The present disclosure relates generally to HVAC systems, and more particularly, to mini-split HVAC systems.
Air handling systems such as air conditioning systems typically have a condensate drain pan to collect condensate.
Often removal of the condensate requires pumping the condensate from the condensation drain pan. Commonly, a drain pan system includes a sensor placed in the drain pan to measure the level of the condensation therein. When the condensate level reaches a predetermined level, the sensor generates a signal sent to a sensor switching circuit to activate the pump or stop operation of the compressor.
HVAC systems know as mini-split systems present a particularly troublesome challenge. Mini-split systems comprise of two basic units—a compressor and multiple air handlers. The air handler is typically mounted on the wall in the space to be cooled. These air handlers are designed to be compact resulting in limited space for an overflow switch and condensate sensor. Specifically, systems use refrigerant lines together power and control wiring to connect the outdoor compressor to the individual indoor air handlers. The technology, developed in the 1950s, is called split-ductless or mini-split and is the primary method for conditioning spaces within a home or commercial building in countries around the world. Mini-split systems allow each space with an indoor air-handler unit to be controlled independently from other rooms, thus providing individualized comfort control within a home.
In such mini-split systems, the compressor is connected to existing house voltage and supplies voltage to the air handlers.
In addition, a communications link is used to coordinate the operation of the two basic units. As a result, any electronics that would utilize the power supply has the potential of disrupting the communication link. Thus, any effort to provide a condensate removal system would require an electrically isolated battery powered system.
In order to shut down the highly integrated electro-mechanical mini-split system, a condensate control system can be tapped into a commonly found thermistor used to measure the evaporator temperature forming part of mini-split control loop. As designed, if the thermistor is broken or indicates a bad reading the compressor is shut down. This thermistor can be used to open the circuit when excess condensate is sensed in the condensate drain pan to shut down the compressor.
The present invention employs a solid state relay or switch to control the thermistor without intruding or compromising the integrity of the power supply or communication link of existing mini-split systems.
The present invention relates to a control system to selectively control the operation of the compressor of a mini-split air conditioning system that includes a compressor and at least one remote air handler.
The present invention is a method of providing alarm signals to a HVAC mini-split system having a thermistor, a condensate overflow sensor and a HVAC electronic control device. The method includes removably engaging a unitary, releasable, self-contained, alarm coupling harness (having first, second and third electrically-coupled interfaces) with the HVAC mini-split system by electrically connecting the first interface with the thermistor, electrically connecting the second interface with the condensate overflow sensor and electrically connecting the third interface with the HVAC electronic control device. At least one among the first and second interfaces directs a signal to the third interface when an alarm condition exists in the thermistor and/or condensate overflow sensor, respectively. In response to a signal received from either the first or second interfaces, the third interface notifying the HVAC electronic control device that an alarm condition exists.
The control system comprises a condensate sensor disposed to sense when condensate within the condensate drain pan reaches a predetermined level and a control device operatively coupled between the condensate sensor the control sensor and the air handler electronic system to turn off the compressor when the predetermined operating conditions exists.
The invention accordingly comprises the features of construction, combination of elements, and arrangement of parts which will be exemplified in the construction hereinafter set forth, and the scope of the invention will be indicated in the claims.
For a fuller understanding of the nature and object of the invention, reference should be had to the following detailed description taken in connection with the accompanying drawings in which:
Similar reference characters refer to similar parts throughout the several views of the drawings.
The present invention relates to a control system to selectively control the operation of the compressor of a mini-split air conditioning system that includes a compressor and at least one remote air handler shown as 10 and 12 respectively in
As shown in
As shown in
As shown in
The solid state relay/switch 54 is powered by the isolated external battery power source 50 connected between a positive voltage socket or connector 110 and a ground and negative voltage socket or connector 112.
The low battery indicator/alarm 52 comprises a buzzer or audible alarm 114 coupled to the output of a comparator 116 coupled to the voltage power source 50 and a fixed reference voltage 118 to generate a low battery indication when the voltage from the battery power source 50 reaches a minimum predetermined voltage such as 1.2 volts. The low battery indicator/alarm 50 further includes scaling resistors 120, 122 and 124, timing resistors 126 and 128 and timing diode 130, feedback resistors 132 and 134, capacitor 136, and resistor 137.
A positive voltage socket or connector 138 is coupled between the battery power source 50 through current limiting resistor 140 and the first condensate sensing probe 46 through the first sensor signal conductor or line 38 and a socket or connector 142 is coupled between the solid state relay/switch circuit described hereinafter and the second condensate sensing probe 48 through the second sensor signal conductor or line 40.
The solid state relay/switch circuit comprises an input stage generally indicated as 144 coupled to an output stage generally indicated as 146 by an intermediate control stage generally indicated as 148.
The input stage 144 comprises voltage limiting zener diode 150, resistor 152 and filter capacitor 154 combination and resistor 156 to hold the voltage low and configured to receive current through socket or connector 142 when the level of condensate within the condensate drain pan 20 is such that the tips of first condensate sensing probe 46 and the second condensate sensing probe 48 are submersed in the condensate completing the circuit causing current to flow through the input stage 144. The intermediate control stage 148 comprises a field effect transistor 158 coupled to the output of the input stage 144 such that when current flows through the input stage 144 the field effect transistor 158 is turned on.
The output stage 146 comprises a opto isolator or opto coupler 160 including a light emitting diode (LED) 162 coupled between positive voltage VCC through resistor 164 and field effect transistor 158 of intermediate control stage 148, and a pair of field effect transistors 166 and 168 coupled to the control sensor or thermistor 26 and the evaporator 14 through sockets or connectors 170 and 172, and control signal conductor or line 42 and control signal conductor or line 44 respectively such that when field effect transistor 158 of intermediate control stage 148 is conducting LED 162 of opto isolator or opto coupler 160 is energized driving the field transistors 166 and 168 causing the control sensor or thermistor 26 to generate a sensor control signal whereby the circuit through the air handler electronic system 24 to generate an “off” or compressor signal fed to the compressor 10 through the air handler power/communications conductors or lines 30 and 31 shutting down the compressor 10 when the condensate level reaches a predetermined level in the condensate drain pan 20 as sensed by the first condensate sensing probe 46 and the second condensate sensing probe 48 thus completing a circuit to actuate the control sensor or thermistor 26.
The condensate can be drained or pumped from the condensate drain pan 20 through the condensate drain conduit 22.
It will thus be seen that the objects set forth above, among those made apparent from the preceding description are efficiently attained and since certain changes may be made in the above construction without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawing shall be interpreted as illustrative and not in a limiting sense.
It is also to be understood that the following claims are intended to cover all of the generic and specific features of the invention herein described, and all statements of the scope of the invention which, as a matter of language, might be said to fall therebetween.
This Application is a continuation application of and claims priority to U.S. patent application Ser. No. 14/715,068 filed on May 18, 2015 and entitled “Coupling Harness For HVAC Mini-Split System,” which is a continuation application and claims priority to U.S. patent application Ser. No. 12/806,977 filed on Aug. 25, 2010 and entitled “Solid State Control System,” both of which are hereby incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4165509 | Betts | Aug 1979 | A |
4705212 | Miller | Nov 1987 | A |
5522229 | Stuchlik, III | Jun 1996 | A |
5534849 | McDonald | Jul 1996 | A |
6084373 | Goldenberg | Jul 2000 | A |
6104157 | Kramer | Aug 2000 | A |
6239709 | Dykstra | May 2001 | B1 |
7129832 | Sabatino | Oct 2006 | B2 |
7744395 | Cantolino | Jun 2010 | B1 |
8154313 | Cantolino | Apr 2012 | B1 |
20070001019 | Sinstedten | Jan 2007 | A1 |
20070039345 | Forsberg | Feb 2007 | A1 |
20070127546 | Gul | Jun 2007 | A1 |
20070271938 | Shaffer | Nov 2007 | A1 |
20100031680 | Eisenhour | Feb 2010 | A1 |
20100082161 | Patch | Apr 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20170254552 A1 | Sep 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14715068 | May 2015 | US |
Child | 15416436 | US | |
Parent | 12806977 | Aug 2010 | US |
Child | 14715068 | US |