The present invention relates to a coupling inductor.
An on-board charger for a vehicle is equipped with an interleaved PFC (power factor correction) circuit in order to efficiently convert a high AC electric power into a DC power. Such an interleaved PFC circuit necessitates two inductors. For the reason of the need for compact on-board chargers, it is desired to provide more compact inductors.
Therefore, an interleaved PFC circuit with a coupling inductor is proposed (for example Patent Document 1). The coupling inductor is formed by two coils wound around a core with opposite polarities so that magnetic fluxes generated by the two coils cancel each other and magnetic flux in the core is thus reduced. In this manner, the coupling inductor enables the core to be reduced in size, i.e., more compact inductors to be obtained.
Patent Document 1: JP 2015-201642 A
In the case where a coupling inductor is used for a PFC circuit, it is not possible to use a dust core as the core for the coupling inductor because a ripple current with a doubled operating frequency flows therethrough. For this reason, a ferrite core is usually used in the coupling inductor for a PFC circuit. A ferrite core has a small saturation magnetic flux density, which is ⅓ of the saturation magnetic flux density of the dust core.
Therefore, Patent Document 1 discloses that magnetic saturation is avoided by providing a plurality of gap in core of a coupling inductor. However, it is difficult to dissipate heat from a coupling inductor having the above-described configuration. In addition, such a coupling inductor requires an accuracy for assembly. Therefore, the technique disclosed in Patent Document 1 is not practical.
Therefore, an objective of the present invention is to provide a compact coupling inductor.
In order to achieve the above-mentioned objective, a coupling inductor according to the present invention includes a core having a central section and an outer section, a first coil wound around the central section between a first end and a center portion of the central section, a second coil wound around the central section between the first end and the center portion of the central section, wherein the second coil is wound in a direction opposite to a direction in which the first coil is wound, a third coil connected to the first coil and wound around the central section between a second end and the center portion of the central section, wherein the third coil is wound in a same direction as the direction in which the first coil is wound, and a fourth coil connected to the second coil and wound around the central section between the second end and the center portion of the central section, wherein the fourth coil is wound in a direction opposite to the direction in which the first coil is wound.
The present invention enables a compact coupling inductor to be provided.
As shown in
The first coil L1 has a first number of turns N1 and is wound around the central section C1 of the core between a first end C12 and a center portion C11 of the central section C1 of the core.
The second coil L2 has a second number of turns N2 which is larger than the first number N1 (N1<N2), wherein the second coil L2 is wound in a direction opposite to that of the first coil L1 around the central section C1 of the core between the first end C12 and the center portion C11 of the central section C1 of the core. For example, the second coil L2 is arranged such that it is tightly coupled to the first coil L1.
The third coil L3 has a second number of turns N2 and is wound in a same direction as that of the first coil L1 around the central section C1 of the core between a second end C13 and the center portion C11 of the central section C1 of the core.
The fourth coil L4 has the first number of turns N1. The fourth coil L4 is wound in a direction opposite to that of the first coil L1 around the central section C1 of the core between the second end C13 and the center portion C11 of the central section C1 of the core. For example, the fourth coil L4 is arranged such that it is tightly coupled to the third coil L3.
The central section C1 and the outer sections C2 of the core are positioned such that gaps G1 are formed between the center portion C11 of the central section C1 and center portions C21 of the outer sections C2, gaps G2 are formed between the first end C12 of the central section C1 and first ends C22 of the outer sections C2, and gaps G3 are formed between the second end C13 of the central section C1 and second ends C23 of the outer sections C2. The gaps G2 have a same size as the gaps G3.
Preferably, the outer sections C2 have an E-shape which has protrusions P1, P2 and P3, as shown in
The coupling inductor according to the present embodiment is configured e.g. as a coupling inductor for an interleaved PFC circuit, wherein the core is configured as a ferrite core, for example. As shown in
For example, connection of the first coil L1 to the third coil L3 as well as connection of the second coil L2 to the fourth coil L4 may be preferably provided via the substrate B. The substrate B may be a substrate dedicated for connection of coils, or may be a board for mounting another electronic device(s) thereon, such as a driving MOSFET.
In order to reduce the coils LG1 and LG2 in size (i.e., a cross section of the central section C1 of the core) while maintaining parameters related to an electrical performance such as a ripple current in the conventional coupling inductor according to
For determining the parameters related to the electrical performance such as ripple current and for the sake of simplicity, all the gaps G1 to G3 shall have a same size. Under this condition, if the number of turns NG of the coil LG1, LG2 is varied, the conventional coupling inductor demonstrates that the cross section of the central section C1 of the core and the size of the gaps G1 to G3 are changed, as shown in
In the conventional coupling inductor, as the number of turns NG of the coils LG1 and LG2 is increased, the cross section of central section C1 is decreased exponentially and the size of gap G1 to G3 is increased linearly, as shown in
On the other hand, the coupling inductor according to the present embodiment includes two inductors which are each formed by two coils, wherein each of the two coils of one inductor is magnetically coupled to one of the coils of the other inductor. Therefore, the coupling inductor according to the present embodiment enables the magnetic flux through the core to be adjusted by varying a ratio of the numbers of turns N1:N2 of the two coils which form each of the two inductors, wherein the adjustment can be accomplished without changing the individual numbers of turns N of the two inductors (N=N1+N2).
wherein the magnetic resistance of the gap G1 is indicated by Rlk, the magnetic resistance of the gap G2 is indicated by Rmt, and a current flowing through the coils L1 to L4 is indicated by I.
This means that the coupling inductor according to the present embodiment enables the magnetic flux in the core to be reduced by reducing the second number of turns N2 without increasing the magnetic resistances of the gaps G1 to G3, i.e., without increasing the gaps G1 to G3 in size. This means that the coupling inductor according to the present embodiment enables the magnetic flux in the core to be reduced by adjusting the ratio of the numbers of turns of two inductors N1:N2 which form each of the inductors, without increasing the gaps G1 to G3 in size. In this manner, it is possible to obtain compact inductors as compared to conventional coupling inductors.
Under the same condition as in
The coupling inductor according to the present embodiment enables the size of the gaps G1 to G3 to be reduced by reducing the second number of turns N2, as shown in
The present invention has been described above by means of the preferable embodiment thereof. Although the invention has been described herein by presenting a specific example, various modifications and changes may be made to such an example without departing from the spirit and scope of the invention as set forth in the claims.
Number | Date | Country | Kind |
---|---|---|---|
2021-151752 | Sep 2021 | JP | national |