Printing devices operate to dispense a liquid onto a surface of a substrate. In some examples, these printing devices may include two-dimensional (2D) and three-dimensional (3D) printing devices. In the context of a 2D printing device, a liquid such as an ink may be deposited onto the surface of the substrate. In the context of a 3D printing device, an additive manufacturing liquid may be dispensed onto the surface of the substrate in order to build up a 3D object during an additive manufacturing process. In these examples, the print liquid is supplied to such printing devices from a reservoir or other supply. The print liquid reservoir holds a volume of print liquid that is passed to a liquid deposition device and ultimately deposited on a surface.
The accompanying drawings illustrate various examples of the principles described herein and are part of the specification, The illustrated examples are given merely for illustration, and do not limit the scope of the claims.
Throughout the drawings, identical reference numbers designate similar, but not necessarily identical, elements. The figures are not necessarily to scale, and the size of some parts may be exaggerated to more clearly illustrate the example shown. Moreover, the drawings provide examples and/or implementations consistent with the description; however, the description is not limited to the examples and/or implementations provided in the drawings.
Fluids such as printing fluids in a printing device and/or an additive manufacturing liquid in 3D printing devices are supplied to a deposition device from liquid supplies. Such liquid supplies come in many forms. For example, one such liquid supply is a pliable reservoir. Pliable reservoirs are simple in the manner in which they are made as well as their low cost. However, pliable reservoirs themselves are difficult to handle and couple to an ejection device. For example, it may be difficult for a user to physically manipulate a pliable reservoir into place within a printing device due to a lack of rigid structure around the pliable reservoir.
In examples described herein, the pliable reservoirs are disposed within a container, carton, box, or other similar structure. The container provides a structure that is relatively easier to be handled by a user. That is, a user can more easily handle a rigid container than a pliable reservoir alone. As a specific example, over the course of time, the liquid in a liquid supply is depleted such that the liquid supply is to be replaced by a new supply. Accordingly, ease of handling makes the replacement of liquid supplies more facile and leads to a more satisfactory consumer experience. Pliable containment reservoirs disposed within a rigid container may be, in some examples, referred to as bag-in-box supplies or bag-in-box liquid supplies. Such bag-in-box supplies thus provide easy handling along with simple and cost-effective manufacturing.
While the bag-in-box supplies provide certain characteristics that may further increase their utility and efficacy, in order to impart proper functionality of a printing device, a fluid-tight path is to be established between the reservoir and the printing device. To establish such a path, alignment between the reservoir and the ejection device components that receive the liquid from the reservoir may be formed. Due to the flimsy nature of pliable reservoirs, it may be difficult to ensure a proper alignment between the reservoir and the ejection device.
Accordingly, the present specification describes a print liquid reservoir and bag-in-box print liquid supply that creates a structurally rigid interface between a spout of the containment reservoir and an ejection system. That is, the present system locates, and secures, a spout of the reservoir in a predetermined location. Being thus secured, the spout through which print liquid passes from the containment reservoir to the ejection device should not rotate, flex or translate relative to the rigid container, but will remain stationary relative to the container. Affixing the spout in this fashion ensures that the spout will remain solid through installation and use.
The present specification describes a bag-in-box fluid supply. The bag-in-box fluid supply may, in any of the examples presented herein, include a bag comprising a spout extending therefrom, the spout comprising a flange coupled to a surface of the bag and comprising a lip formed on the spout distal to the bag. In any of the examples presented herein, the bag-in-box fluid supply may include a bag comprising a spout extending therefrom, the spout comprising a flange coupled to a surface of the bag and comprising a lip formed on the spout distal to the bag. The bag-in-box fluid supply may, in any of the examples presented herein, include a box formed around the bag to maintain the bag therein. In any of the examples presented herein, the bag-in-box fluid supply may include a wedge to wedge a surface of the box between the lip and a surface of the bag. The bag-in-box fluid supply, in any of the examples presented herein, may include a fluid interface to fluidically interface with the spout of the bag, the fluid interface comprising a fluidic channel and a collar disposed on a first end of the fluidic channel to secure the fluid interface to the spout.
In any of the examples presented herein, the bag-in-box fluid supply may include a spout wherein the surface of the spout including an intermediate ring formed around the spout. In any of the examples presented herein, the intermediate ring includes a first ramped surface. In any of the examples presented herein, the first ramped surface increases in width along a direct away from a first edge of the bag. In any of the examples presented herein, the wedge comprises a second ramped surface to interface with the first ramped surface and the lip.
In any of the examples presented herein, the fluid channel comprises a second end and wherein the second end includes a septum to selectively discharge fluid from the bag-in-box fluid supply. In any of the examples presented herein, a surface of the fluidic interface abuts with a surface of the box opposite a surface abutting the wedge. In any of the examples presented herein, the spout includes a number of ribs formed on an interior surface of the spout. In any of the examples presented herein, the ribs form an interference fit with a fluidic channel of the fluidic interface fluidically coupled to the bag.
The present specification also describes a coupling system of a printing fluid supply. The coupling system, in any of the examples presented herein, may include a pinch plate comprising a wedged-shaped surface, the wedge-shaped surface to wedge a surface of a box holding a fluid supply bag between the fluid supply bag and a distal flange formed on a spout of the fluid supply bag. In any of the examples presented herein, the coupling system may include a fluidic interface comprising a collar formed on a fluid channel, the fluid channel forming an interference fit within the spout of the fluid supply bag.
In any of the examples presented herein, the coupling system may include a surface of the spout that includes an intermediate ring formed around the spout. The intermediate ring, in any of the examples presented herein, may include a first ramped surface. In any of the examples presented herein, the first ramped surface increases in width along a direction away from a first edge of the printing fluid supply.
In any of the examples presented herein, the pinch plate of the coupling system may include a second ramped surface to interface with the first ramped surface and the lip.
In any of the examples presented herein, the fluidic interface of the coupling system forms a fluidic connection with a printing device. The fluidic interface, in any of the examples presented herein, abuts with a surface of the box opposite a surface abutting the wedge. In any of the examples presented herein, the spout includes a number of ribs formed on an interior surface of the spout and wherein the ribs form an interference fit with the fluidic channel of the fluidic interface.
The present specification further describes a replaceable printing fluid supply. In any of the examples presented herein, the replaceable printing fluid supply includes a fluidic interface. The replaceable printing fluid supply, in any of the examples presented herein, includes a pliable bag to maintain a volume of printing fluid therein. In any of the examples presented herein, the pliable bag includes a spout having an upper flange, wherein the fluidic interface is coupled to the spout via a fluidic channel. The replaceable printing fluid supply, in any of the examples presented herein, includes a container to hold the pliable bag. In any of the examples presented herein, the replaceable printing fluid supply includes a structural support that includes a wedge surface to couple the pliable bag and fluidic interface to a surface of the container by wedging the surface of the container to the upper flange.
In any of the examples presented herein, the surface of the spout of the replaceable printing fluid supply includes a ring formed around the spout intermediate to the pliable bag and upper flange. The intermediate ring, in any of the examples presented herein, includes a first ramped surface. In any of the examples presented herein, the first ramped surface increases in width along a direction away from a first edge of the pliable bag. In any of the examples presented herein, the wedge surface of the structural support interfaces with the first ramped surface and the upper flange.
As used in the present specification and in the appended claims, the term “print liquid supply” refers to a device that holds a print fluid. For example, the print liquid supply may be a pliable reservoir. Accordingly, a print liquid supply container refers to a carton or other housing for the print liquid supply. For example, the print liquid supply container may be a cardboard box in which the pliable containment reservoir is disposed.
Still further, as used in the present specification and in the appended claims, the term “print fluid” refers to any type of fluid deposited by a printing device and can include, for example, printing ink or an additive manufacturing fabrication agent. Still further, as used in the present specification and in the appended claims, the term “fabrication agent” refers to any number of agents that are deposited and includes for example a fusing agent, an inhibitor agent, a binding agent, a coloring agent, and/or a material delivery agent. A material delivery agent refers to a liquid carrier that includes suspended particles of at least one material used in the additive manufacturing process.
Turning to the figures,
In an example, the bag-in-box fluid supply (100) may include a bag (130). The bag (130) may include a spout (125) to maintain an amount of fluid in the bag (130) and to flow out of the bag (130) via the spout (125). The spout (125) may include a flange that is coupled to a surface of the bag (130). The spout (125) may also include a lip formed on the spout (125) distal to the bag (130). The lip formed on the spout (125) may be used to interface with a wedge (160) to secure a box (135) to the bag (130) and/or to the fluid interface (120).
The bag (130) may be made of a material that allows the deformation of the bag (130) while still preventing a fluid transfer (gases and/or fluids) out of the body of the bag (130) except through the spout (125). The bag (130) may maintain any amount of fluid therein and may be fluidically coupled to the fluid interface (120) via the spout (125) and a fluidic channel (115) formed in the fluid interface (120). The bag-in-box fluid supply (100) may, therefore, maintain an amount of fluid such as a printing liquid in order to provide that fluid to a printing device via the fluid interface (120). In some examples, the bag (130) may be gas impermeable as well to prevent gases from entering the bag (130) and mixing with the contents therein.
The wedge (160) may be referred to herein also as a clamp plate. The wedge (160) may include a slot defined by two wedge-shaped forked ends. The slot may receive and retains the spout of the bag (130). The shape of the wedge (160) is such so as to conform to an interior surface of a box (135) used to maintain the bag (130) therein. Because the wedge (160) is coupled to the spout (125) of the bag (130) and the body of the wedge (160) conforms to an interior surface of the box (135), the wedge (160) may prevent the bag (130) and/or the spout (125) of the bag (130) from translating within the box (135).
In any of the examples described herein, the box (135) may include a number of walls that form a cuboid shape. In any of the examples described herein, the box (135) may be made of a material that imparts structural support to the bag (130) to be maintained therein. Examples of materials that may be used to form the box (135) may include a fiberboard material. In an example, the box (135) may be made of a corrugated fiberboard material. In an example, the corrugated fiberboard material may be an f-fluted corrugated fiberboard material. Although, the present specification describes the box (135) as being made of a corrugated fiberboard material, the present specification contemplates that the material used to form the box (135) may include other fiberboards such as an uncorrugated fiberboard, a polymer, a metal, a plastic or other material. In an example, the box (135) may be formed from a single sheet of fiberboard material. In this example, the fiberboard material may be shaped by creating creases therein that produce fold locations.
The box (135), in this example, may then be folded such that the six walls of the cuboid shape may be formed. In an example, the box (135) may include a number of flaps that overlap at least one wall. The flap may be secured to a wall via an adhesive material.
The fluid interface (120) may include any number of fluidic channels (115). The fluidic channels (115) may selectively fluidically couple the bag (130) to a printing device using a number of valves. An interface between the bag (130) and the fluid interface (120) may include the fluidic channel (115) with a collar (105) formed on a proximal end of the fluidic channel (115). The collar (105) may, in any of the examples presented herein, help to couple the fluid interface (120) to the bag (130). In order to help couple the fluid interface (120) to the bag (130), the interface between the collar (105) and the fluidic channel (115) may include a lip (110) formed by the collar (105). In this example, the lip (110) is formed by the collar (105) having a relative larger diameter than the fluidic channel (115) and/or the spout (125). During a coupling process, the fluidic channel (115) and collar (105) subassembly may be press fitted through the spout (125) such that a first surface (140) of the collar (105) is exposed to an interior of the bag (130). Press fitting the collar (105) and fluidic channel (115) subassembly through the spout (125) allows the relatively larger diameter collar (105) to be pushed through the spout (125) until the lip reaches past a terminal end of the spout (125) thereby locking the collar (105) and fluidic channel (115) subassembly to the fluid interface (120). This may serve as the or one of the coupling systems used to couple the bag (130) to the fluid interface (120).
As second surface (145) of the collar (105) may include a barrel portion. The barrel portion may have an exterior surface that conforms to an interior surface of the fluidic channel (115).
In some examples, the collar (105) may be used at a location within the bag-in-box fluid supply (100) where, for example, impermeable fluid barriers are not present. In the example of
As described, the interface between the collar (105)/fluidic channel (115) subassembly and the spout (125) may serve as a fluid impermeable interface within the bag-in-box fluid supply (100). In order to provide this fluid impermeable interface, the spout (125) may include a number of ribs formed on an interior surface of the spout (125). The ribs may include any type of raised portion of the surface of the interior surface of the spout (125) that reduces the interior diameter of the spout (125). In some examples, the ribs may include raised rings formed on the interior surface of the spout (125). During assembly of the collar (105)/fluidic channel (115) subassembly to the spout (125), the collar (105)/fluidic channel (115) subassembly may be shoved into the spout (125) and past the ribs. The ribs allow for an interference fit between the collar (105)/fluidic channel (115) subassembly and the spout (125) thereby creating a fluid impermeable barrier within the fluid barrier (100).
The fluidic channel (115) may be any type of channel formed with the fluidic interface (120). Although
In any of the examples presented herein, the collar (105) may include a structurally supporting spoke. The structurally supporting spoke may be formed between interior surfaces of a via formed along the axis (155) of the collar (105). Any number of structurally supporting spokes may be formed between interior surfaces of the collar (105).
The printing fluid supply bag (205) may be similar to the bag (
The fluidic interface (220) may include a collar (235) similar to the collar (
The collar (300) may, in any of the examples presented herein, include a tapered surface (150). The tapered surface (150) may include an angle (320) the tapers from the first surface (140) out to the second surface (145) of the collar (300). The angle (320) may be between 18-25 degrees relative to an axis (155) of the collar (300). In any of the examples presented herein, the tapered surface (
In any of the examples presented herein, the exterior circumference of the collar (300) may be larger relative to an exterior circumference of the fluidic channel (
The spout (400) includes various features to ensure accurate and effective liquid transportation. Specifically, the spout (400) includes a sleeve (402) having an opening through which the print liquid passes. The sleeve (402) is sized to couple with a component of a liquid ejection device. For example, the sleeve (102) may be coupled to a receiver port within a printing device. Once coupled, liquid within the reservoir is drawn/passes through the sleeve (102) to the ejection device. That is, during operation forces within the ejection device draw liquid from the reservoir, through the sleeve (102) and into the ejection device. The ejection device then operates to expel the liquid onto a surface in a desired pattern.
The sleeve (402) may be cylindrical and formed of a rigid material, such as a rigid plastic, to facilitate secure coupling to the receiver port. The sleeve (402) may have an inside diameter of between 5 millimeters to 20 millimeters. For example, the sleeve (402) may have an inside diameter of between 10 millimeters and 15 millimeters. As a further example, the sleeve (402) may have an inside diameter of between 11.5 millimeters and 12.5 millimeters.
The spout (400) also includes a first flange (404). The first flange (404) extends outward from the sleeve (402) and affixes the spout (400) to the reservoir. For example, the reservoir may, in an empty state, include a front face and a back face. The front face may have a hole that is sized to allow a second flange (406) and the angled clamp flange (408) to pass through, but not the first flange (404). That is, the first flange (404) may have a diameter that is greater than a diameter of both the angled clamp flange (408) and the second flange (406).
Accordingly, in use, the first flange (404) may be disposed on one side, an interior side, of the front face and the second flange (406) and the angled clamp flange (408) may be disposed on the other side, an exterior side, of the front face. Heat and/or pressure may then be applied to the spout (400) and reservoir such that the first flange (404) material composition and/or the reservoir material composition alters such that the spout (400) and reservoir are permanently affixed to one another. In this fashion, the first flange (402) affixes the spout (400) to the reservoir.
The spout (400) also includes a second flange (406). The second flange (406) similarly extends outward from the sleeve (402). The second flange (406) affixes the spout (400) and corresponding reservoir to the container or box in which they are disposed. That is, during use, it is desirable that the spout (400) remains in one position and not move from that position. Were the spout (400) to move, this might affect the liquid delivery. For example, if the spout (400) were to translate, it may not line up with the interface on an ejection device such that liquid would not be delivered as desired to the ejection device or may not be delivered at all. Moreover, such a misalignment could result in liquid leak and/or damage to components of the ejection device or the liquid supply. Accordingly, the second flange (406), along with the angled clamp flange (408) operate to locate the spout (400) in a predetermined position without movement relative to a container.
More specifically, when installed, the second flange (406) sits on a wall of the container or box in which the reservoir is disposed, A clamp plate and a surface of the print liquid supply container are disposed and squeezed, between the second flange (406) and the angled clamp flange (408). The force between the second flange (406) and the container secures the spout (400) in place relative to the container. As the container is rigid, the spout (400) therefore is rigidly located as well.
The spout (400) also includes an angled clamp flange (408). As described above, the angled clamp flange (408), along with the second flange (406) securely affix the spout (402), and the reservoir to which it is attached, to the container such that it does not move relative to the container. Any relative movement between the container and the spout (402) may compromise the liquid path between the reservoir and the ejection device thus resulting in ineffective liquid delivery, liquid leaks, and/or component damage.
Specifically,
In some examples, the angled surface (510) has an angle of between 0.5 and 10 degrees relative to the straight surface (512). More specifically, the angled surface (510) has an angle between 0.5 and 8 degrees relative to the straight surface (512). In yet another example, the angled surface (510) has an angle between 0.5 and 3 degrees relative to the straight surface. The angled clamp flange (408) width increases along an insertion direction, which insertion direction is indicated in
Accordingly, the spout (400) as described herein is held firmly in place in a position relative to the container, such that the container and the reservoir move as one. Being so disposed, a user can manipulate the container knowing that the spout (400) will remain in that particular position, thus allowing alignment of the spout (400) with a liquid delivery system of the ejection device. Were the spout (400) not held firmly in place, movement of the spout (400) during insertion of the container into the printing device may occur, with such movement affecting the ability to establish a proper fluidic connection between the reservoir and the ejection device. In other words, the spout as described herein allows for the use of a pliable reservoir which can hold large quantities of fluid, is easily manufacturable, and is impermeable to liquid and air transfer, all while being simple to insert into an ejection device.
In some examples, additional features of the spout (400) may be present. Accordingly,
Once the sleeve (402) is properly aligned with the wall of the container, protrusions on the clamp plate fit into the notches (616) such that the clamp plate rotates to be parallel to, and adjacent with, the container. Following rotation, the angle of the angled clamp flange (408) forces a sliding clamp plate to compress the container wall against the second flange (406) thus providing the force to retain the spout (400) in place relative to the container. A specific example of the coupling of the spout (400) to the clamp plate is provided in connection with
In the specific example depicted in
As described above, the reservoir (822) holds any type of liquid such as ink to be deposited on a 2D substrate or an additive manufacturing fabrication agent to be disposed on a 3D build material. For example, in an additive manufacturing process, a layer of build material may be formed in a build area. A fusing agent may be selectively distributed on the layer of build material in a pattern of a layer of a three-dimensional object. An energy source may temporarily apply energy to the layer of build material, The energy can be absorbed selectively into patterned areas formed by the fusing agent and blank areas that have no fusing agent, which leads to the components to selectively fuse together.
Additional layers may be formed and the operations described above may be performed for each layer to thereby generate a three-dimensional object. Sequentially layering and fusing portions of layers of build material on top of previous layers may facilitate generation of the three-dimensional object. The layer-by-layer formation of a three-dimensional object may be referred to as a layer-wise additive manufacturing process.
The reservoir (822) may be any size and may be defined by the amount of liquid which it can hold. For example, the reservoir (822) may hold at least 100 millimeters of fluid. While specific reference is made to a reservoir (822) holding a particular amount of fluid, the reservoir (822) may hold any volume of fluid. For example, as depicted in
To hold the fluid, the reservoir (822) may have any number of dimensions, for example, the reservoir may be at least 48 millimeters tall and in some particular examples may be between 0 millimeters and 60 millimeters tall when the reservoir (822) is empty. Note that in the figures, references to relative positions such as top, bottom, side and dimensions such as height and width are for reference in the figures and are not meant to be indications of limiting the present description.
The reservoir (822) may be a dual-layer reservoir (822). In any example presented herein, the reservoir (822) may include a pliable front face and a pliable back face (not shown) when empty. The two may be directly joined together using a staking process. The reservoir (822) material is a fluid/air/vapor barrier to inhibit air entry or vapor exit. Specifically, the reservoir (822) may be formed out of a plastic film, a metallic film, or a combination thereof to inhibit air/vapor transfer. To have such properties, the front face and/or the back face may be formed of multiple layers, each layer being formed of a different material and having a different property.
In addition to having an offset (824) from a centerline of the reservoir (822), the spout (400) may have an offset from a top edge (826) of the reservoir (822) and may have an offset from a side edge (828) of the reservoir (822). Note that the directional indicators top, bottom, and side are used for explanatory purposes in the drawings and may change during operation. For example, the top edge (826) indicated in
Returning to the offsets, the spout (400) may be offset between 15 and 50 millimeters from the top edge (826) of the reservoir (822) and in some examples may be offset between 25 and 35 millimeters from a top edge (826) of the reservoir (822). Similarly, the spout (400) may be offset between 15 and 50 millimeters from the side edge (828) of the reservoir (822) and in some examples may be offset between 25 and 35 millimeters from the side edge (828) of the reservoir (822).
Each reservoir (822) may include a first wall (930) which may be a wall closest to an insertion point of the reservoir (822) into a container. Each reservoir (822) also includes a second wall (932) which may be opposite the first wall (930) and which in some examples is a wall furthest from the insertion point of the reservoir (822) into the container. That is, when installed, the first wall (930) may be the wall of the reservoir (822) nearest the opening through which the reservoir (822) and its container were installed and the second wall (932) may be the wall of the reservoir (822) furthest from the opening through which the reservoir (822) is installed.
As indicated in
The clamp plate (1036) includes various components to facilitate such an interface with the spout (
The forked ends (1038-1, 1038-2) may be wedge-shaped. Accordingly, during insertion, the angle of the wedge interfaces with the angle of the angled clamp plate (
In some examples, the clamp plate (1036) includes a number of sets of protrusions (1044, 1046) that interface with the spout (
The clamp plate depicted in
The bag-in-box print liquid supply (1248), in any of the examples presented herein, includes a collar (1305).
The bag-in-box print liquid supply (1500) may further include a number of alignment structures (1515) used to align a support element with the walls (1505) of the bag-in-box print liquid supply (1500). In an example, the support element includes the clamp plate (
The bag-in-box print liquid supply (1500), in an example, includes a channel (1525) through which the spout (
In any example described herein, any number of flaps (1510-1, 1510-2, 1510-3) may include a number of holes (1530) or voids formed therein. The holes (1530) may be used to maintain an amount of adhesive material therein as the liquid impermeable liquid bag (310) is being closed. In an example, the adhesive material may be used to adhere one of the flaps (1510-1, 1510-2, 1510-3) to another as well as adhere a number of the flaps (1510-1, 1510-2, 1510-3) to the back plate (
As depicted in
With the clamp plate assembly (1034) still at an angle relative to the spout (400), the two halves, i.e., 1) the container (1250) and 2) the reservoir (822), spout (400), and clamp plate assembly (1034) may be pressed together. The relative motion of these halves together moves the container (1250) underneath the second flange (406), but on top of the angled clamp flange (408) and the clamp plate assembly (1034) as indicated in
Once the reservoir (822), spout (400), and clamp plate assembly (1034) are fully seated, i.e., when the spout (400) is fully seated in the alignment slot in the container and the leading protrusions (
The clamp plate assembly (1034) can again be slid along the arrow (1854) as depicted in
As indicated in
The collar (1700) includes a first surface (1715) and a second surface (1720). The first surface (1715) may be the surface that is exposed to an interior of the pliable fluidic container where a fluid is maintained. The second surface (1720) may be the surface that is exposed to an interior of the fluidic channel (1705).
The collar (1700) may, at the second surface (1720) include a barrel (1725). The barrel (1725) may have an exterior surface (1735). The exterior surface (1735) contacts an interior surface of the fluidic channel (1705) and prevents the translation of the collar (1305) horizontally relative to the fluidic channel (1705) as shown in Fig, 17. The collar (1700) further includes an interior surface (1740). In any of the examples presented herein, the interior surface (1740) of the second surface (1720) of the collar (1700) may include a gasket interface (1745), The gasket interface (1745) may, in any of the examples presented herein, interface with a gasket used within the fluidic channel (1705). In this example, the gasket may interface with a valve ball that prevents backflow into the pliable fluidic container. In an example, however, the collar (1305) may not include a gasket interface (1745) and instead may have the interior surface (1740) of the collar (1700) interface with the ball described. In an example, the collar (1700) may not interface with a ball.
In any of the examples presented herein, the collar (1305) may include a flash trap (1730). The flash trap (1730) may be used during a welding process as a location where melted portions of the collar (1700) and/or fluidic channel (1705) may be maintained, Again, the collar (1700) may be laser welded to the fluidic channel (1705). During the laser welding process, some portion of the collar (1700) and/or first end of the fluidic channel (1705) may be melted. These melted portions may flow out of the interface between the collar (1700) and the fluidic channel (1705). If left, the melted portions of the collar (1700) and/or fluidic channel (1705) may subsequently harden so as to create bulges and/or sharp protrusions out of the collar (1700)/fluidic channel (1705) subassembly. The bulges and/or sharp protrusions may damage the interior surface of the spout (1710) leading to an incomplete fluid barrier (100). To prevent the formation of the bulges and/or sharp protrusions, the collar (1700) may include the flash trap (1730) formed between the collar (1700) and the fluidic channel (1705). The flash trap (1730) may receive an amount of the melted material from the collar (1700) and/or fluidic channel (1705) therein during the laser beam welding process.
The first surface (1715) may include a tapered surface (1750), The tapered surface (1750) may have an angle (1760) of between 18-25 degrees relative to an axis (1755) of the collar (1700). During the laser welding process of the collar (1700) to the fluidic channel (1705), the angle (1760) of the tapered surface (1750) may refract the laser light through the transparent or semi-transparent material of the collar (1700) so as to direct the laser light to the interface between the collar (1700) and the fluidic channel (1705). The laser light then melts an amount of material of either or both of the collar (1700) and fluidic channel (1705). The melted amount of material from either or both of the collar (1700) and fluidic channel (1705) may leak into the flash trap (1730) and be allowed to solidify. The flash trap (1730) thereby prevents an amount of melted material from leaking beyond the diameters of either the collar (1700) and/or fluidic channel (1705). The laser welding process may melt a layer of either or both of the collar (1700) and fluidic channel (1705) that is between 10-200 microns thick. In an example, the flash trap (1730) may have a volume of between 0.5 mm3 and 2 mm3. In an example, the flash trap (1730) may have a volume of 1.38 mm3.
The specification and figures describe a coupling system for a bag-in-box replaceable fluid supply. The coupling system allows for a pliable bag to be used to maintain an amount of liquid therein while still allowing a user to handle the bag-in-box in a more facile manner. This is accomplished by coupling the bag, the box, a fluidic interface, and a collar together using the properties of the collar and/or the structural support described herein. A user may more accurately insert the bag-in-box assembly coupled together into an interface without the box being resistant to change in orientation or damaged while being inserted. The box may be relatively easier to manufacture due to interface of the support element to the box, bag, fluidic interface, and collar.
The preceding description has been presented to illustrate and describe examples of the principles described. This description is not intended to be exhaustive or to limit these principles to any precise form disclosed. Many modifications and variations are possible in light of the above teaching.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/041957 | 7/13/2018 | WO | 00 |