The present disclosure relates generally to a fitting assembly for coupling two components, and more particularly, to a fitting assembly configured for visibly indicating nut tightness when coupling two components.
Existing fittings, such as those used to couple components together at joints in hydraulic systems, are installed and torqued to ensure proper tightness and prevent leakage, but over time, such fittings can become loose. To address this, such fittings are often inspected to determine whether they are in an optimal tight position. In some existing inspection processes, for instance, an inspector (e.g., a mechanic or other individual that initially perform the coupling of the two components using the fitting assembly, or who is tasked with inspecting tightness of the coupling at a future point in time) can manually apply a “torque stripe” (e.g., a marking, such as with paint, putty, paste, or another material) to fittings that are deemed by the inspector to be tightened to a desired degree.
However, existing processes for inspecting the tightness of existing fittings can be inefficient, difficult, and susceptible to human error. For example, the inspector might mis-mark a joint. As another example, the inspector might need to manually search for and manipulate each of such fittings (e.g., attempt to rotate a nut of each fitting) to accurately evaluate the tightness of such fittings. This can be particularly inefficient on aircrafts or in other environments where there are numerous (e.g., hundreds) of such fittings to inspect and/or many or all of such fittings are in hard to reach places.
What is needed is a fitting assembly that is efficient to assemble and install, and that helps reduce the time and difficulty of inspection.
In an example, a fitting assembly configured to visibly indicate nut tightness when coupling a first component to a second component is described. The fitting assembly comprises a nut comprising a threaded portion and a chamber portion, where the chamber portion comprises one or more through-holes. The fitting assembly also comprises an indicator slidably disposed within the chamber portion. The fitting assembly also comprises a retainer assembly disposed within the chamber portion and configured to interlock with an inner surface of the nut. The fitting assembly also comprises a spring disposed within the chamber portion between, and engaging, the indicator and the retainer assembly. The retainer assembly is configured to interface with the spring to retain the spring within the chamber portion. The fitting assembly is configured to receive the first component and the second component such that, when the nut is rotated, a visibility of the indicator through the one or more through-holes changes.
In another example, a method for coupling a first component to a second component. The method comprises coupling a fitting assembly to the first component. The fitting assembly comprises a nut comprising a threaded portion and a chamber portion, where the chamber portion comprises one or more through-holes. The fitting assembly also comprises an indicator slidably disposed within the chamber portion. The fitting assembly also comprises a retainer assembly disposed within the chamber portion and configured to interlock with an inner surface of the nut. The fitting assembly also comprises a spring disposed within the chamber portion between, and engaging, the indicator and the retainer assembly, where the retainer assembly is configured to interface with the spring to retain the spring within the chamber portion. The method also comprises coupling the nut to the second component such that the second component receives a portion of the first component. The method also comprises rotating the nut such that the threaded portion threadably engages with the second component and until a visibility of the indicator through the one or more through-holes changes.
In another example, a system is described. The system comprises a first component, a second component, and a fitting assembly configured to visibly indicate nut tightness when coupling the first component to the second component. The fitting assembly comprises a nut comprising a threaded portion and a chamber portion, where the chamber portion comprises one or more through-holes. The fitting assembly also comprises an indicator slidably disposed within the chamber portion. The fitting assembly also comprises a retainer assembly disposed within the chamber portion and configured to interlock with an inner surface of the nut. The fitting assembly also comprises a spring disposed within the chamber portion between, and engaging, the indicator and the retainer assembly. The retainer assembly is configured to interface with the spring to retain the spring within the chamber portion. The fitting assembly is configured to receive the first component and the second component such that, when the nut is rotated, a visibility of the indicator through the one or more through-holes changes.
The features, functions, and advantages that have been discussed can be achieved independently in various examples or may be combined in yet other examples. Further details of the examples can be seen with reference to the following description and drawings.
The novel features believed characteristic of the illustrative examples are set forth in the appended claims. The illustrative examples, however, as well as a preferred mode of use, further objectives and descriptions thereof, will best be understood by reference to the following detailed description of an illustrative example of the present disclosure when read in conjunction with the accompanying drawings, wherein:
Disclosed examples will now be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all of the disclosed examples are shown. Indeed, several different examples may be described and should not be construed as limited to the examples set forth herein. Rather, these examples are described so that this disclosure will be thorough and complete and will fully convey the scope of the disclosure to those skilled in the art.
By the terms “substantially,” “about,” “approximately,” and “proximate” used herein, it is meant that the recited characteristic, parameter, or value need not be achieved exactly, but that deviations or variations, including for example, tolerances, measurement error, measurement accuracy limitations and other factors known to skill in the art, may occur in amounts that do not preclude the effect the characteristic was intended to provide.
Unless otherwise specifically noted, elements depicted in the drawings are not necessarily drawn to scale.
Within examples, described herein is a fitting assembly and a method for coupling a first component to a second component using the fitting assembly, particularly where the fitting assembly is designed such that it visibly indicates nut tightness. The disclosed fitting assembly can be used in various contexts, such as hydraulic systems or other systems in aircrafts or other vehicles, or in environments other than vehicles.
The disclosed fitting assembly includes a nut designed to accommodate other components of the fitting assembly, including a retainer assembly, a spring component, and an indicator. The fitting assembly is configured such that, when the fitting assembly is being used to couple a first component to a second component and the nut is rotated (e.g., when the nut's threading engages with a threading of one of the components), rotation of the nut causes a physical displacement of the indicator, which causes a visibility of the indicator to change. The physical displacement of the indicator can result from the indicator being pushed by one of the components, which in turn pushes the indicator against the spring, thereby compressing the spring between the retainer assembly and the indicator.
As an example of how the visibility of the indicator changes, one embodiment of the disclosed fitting assembly can include one or more through-holes through which the indicator can become more visible or less visible as the nut is tightened and the indicator is moved into or out of view. Additionally or alternatively, the indicator can include a portion that protrudes in a direction parallel to the longitudinal axis of the nut and becomes more visible as the nut is tightened. Other examples are possible as well.
Furthermore, the disclosed fitting assembly, the indicator, the nut, etc. of the fitting assembly can be configured (e.g., machined to have certain dimensions) such that the visibility of the indicator accurately represents to an inspector the tightness of the connection between the two components. For example, only when a predefined desired amount of torque is applied to tighten the nut will the indicator no longer be visible through the one or more through-holes. As such, if the inspector sees that the indicator is half visible through the one or more through-holes, the inspector might determine that the nut must be re-tightened. Other example scenarios are possible.
In these and other ways, the disclosed fitting assembly advantageously allows an inspector to more quickly and more easily determine whether a nut is tightened to a desired degree, thereby reducing false positives during inspection and making the inspection process easier and more efficient. For example, the disclosed fitting assembly's built-in indicator of tightness can be easier to notice than other existing mechanisms (e.g., torque stripes), eliminate or reduce the need for existing mechanisms (e.g., applying a torque stripe), and eliminate or reduce the need for an inspector to manually check the tightness of each fitting.
These and other improvements are described in more detail below. Implementations described below are for purposes of example. The implementations described below, as well as other implementations, may provide other improvements as well.
Referring now to the figures,
The nut 102 can take the form of a typical nut that is designed to accommodate the indicator 110, the retainer assembly 112, and the spring 114. Alternatively, the nut 102 can take the form of another type of threaded fastener. The threaded portion 104 and the chamber portion 106 of the nut 102 can each define a substantially annular space within the nut 102 in some examples, whereas in other examples, the threaded portion 104 might define a substantially annular space and the chamber portion 106 might define a space having a different cylinder (e.g., a non-annular shape, such as rectangular). Other example nuts and shapes are possible as well. In an embodiment where the nut 102 is substantially annular, the indicator 110, the retainer assembly 112, and/or the spring 114 can be made to be substantially annular as well.
As shown, the one or more through-holes 108 are shown as being disposed in the wall of the nut 102 that defines the chamber portion 106—namely, at a location along the length of the chamber portion 106 that borders the threaded portion 104. In alternative embodiments, at least one of the one or more through-holes 108 can be disposed at a different location along the length of the chamber portion 106.
The indicator 110 can take the form of a physical object having dimensions that enable the indicator 110 to be disposed within the chamber portion 106. The indicator 110 can be made of metal (e.g., stainless steel, aluminum, titanium), plastic, and/or another material. Further, the indicator 110 can be configured to appear noticeably distinct from other components in the fitting assembly 100, so that an inspector can more easily determine whether the indicator 110 is visible or not. To facilitate this, for example, the indicator 110 can be arranged within the chamber portion 106 such that at least one surface of the indicator 110, such as surface 116 shown in
As shown, at the border of the chamber portion 106 and the threaded portion 104, the indicator 110 is positioned and held in place between the spring 114 and a ledge 117 that projects towards an interior space of the nut 102.
The retainer assembly 112 is configured to interlock with an inner surface 118 of the nut 102 (e.g., a surface of the wall of the chamber portion 106) and configured to interface with the spring 114 to retain the spring 114 within the chamber portion 106. The retainer assembly 112 can take the form of a single physical object or can include multiple physical objects that engage with each other to facilitate retention of the spring 114. As such, when the spring 114 is compressed during rotation of the nut 102, the indicator 110 moves within the chamber portion 106 without becoming dislodged or moved in an undesirable way. Thus, by extension, the retainer assembly 112 also retains the indicator 110 within the chamber portion 106. The retainer assembly can be made of metal and/or another material.
An example form that the retainer assembly 112 can take is shown in
The spring 114 can take the form of a compression spring, a plurality of spring washers, or another type of spring configured to compress and withstand the load caused by rotation of the nut 102 in coupling two components.
Next,
To facilitate coupling of the first component 152 to the second component 154, the indicator 110 is configured for engagement with, and positioning between, the spring 114 and the flange 156 of the first component 152. Further, the threaded portion 104 of the nut 102 is configured to threadably engage with the threaded section 158 of the second component 154 and to receive at least a portion of the first component 152, as will be described next.
As discussed above, the fitting assembly 100 is configured to receive the first component 152 and the second component 154 such that, when the nut 102 is rotated, a visibility of the indicator 110—namely, a visibility of surface 116 (e.g., a color-coated surface of the indicator 110)—through the one or more through-holes 108 changes. In the example shown in
In use, the first component 152 can be inserted into the threaded end of the nut 102 (i.e., the opening at the threaded portion 104 of the nut 102) until the flange 156 engages with the indicator 110. An end of the first component 152 can then be inserted partially into an opening located at the end of the second component 154 that has the threaded section 158. Before the nut 102 is tightened, the spring 114 is in an uncompressed state and the indicator 110 rests between the flange 156 and the spring 114. As the nut 102 is then tightened, the threaded section 158 of the second component 154 engages the threaded portion 104 of the nut 102 and the flange 156 pushes the indicator 110, which compresses the spring 114 between the indicator 110 and the retainer assembly 112. Due to the position of the plurality of through-holes and the movement of the indicator 110, the surface 116 of the indicator 110 thus becomes less visible through the plurality of through-holes as the nut 102 is rotated.
In alternative examples, the fitting assembly 100 can be configured such that, when the nut 102 is rotated, a visibility of the indicator 110 changes in a different way than the example shown in
The substantially L-shaped surface 166 can be configured to help retain the retaining ring 120 in the recess 124 in the inner surface 118 of the nut 102. In particular, when a force is exerted on the retainer 122 (e.g., by the spring 114 compressing against the spring interface surface 168), the retainer 122 will also push against the retaining ring 120, which causes the retaining ring 120 to push against the inner surface 118 in the recess 124, thereby locking the retaining ring 120 in the recess 124. Further, the chamfered surface 170 can include a 45° chamfer or a chamfer having a different shape and angle. The chamfered surface 170 can help provide wiggle room for the first component 152 in scenarios where there is intended or unintended flexion of the first component 152.
Furthermore,
Next,
The above-described advantages and visual indication of nut tightness can also be accomplished in various possible alternative examples of the fitting assembly 100, such as examples that include more or less components than the examples illustrated in
In the embodiment shown in
At block 202, the method 200 includes coupling a fitting assembly to the first component, where the fitting assembly comprises a nut comprising a threaded portion and a chamber portion, where the chamber portion comprises one or more through-holes, where the fitting assembly comprises an indicator slidably disposed within the chamber portion, where the fitting assembly comprises a retainer assembly disposed within the chamber portion and configured to interlock with an inner surface of the nut, where the fitting assembly comprises a spring disposed within the chamber portion between, and engaging, the indicator and the retainer assembly, where the retainer assembly is configured to interface with the spring to retain the spring within the chamber portion.
At block 204, the method 200 includes coupling the nut to the second component such that the second component receives a portion of the first component.
At block 206, the method 200 includes rotating the nut such that the threaded portion threadably engages with the second component and until a visibility of the indicator through the one or more through-holes changes.
Devices or systems may be used or configured to perform logical functions presented in
It should be understood that for these and other processes and methods disclosed herein, flowcharts show functionality and operation of one possible implementation of present examples. In this regard, each block or portions of each block may represent a module, a segment, or a portion of program code, which includes one or more instructions executable by a processor for implementing specific logical functions or steps in the process. The program code may be stored on any type of computer readable medium or data storage, for example, such as a storage device including a disk or hard drive. Further, the program code can be encoded on a computer-readable storage media in a machine-readable format, or on other non-transitory media or articles of manufacture. The computer readable medium may include non-transitory computer readable medium or memory, for example, such as computer-readable media that stores data for short periods of time like register memory, processor cache and Random Access Memory (RAM). The computer readable medium may also include non-transitory media, such as secondary or persistent long term storage, like read only memory (ROM), optical or magnetic disks, compact-disc read only memory (CD-ROM), for example. The computer readable media may also be any other volatile or non-volatile storage systems. The computer readable medium may be considered a tangible computer readable storage medium, for example.
In addition, each block or portions of each block in
Different examples of the system(s), device(s), and method(s) disclosed herein include a variety of components, features, and functionalities. It should be understood that the various examples of the system(s), device(s), and method(s) disclosed herein may include any of the components, features, and functionalities of any of the other examples of the system(s), device(s), and method(s) disclosed herein in any combination or any sub-combination, and all of such possibilities are intended to be within the scope of the disclosure.
The description of the different advantageous arrangements has been presented for purposes of illustration and description, and is not intended to be exhaustive or limited to the examples in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art. Further, different advantageous examples may describe different advantages as compared to other advantageous examples. The example or examples selected are chosen and described in order to best explain the principles of the examples, the practical application, and to enable others of ordinary skill in the art to understand the disclosure for various examples with various modifications as are suited to the particular use contemplated.