accordingly, the coupling device according to the invention is characterized in that the coupling device has a second roller pair with two opposing rollers for clamping the light guide, the second roller pair being arranged closer to the light entrance than the first roller pair.


By way of the second roller pair the light guide is clamped a second time at a distance from the first instance of clamping. This mounting at two points of the light guide prevents a lateral load from bringing about a tilt or slip of the light guide in relation to the light entrance. Consequently, accurate positioning of the light guide is provided at all times.


The second roller pair can be arranged parallel to the first roller pair. In a preferred embodiment, however, the spindles of the rollers of the first roller pair and the spindles of the rollers of the second roller pair form an angle.


It is particularly preferable for the angle to be 90°. Tilting in all directions is prevented to the same extent in this way.


In an embodiment, the rollers of a roller pair have a rotationally symmetric form. In this way, a light guide can be introduced more easily into the coupling device.


In an embodiment, the rollers each have a guide, in particular a guide groove, for a light guide. The guide brings about additional fixation and centration in a plane perpendicular to the axis of rotation of the roller.


In an embodiment, the rollers of at least one roller pair, in particular of the second roller pair, are mounted eccentrically. Consequently, turning the rollers can cause the surface of the rollers to be moved closer to, or further away from, the light guide. This can bring about a fixation and a centration of the light guide.


In an embodiment, the rollers of at least one of the two roller pairs have a self-locking design. This can prevent independent release of the fixation.


Self-locking can be achieved, in particular, by virtue of the slope of an eccentric bearing being less than 7°. In this case, the slope can be measured as a dependence on the radius to a circumferential point. Accordingly, the slope is greater the further the rotational mount is away from the geometric axis of symmetry of the roller.


In an embodiment, the rollers of at least one roller pair, in particular of the first roller pair, are mounted centrically and are movable toward one another.


In particular, it is advantageous for the first roller pair to be mounted centrically and the second roller pair to be mounted eccentrically, or for both roller pairs to be mounted eccentrically.


In an embodiment, the coupling device has a guide, in particular a slotted guide, which moves the rollers of a roller pair away from the light guide. As a result, a clamped light guide can be released again.


In an embodiment, the guide has a holding position and is impinged by a spring which moves the guide from the holding position to an open position.


In an embodiment, the guide has an axially movable design, the axial movement of the guide bringing about a radial movement of the rollers. As a result, a compact and space-saving structure can be achieved.


In an embodiment, the coupling device has a rotary actuator and a converter, a rotational movement of the rotary actuator being converted into an axial movement of the slotted guide by the converter. A simple actuation of the slotted guide can be obtained in this way, and so fixation and release of a light guide is made easy. The rotary actuator may have a latching holding position, and so a release of a light guide during the use is prevented.


In an embodiment, the rollers of at least one of the two roller pairs have coupling of their rotational movement. This means the rotation of one roller is transferred to the other roller of the roller pair, preferably with an inverted sense of rotation. This can bring about uniform movement of the two rollers and ensure that these rollers have the same position in relation to the light guide. Particularly in the case of eccentrically mounted rollers, this can bring about improved centration of the light guide since the radius at the point of contact of the light guide to both rollers is the same.


In an embodiment, the rollers of at least one of the two roller pairs are braced against one another by a spring. This can bring about improved centration of the light guide. Additionally, the spring can bring about a holding force which, especially together with self-locking rollers, is capable of bringing about a fixation of the light guide.


Especially in the case of an eccentric mount, the rollers may have a flattening on the circumference, in particular on the side facing away from the light guide. This can simplify the structure and the assembly of the coupling device.


In a development of the invention, the coupling device has a deactivation device which prevents an entry of light into the light-guide space when no light guide has been inserted. By way of example, this can prevent persons from being blinded. This may prevent possible injuries to the eyes in the case of powerful light sources, in particular lasers.


In an embodiment, the deactivation device is designed to electrically deactivate a light source. This is the most reliable way of preventing blinding. For instance, the deactivation device may have a switch in this embodiment, the switch being actuated by an inserted light guide.


In an embodiment, the light guiding path is interruptible, the light entrance being capable of being sealed in light-tight fashion in particular. By way of example, this may be implemented by a stop or a movable cover which seals the light entrance of the coupling device and which is opened by a light guide.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is explained in more detail below on the basis of exemplary embodiments, with reference being made to the attached drawings, in which:



FIG. 1: shows a schematic block representation of an endoscope arrangement,



FIG. 2: shows a partial section of a coupling device with two eccentrically mounted roller pairs,



FIG. 3: shows a front view of the coupling device of FIG. 2,



FIG. 4: shows a longitudinal section of the coupling device of FIG. 2 along the line A-A in FIG. 3,



FIG. 5: shows a longitudinal section of the coupling device of FIG. 2 along the line B-B in FIG. 3,



FIG. 6: shows a partial section of a coupling device with one eccentrically mounted roller pair and one centrically and radially movably mounted roller pair,



FIG. 7: shows a front view of the coupling device of FIG. 6,



FIG. 8: shows a longitudinal section of the coupling device of FIG. 6 along the line A-A in FIG. 7, and



FIG. 9: shows a longitudinal section of the coupling device of FIG. 6 along the line B-B in FIG. 7.





DETAILED DESCRIPTION


FIG. 1 schematically shows an endoscope arrangement, denoted by 1 overall, with an endoscope 2 and a light source 3.


The endoscope 2 has a rigid endoscope shaft 4 and an endoscope head 5 with an eyepiece 6 and a light-guide input 7 for feeding light. The light-guide input 7 is connected to the light source 3 by way of a light guide 8. A coupling device 9 is arranged at the light source 3, the light guide 8 being coupled to the light source 3 thereby. As a result of the coupling it is possible to use the light source 3 for light guides 8 with different diameters. Naturally, the endoscope arrangement 1 shown here only serves to elucidate the invention which cannot be construed as restricted to this example in any way. By way of example, the endoscope 2 may also have a flexible shaft and/or a video head without eyepiece, or a video shaft.



FIGS. 2 to 5 show a coupling device 9 according to a first embodiment. The coupling device 9 has a flange plate 10 by means of which said coupling device 9 can be fastened to a light source 3, for instance by screwing. A light entrance 11, through which light from the light source 3 can enter a light-guide space 12 of the coupling device 9, is arranged on the flange plate 10.


The coupling device 9 has a deactivation device 19, which is designed to electrically deactivate a light source 3. To this end, a lever 13 is arranged at the light entrance 11. The lever 13 has a pivot bearing 14 which is arranged close to the light entrance 11. As a result, a short lever arm 18, on which a light guide 8 is able to act, is formed at the light entrance 11. A switch 16 is arranged at the end of the longer lever arm 15. The lever 13 is spring loaded, for example by way of a spring 17 within the switch 16, as a result of which a rest state is defined. An inserted light guide 8 presses against the short lever arm 18. As a result, the long lever arm 15 performs a movement which actuates the switch 16. The switch 16 is electrically connected to the light source 3. The light source is configured such that the light source 3 is activated when the switch 16 is actuated, that is to say when the light guide 8 is inserted, and is deactivated without a light guide 8. The switching behavior may be defined in the light source 3, for example in a control unit. A conventional microswitch can be used as switch 16. A further advantage consists in the fact that the switching position need not be adjusted as it is predetermined by way of the geometry.


The coupling device 9 further comprises a first roller pair 20 with in each case two rollers 21. The rollers 21 of the roller pair 20 are arranged opposite one another such that a light guide 8 is located between the rollers 21.


Each roller 21 is eccentrically mounted on a respective spindle 23. Additionally, the rollers 21 each have catches 33 on the outside, said catches being connected to the spindle 23 of the rollers 21 by way of cam plates 34. Each catch 33 is guided in a respective slot 27 of a slot guide 24 and is rotatably mounted. In this case, the slots 27 are each arranged in a radial direction with respect to a light guide 8 such that the rollers 21 can be moved toward a light guide 8, and away therefrom. The catches 33 of the opposing rollers 21 are interconnected on both sides by way of a respective tension spring 22. In this way, the rollers 21 are radially displaceable and rotatable within the slot guide 24. The rollers 21 are pressed together and preloaded by way of the spring 22. This means that an inserted light guide 8 is centered as a result.


As a result of the eccentric mount of the catches 33, a rotation of a roller 21 brings about an axial movement of the slot guide 24. As a result, the catch 33 of the respective other roller 21 is forced to move axially along and brings about a rotation movement on the associated roller 21 as a result thereof.


By way of this coupling by way of the slot guide 24, a rotation of one roller 21 is necessarily transferred to the respective other roller 21 of the roller pair 20. This ensures that the position of the eccentric rollers 21 of the roller pair 20 is respectively the same in relation to a light guide 8, and hence there is accurate centration of said light guide.


The rollers 21 each have a guide groove 25 which brings about a centration of a light guide 8 transversely to the spindle 23. In this context, the guide groove 25 can be pointy or, as imaged, adapted in terms of its contour to a round light guide 8.


When a light guide 8 is inserted into the light guide space 12, the rollers 21 are pressed apart by way of a pivot movement to the diameter of the light guide 8 by said light guide. In the process, the light guide 8 is clamped by the spring force of the tension springs 22. Moreover, the light guide 8 is reliably fixated by the self-locking properties of the eccentric rollers 21. Self-locking is brought about by virtue of the rollers 21 being rotated during the withdrawal of the light guide 8, as a result of which the radius of the point of contact between rollers 21 and light guides 8, and hence the clamping force, increases.


To release the light guide 8, the coupling device 9 has a rotary actuator 30 which moves a slider in the axial direction by way of an increase. The slider acts on the cam plates 34 in the style of a slotted guide so that these cam plates are moved in the axial direction, leading to the rollers 21 being rotated and moving away from the light guide 8. The coupling device 9 has compression springs 31 which ensure the resetting of the rotary actuator 30. Thus, the compression springs 31 ensure that the rotary actuator 30 remains in its home position, even if a light guide 8 is inserted.


The coupling device 9 may have a further switch (not shown) in the region of the rotary actuator 30. In this context, the switch is triggered in the home position of the rotary actuator 30, for example by a switching cam on the rotary actuator 30. This renders it possible to identify whether a detachment process for a light guide 8 has been triggered. By way of example, this already allows a light source 3 to be deactivated even though a light guide 8 still is inserted to such an extent that the deactivation device 19 does not switch yet.


The coupling device 9 has a second roller pair 26, which has an identical design to the first roller pair 20. However, the second roller pair 26 is rotated through 90° in relation to the first roller pair 20 and is arranged closer to the light entrance 11. The slider likewise acts on the second roller pair 26, and so both roller pairs are released simultaneously.



FIGS. 6 to 9 show an alternative, second embodiment. In this embodiment, the first roller pair 20 has rollers 32 with a centric mount. Moreover, the coupling device 9 has a slotted guide 29 which has oblique slots 28, in which the rollers 32 are mounted. As a result, an axial movement of the slotted guide 29 brings about a radial movement of the rollers, either toward or away from a light guide 8. A roller pair 20 with such a slotted guide 29 is known from the prior art, which is why the function is not discussed in any more detail here.


By contrast, the combination with a second roller pair 26 with eccentrically mounted rollers 21 is novel. This second roller pair 26 has an identical or similar form to the second roller pair 26 in FIGS. 2 to 5. However, the rollers 21 of the second roller pair 26 do not have a self-locking embodiment in the example shown, and so these only center, and do not clamp, the light guide. Clamping is brought about purely by the first, centrically mounted roller pair 20. The rollers 21 of the second roller pair 26 are preloaded and centered by a ring 35 (see FIG. 6) and pins 36 inserted therein. In this case, the pins 36 are seated on the surface of the rollers 21 such that an axial movement of the pins 36 brings about a rotational movement of the rollers 21. In this way, the two rollers 21 are also coupled in terms of their rotational movement, and so a rotation of a roller 21 brings about an axial movement of the ring 35 and, moreover, a rotation of the other roller 21 of the same roller pair 26.


The ring 35 is connected to the rotary actuator 30 and the trigger mechanism of the first roller pair 20 by way of a compression spring 31. Consequently, the rollers 21 are preloaded by way of the compression spring 31.


In this case, too, the rollers 21 are rotated through 90° in relation to the rollers 32 of the first roller pair 20. Overall, this therefore yields a precise centration of a light guide 8. The centration by way of the second roller pair 26 with non-self-locking, eccentric rollers 21 is substantially simpler and more cost-effectively producible when compared to known centration devices.


What is common to both embodiments is that tilting or slipping of the light guide 8 in relation to the light entrance 11 is reduced or prevented as a result of mounting said light guide at two points.


Moreover, the structural outlay in relation to known centration devices is reduced, and so the construction of the coupling device can be implemented more easily and hence more cost-effectively.


LIST OF REFERENCE SIGNS






    • 1 Endoscope arrangement


    • 2 Endoscope


    • 3 Light source


    • 4 Endoscope shaft


    • 5 Endoscope head


    • 6 Eyepiece


    • 7 Light-guide input


    • 8 Light guide


    • 9 Coupling device


    • 10 Flange plate


    • 11 Light entrance


    • 12 Light-guide space


    • 13 Lever


    • 14 Pivot bearing


    • 15 Long lever arm


    • 16 Switch


    • 17 Spring


    • 18 Short lever arm


    • 19 Deactivation device


    • 20 First roller pair


    • 21 Roller (eccentrically mounted)


    • 22 Tension spring


    • 23 Spindle


    • 24 Slot guide


    • 25 Guide groove


    • 26 Second roller pair


    • 27 Radial slot


    • 28 Oblique slots


    • 29 Slotted guide


    • 30 Rotary actuator


    • 31 Compression spring


    • 32 Roller (centrically mounted)


    • 33 Catch


    • 34 Cam plates


    • 35 Ring


    • 36 Pins




Claims
  • 1. A coupling device (9) for light guides (8), comprising: a light entrance (11);a light-guide space (12) aligned at the light entrance (11);a clamping device with a first roller pair (20) with two opposing rollers (21; 32), between which an inserted one of the light guides (8) is adapted to be clamped;a second roller pair (26) with two opposing rollers (21), the second roller pair (26) being arranged closer to the light entrance (11) than the first roller pair (20), andthe rollers (21) of at least one of the first or second roller pairs (20, 26) are mounted eccentrically with a slope of less than 7°.
  • 2. The coupling device (9) as claimed in claim 1, wherein spindles (23) of the rollers (21; 32) of the first roller pair (20) and spindles (23) of the rollers (21) of the second roller pair (26) form an angle relative to one another.
  • 3. The coupling device (9) as claimed in claim 1, wherein the rollers (21; 32) of the first and second roller pairs (20) have a rotationally symmetric form.
  • 4. The coupling device (9) as claimed in claim 1 wherein the rollers (21; 32) each have a for a light guide (8).
  • 5. The coupling device (9) as claimed in claim 1, wherein the rollers (32) of one of the roller pairs (20, 26) are movable toward one another.
  • 6. The coupling device (9) as claimed in claim 1, wherein the coupling device (9) has a guide (24) which moves the rollers (21; 32) of at least one of the roller pairs (20, 26) away from the light guide (8).
  • 7. The coupling device (9) as claimed in claim 6, wherein the guide (24) is a slotted guide.
  • 8. The coupling device (9) as claimed in claim 6, wherein the guide (24) has a holding position and is impinged by a spring (31) which moves the guide (24) from the holding position to an open position.
  • 9. The coupling device (9) as claimed in claim 6, wherein the guide (24) is axially movable, and an axial movement of the guide (24) brings about a radial movement of the rollers (21; 32) of at least one of the roller pairs (20, 26).
  • 10. The coupling device (9) as claimed in claim 6, further comprising a rotary actuator (30) and a converter, a rotational movement of the rotary actuator (30) being converted into an axial movement of the guide (24) by the converter.
  • 11. The coupling device (9) as claimed in claim 1, wherein the rollers (21) of at least one of the roller pairs (20, 26) are self-locking.
  • 12. The coupling device (9) as claimed in claim 1, wherein the rollers (21) of at least one of the roller pairs (20, 26) have coupled rotational movement.
  • 13. The coupling device (9) as claimed in claim 1, wherein the rollers (21; 32) of at least one of the roller pairs (20, 26) are braced against one another by a spring (22).
  • 14. The coupling device (9) as claimed in claim 1, further comprising a deactivation device (19) which prevents an entry of light into the light-guide space (12) when no light guide (8) has been inserted.
  • 15. The coupling device (9) as claimed in claim 14, wherein the deactivation device electrically deactivates a light source (3).
  • 16. The coupling device of claim 1, wherein a light guiding path of the light guides is interruptible via the light entrance (11) being closeable in light-tight fashion.
Priority Claims (1)
Number Date Country Kind
102021102887.6 Feb 2021 DE national
US Referenced Citations (76)
Number Name Date Kind
3835854 Jewett Sep 1974 A
4028081 Marcatili Jun 1977 A
4087155 Deacon May 1978 A
4146300 Kaiser Mar 1979 A
4158476 McCartney Jun 1979 A
4181402 Borsuk Jan 1980 A
4208093 Borsuk Jun 1980 A
4279468 Turley Jul 1981 A
4302072 Vucins Nov 1981 A
4378145 Stancati Mar 1983 A
4383532 Dickhudt May 1983 A
4389091 Lidholt Jun 1983 A
4429949 Cartier Feb 1984 A
4468087 Milan Aug 1984 A
4490006 Lidholt Dec 1984 A
4490007 Murata Dec 1984 A
4616648 Simpson Oct 1986 A
4746194 Rasmussen May 1988 A
4767177 Cartier Aug 1988 A
4807957 de Jong Feb 1989 A
4856354 Overbay Aug 1989 A
5346498 Greelis Sep 1994 A
5389100 Bacich Feb 1995 A
5586968 Grundl Dec 1996 A
5821920 Rosenberg Oct 1998 A
6077219 Viebach Jun 2000 A
6171234 White Jan 2001 B1
6275724 Dickinson Aug 2001 B1
6280098 Alcock Aug 2001 B1
6290675 Vujanic Sep 2001 B1
6447447 Mitsumori Sep 2002 B1
6470302 Cunningham Oct 2002 B1
7134795 Bonna Nov 2006 B1
7175635 Loser Feb 2007 B2
7276044 Ferry Oct 2007 B2
7603159 Rasche Oct 2009 B2
7887549 Wenderow Feb 2011 B2
8114032 Ferry Feb 2012 B2
8343041 Byers Jan 2013 B2
8747352 Lalonde Jun 2014 B1
9458049 Ortiz Oct 2016 B2
9782564 Zirps Oct 2017 B2
10215976 Klose Feb 2019 B2
10391278 Schulz Aug 2019 B2
10406321 Macy Sep 2019 B1
10578810 Watte Mar 2020 B2
11585986 Corl Feb 2023 B2
20070163302 Kemmochi Jul 2007 A1
20070250000 Magnin Oct 2007 A1
20100069833 Wenderow Mar 2010 A1
20110015484 Alvarez Jan 2011 A1
20120179167 Wenderow Jul 2012 A1
20130231678 Wenderow Sep 2013 A1
20130274657 Zirps Oct 2013 A1
20140243642 Deac Aug 2014 A1
20140276233 Murphy Sep 2014 A1
20140276948 Zirps Sep 2014 A1
20150157196 Van Der Mark Jun 2015 A1
20150231287 Lin Aug 2015 A1
20150366435 Williams Dec 2015 A1
20160158437 Biasi Jun 2016 A1
20170007098 Gora Jan 2017 A1
20180052317 Klose Feb 2018 A1
20180214302 Dabrowiak Aug 2018 A1
20180214303 Dabrowiak Aug 2018 A1
20180338797 Moore Nov 2018 A1
20190133820 Jacobsen May 2019 A1
20190154026 Kamen May 2019 A1
20190290888 Rochon Sep 2019 A1
20190313940 Thienphrapa Oct 2019 A1
20200015717 Taghioskoui Jan 2020 A1
20200038106 Pieper Feb 2020 A1
20200367968 Rochon Nov 2020 A1
20220111181 Hebert Apr 2022 A1
20220152349 Sowards May 2022 A1
20220252804 Möhlinger Aug 2022 A1
Foreign Referenced Citations (1)
Number Date Country
102016009840 Jul 2019 DE
Related Publications (1)
Number Date Country
20220252804 A1 Aug 2022 US