Coupling for LC-based VCO

Information

  • Patent Grant
  • 6650188
  • Patent Number
    6,650,188
  • Date Filed
    Monday, December 2, 2002
    22 years ago
  • Date Issued
    Tuesday, November 18, 2003
    21 years ago
Abstract
A two-stage coupling loop system that provides in-phase and quadrature signals in the two stages. Each stage includes a signal coupler, an LC-based voltage controlled oscillator (VCO) and an in-loop signal buffer that provides an additional controllable phase shift. Inclusion of the buffers in the loop decreases the capacitance load of each VCO.
Description




FIELD OF THE INVENTION




This invention relates to control of phase shift for a voltage controlled oscillator.




BACKGROUND OF THE INVENTION




A conventional approach of an LC-based ring oscillator uses three LC stages, with a phase shift sum for the three stages being 180°, as required to support an oscillation. Use of three stages is necessary with a conventional approach, because any stage provides a phase shift of less than 90°, except at certain extreme or unrealistic choices of parameter values. In the simplest three-stage oscillator, each stage provides 60° of phase shift. This arrangement is not suitable for applications that require in-phase and quadrature clock signals that are spaced 90° apart.




Some workers have attempted to handle this problem by providing two couplers and two identical LC-based voltage controlled oscillators (VCOs) to form a coupling loop. The couplers modulate the phases of the LC tank circuits and force the two clock signals to run in quadrature, with a relative phase shift of 90°. However, this arrangement operates at a frequency that is relatively far from the peak LC tank impedance so that the oscillator is less efficient than desired. This arrangement becomes less attractive as the clock frequency increases, because the couplers increase the capacitive load of the oscillator. This lowers the central frequency and/or reduces the frequency tuning range.




What is needed is a configuration that improves the efficiency of the, oscillator and increases the center frequency and/or frequency tuning range.




SUMMARY OF THE INVENTION




The invention meets these needs by incorporating a selected signal buffer in each stage of the coupling loop so that the buffer and an associated VCO maintain 90° phase shift within each stage. The additional phase shift introduced by each buffer, helps move the operating point of the oscillator toward the peak impedance point of the LC tank circuit, thus improving the efficiency of the oscillator. The capacitive loading of each oscillator stage is reduced, because the coupler in each stage is only required to drive a signal buffer, not a combination of buffer and in-path coupler. This provides an increase in center frequency or frequency tuning range.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

schematically illustrates an LC-tuned stage of a conventional ring oscillator.





FIG. 2

schematically illustrates a three-stage ring oscillator, according to the prior art, that provides 180° phase shift in the forward signal path.





FIG. 3

schematically illustrates a coupling loop including two LC-based VCO stages.





FIGS. 4A and 4B

graphically illustrate impedance magnitude and impedance phase shift associated with an LC tank circuit as used in the coupling loops of

FIGS. 3 and 5

.





FIGS. 5-9

schematically illustrate an improved coupling loops that include buffers in the coupling loop.











DESCRIPTION OF BEST MODES OF THE INVENTION





FIG. 1

schematically illustrates an LC circuit


11


used in each stage of a conventional three-stage ring oscillator, such as the oscillator


21


shown in FIG.


2


. The circuit


11


includes two parallel inductors,


13


and


14


, each connected at a first end to a selected voltage source


12


(V


d


), and each connected at a second end to first and second ends of a capacitor


15


, respectively. The second ends of the inductors,


13


and


14


, are also connected to a current source


20


through respective first and second NMOS transistors,


16


and


17


, whose gates are connected to respective first and second polarity signal input terminals,


18


P and


18


N. The second ends of the inductors,


13


and


14


, are connected to respective first and second polarity signal output terminals,


19


N and


19


P. The circuit


11


has an associated frequency-dependent output impedance given approximately by








Z


(ω)=(


R+jωL


)/{(0.5


−LCω




2


)+


jRCω},


  (1)






where R is a series resistance associated with an inductor. The phase shift graph in

FIG. 4

indicates that a phase shift of Φ=90° is not attainable for any realistic operating frequency. Consequently, at least three stages,


22


A,


22


B and


22


C, each having a phase shift of about 60°, are used in a conventional approach, as illustrated in

FIG. 2

, to provide a total phase shift of 180° in the forward signal path. Each stage


22


-j (j=1, 2, 3) has first and second input signal terminals and has an associated buffer


23


-j that receives input signals from two output signal terminals of the stage


22


-j. The three pairs of these output signals have associated phase shifts of 0°, 60°, and 120°, respectively.




The output signals from the stage


22


j′ (j′=1, 2) are received by corresponding input signal terminals for the stage


22


-(j′+1), and the output signals from the stage


22


-


3


are received with reversed polarities at the input signal terminals of the first stage


22


-


1


, in an oscillator configuration that is familiar to those of skill in this technical area.





FIG. 3

schematically illustrates a coupling loop


31


, constructed according to an alternative approach, that provides a phase shift of 90° for each of two stages


32


-k (k=1, 2). Each stage


32


-k includes a signal coupler


33


-k, an LC-tuned VCO


34


-k, and a buffer


35


-k that is not in the coupling loop


31


. The coupler


33


-


2


and the buffer


35


-


1


each receive input signals at two input terminals from two corresponding output terminals of the LC VCO


34


-


1


. The coupler


33


-


1


receives crossed or reversed polarity input signals and the buffer


35


-


2


receives non-crossed input signals from two output terminals of the LC VCO


34


-


2


. The LC VCO


34


-k receives input signals from two corresponding output terminals of the coupler


33


-k. Output signals from the LC VCO


34


-k (k=1, 2) must drive a coupler and must drive a buffer. The

FIG. 3

configuration, in which the buffers


35


-k are not in the coupling loop


31


is referred to herein as a “buffer-out-of-loop” configuration.





FIGS. 4A and 4B

graphically illustrate the magnitude |Z(ω)| and the phase φ(Z(ω)) for LC tank impedance associated with the LC VCO,


34


-


1


or


34


-


2


, in the configuration of FIG.


3


and indicate a magnitude |Z(ω


1


)| and a corresponding phase φ(Z(ω


1


)) at which oscillation occurs at an operating frequency ω


1


. The impedance magnitude |Z(ω


1


)| is spaced apart a substantial distance from the peak value |Z(ωp)| that is theoretically available for the LC circuit.





FIG. 5

schematically illustrates an improved coupling loop


51


, constructed according to the invention, that provides a phase shift of 90° for each of two stages,


52


-k (k=1, 2). Each stage


52


-k includes a signal coupler


53


-k, an LC-tuned VCO


54


-k, and a buffer


55


-k that are part of the coupling loop


31


. The LC VCO


54


-k receives two input signals from the corresponding output signal terminals of the coupler


53


-k. The buffer


55


-k receives two input signals from the corresponding output signal terminals of the LC VCO


54


-k. The coupler


53


-


2


receives two input signals, having an associated phase shift of 90°, from the corresponding output signal terminals of the buffer


55


-


1


. The coupler


53


-


1


receives crossed or reverse polarity input signals, having an associated phase shift of 0°, from output signal terminals of the coupler buffer


55


-


2


. Each buffer,


55


-


1


and


55


-


2


, provides an additional, controllable phase shift φ(buf) in a range 0≦φ(buf)≦30°.




The additional phase shift introduced by each buffer


23


-j in

FIG. 5

allows movement of the operating frequency (ω=ω


2


) for this configuration toward the peak value cop for the LC tank circuit, which improves the efficiency of the oscillator.





FIGS. 4A and 4B

also illustrate the magnitude |Z(ω)| and the phase φ(Z(ω)) for LC tank impedance associated with the LC VCO,


54


-


1


or


54


-


2


, in the configuration of FIG.


5


and indicate a magnitude |Z(ω


2


)| and a corresponding phase φ(Z(ω


2


)) at which oscillation occurs at an operating frequency ω


2


. The impedance magnitude |Z(ω


2


)| for the system


51


of the invention shown in

FIG. 5

is spaced apart from the peak value |Z(ωp)| by a smaller distance than is the impedance magnitude |Z(ω


1


)| for the system


31


shown in FIG.


3


. That is, |Z(ω


1


)|<|Z(ω


2


)|<|Z(ωp)|, and the efficiency of the system in

FIG. 5

is greater than the efficiency of the system in FIG.


3


.




Because each LC VCO


54


-k in

FIG. 5

directly drives a buffer


55


-k, rather than driving a coupler and a non-in-line buffer as in

FIG. 3

, the driving force required for the LC VCO


54


-k in

FIG. 5

is less than the corresponding driving force required for the LC VCO


34


-k in FIG.


3


. This reduces the loading capacitance of the LC-tuned VCO


54


-k (

FIG. 5

) by an estimated 10-50 percent or more, relative to the loading capacitance of the LC-tuned VCO


34


-k (FIG.


3


). This capacitance reduction provides an increased center frequency and/or an increased frequency tuning range for the coupling loop


51


, relative to the coupling loop


31


.




Because of the ring configuration


51


used in

FIG. 5

, only the order of the components is important in providing an oscillator output signal. For example, the ring configurations


61


and


71


shown in

FIGS. 6 and 7

will provide a similar oscillator output signal. Further, the point in the ring at which polarity is reversed can also be changed. In

FIG. 8

, the polarity is reversed between the first coupler


83


-


1


and the first LC VCO


84


-


1


. In

FIG. 9

, the polarity is reversed between the first LC VCO


94


-


1


and the first buffer


95


-


1


. Polarity may be reversed (once) at other locations in the ring configurations as well in

FIGS. 5-9

. More generally, polarity may be reversed at 1, 3 or 5 different locations within any of the ring configurations in

FIGS. 5-9

.



Claims
  • 1. An LC-based ring oscillator comprising:a first LC stage comprising a coupler, an LC-based voltage controlled oscillator (VCO), and a buffer each having at least one input terminal and at least one output terminal, the output terminal of the coupler being connected to the input terminal of the VCO and the output terminal of the VCO being connected to the input terminal of the buffer; and a second LC stage having an input terminal and an output terminal, wherein the output terminal of the buffer of the first LC stage is connected to the input terminal of the second LC stage and the output terminal of the second LC stage is connected to the input terminal of the coupler of the first LC stage.
  • 2. The LC-based ring oscillator of claim 1, wherein the buffer is configured to provide a phase shift in the range of zero to thirty degrees.
  • 3. The LC-based ring oscillator of claim 1, wherein each of the coupler, VCO, and buffer of the first LC stage has two input terminals and two output terminals and the second LC stage has two input terminals and two output terminals.
  • 4. The LC-based ring oscillator of claim 3, wherein the output terminals of the second LC stage are connected with reversed polarity to the input terminals of the coupler of the first LC stage.
  • 5. The LC-based ring oscillator of claim 3, wherein the output terminals of the buffer of the first LC stage are connected with reversed polarity to the input terminals of the second LC stage.
  • 6. The LC-based ring oscillator of claim 3, wherein the output terminals of the coupler of the first LC stage are connected with reversed polarity to the input terminals of the VCO of the first LC stage.
  • 7. The LC-based ring oscillator of claim 3, wherein the output terminals of the VCO of the first LC stage are connected with reversed polarity to the input terminals of the buffer of the first LC stage.
  • 8. The LC-based ring oscillator of claim 1, wherein the second LC stage comprises a coupler, an LC-based voltage controlled oscillator (VCO), and a buffer each having at least one input terminal and one output terminal, wherein the output terminal of the coupler is connected to the input terminal of the VCO and the output terminal of the VCO is connected to the input terminal of the buffer.
  • 9. An LC-based ring oscillator comprising:a first LC stage including a coupler, an LC-based voltage controlled oscillator (VCO), and a buffer each having at least two input terminals and at least two output terminals, the output terminals of the coupler being connected to the following input terminals of the VCO and the output terminals of the VCO being connected to the following input terminals of the buffer; and a second LC stage having at least two input terminals and at least two output terminals; wherein the output terminals of the buffer of the first LC stage are connected to the following input terminals of the second LC stage and the output terminals of the second LC stage are connected to the following input terminals of the coupler of the first LC stage; and wherein the output terminals of at least one of the second LC stage and the coupler, VCO, and buffer of the first LC stage is connected with reversed polarity to the following input terminals.
  • 10. The LC-based ring oscillator of claim 9, wherein the second LC stage includes a coupler, an LC-based voltage controlled oscillator (VCO), and a buffer each having at least two input terminals and at least two output terminals, the output terminals of the coupler being connected to the following input terminals of the VCO and the output terminals of the VCO being connected to the following input terminals of the buffer.
  • 11. An LC-based ring oscillator comprising:a first LC stage including at least an LC-based voltage controlled oscillator (VCO) and a buffer operable to provide a phase shift, each of the VCO and buffer having at least two input terminals and at least two output terminals, the output terminals of the VCO being connected to the input terminals of the buffer, the first stage having at least two input terminals; and a second LC stage including at least an LC-based voltage controlled oscillator (VCO) and a buffer operable to provide a phase shift, each of the VCO and buffer having at least two input terminals and at least two output terminals, the output terminals of the VCO being connected to the input terminals of the buffer, the second stage having at least two input terminals; wherein the output terminals of the buffer of the first LC stage are connected to the input terminals of the second LC stage and the output terminals of the buffer of the second LC stage are connected to the input terminals of the first LC stage; and wherein the output terminals of the buffer of the first LC stage are connected with reversed polarity to the input terminals of the second LC stage.
  • 12. An LC-based ring oscillator comprising:a first LC stage including at least an LC-based voltage controlled oscillator (VCO) and a buffer operable to provide a phase shift, each of the VCO and buffer having at least two input terminals and at least two output terminals, the output terminals of the VCO being connected to the input terminals of the buffer, the first stage having at least two input terminals; and a second LC stage including at least an LC-based voltage controlled oscillator (VCO) and a buffer operable to provide a phase shift, each of the VCO and buffer having at least two input terminals and at least two output terminals, the output terminals of the VCO being connected to the input terminals of the buffer, the second stage having at least two input terminals; wherein the output terminals of the buffer of the first LC stage are connected to the input terminals of the second LC stage and the output terminals of the buffer of the second LC stage are connected to the input terminals of the first LC stage; and wherein the output terminals of the VCO of the first LC stage are connected with reversed polarity to the input terminals of the buffer of the first LC stage.
  • 13. An LC-based ring oscillator comprising:a first LC stage including at least an LC-based voltage controlled oscillator (VCO) and a buffer operable to provide a phase shift, each of the VCO and buffer having at least two input terminals and at least two output terminals, the output terminals of the VCO being connected to the input terminals of the buffer, the first stage having at least two input terminals; and a second LC stage including at least an LC-based voltage controlled oscillator (VCO) and a buffer operable to provide a phase shift, each of the VCO and buffer having at least two input terminals and at least two output terminals, the output terminals of the VCO being connected to the input terminals of the buffer, the second stage having at least two input terminals; wherein the output terminals of the buffer of the first LC stage are connected to the input terminals of the second LC stage and the output terminals of the buffer of the second LC stage are connected to the input terminals of the first LC stage; and wherein the first LC stage includes a coupler having at least two input terminals and two output terminals, the output terminals of the coupler being connected to the input terminals of the VCO, the input terminals of the coupler being the input terminals of the stage.
  • 14. The LC-based ring oscillator of claim 13, wherein the output terminals of the coupler are connected with reversed polarity the input terminals of the VCO.
Parent Case Info

This is a continuation of application Ser. No. 09/927,289, filed Aug. 9, 2001, now U.S. Pat. No. 6,492,877.

US Referenced Citations (11)
Number Name Date Kind
5357217 Marchesi et al. Oct 1994 A
5418497 Martin May 1995 A
5561399 Haartsen Oct 1996 A
5592126 Boudewijns et al. Jan 1997 A
5789986 Drost et al. Aug 1998 A
5850163 Drost et al. Dec 1998 A
6218908 Oberhammer Apr 2001 B1
6232844 Talaga, Jr. May 2001 B1
6317008 Gabara Nov 2001 B1
6323737 Broekaert Nov 2001 B1
6417740 Anh et al. Jul 2002 B1
Non-Patent Literature Citations (2)
Entry
Ting-Ping Liu, “A 6.5GHz Monolithic CMOS Voltage-Controlled Oscillator”, IEEE International Solid-State Circuits Conference, ISSCC99/Session 23/Paper WP 23.7, pp. 404-405.
Jafar Savoj, et al., “A 10Gb/s CMOS Clock and Data Recovery Circuit with Frequency Detection”, 2001 IEEE International Solid-State Circuits Conference, ISSCC 2001, Session 5/Gigabit Optical Communications I/5.3, pp. 78-79.
Continuations (1)
Number Date Country
Parent 09/927289 Aug 2001 US
Child 10/309302 US