Coupling unit and adjusting mechanism using the coupling unit

Information

  • Patent Grant
  • 7690726
  • Patent Number
    7,690,726
  • Date Filed
    Wednesday, December 21, 2005
    19 years ago
  • Date Issued
    Tuesday, April 6, 2010
    14 years ago
Abstract
A coupling unit (1) for adjustably mounting a support structure (6, 7) in a seat frame is provided, comprising first connecting means (2, 3) for connecting the support structure (6, 7) with the coupling unit (1) and second connecting means (4, 5) for connecting the coupling unit (1) with a pressure-transmitting element (8, 9) like a Bowden cable, wherein said second connecting means comprise a pressure area for receiving pressure from the pressure-transmitting element. Furthermore, an adjusting mechanism comprising the coupling unit with which a support structure may be adjusted in a seat frame is provided.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS.

This application claims priority to PCT/EP2005/013789 filed on Dec. 21, 2005; which claims priority to European Patent Application No. 05000498.5 filed Jan. 12, 2005.


The present invention relates to a coupling unit for adjustably mounting a support structure in a seat frame and a corresponding adjusting mechanism using the coupling unit. In particular, the present invention relates to a coupling unit usable in connection with a support structure having a wire framework comprising two lateral side wires and a plurality of transverse wires extending between the two lateral side wires and providing load bearing support for upholstery of a seat like a vehicle seat.


Support structures of the aforementioned kind are well-known in the art and may have various configurations determined by the design of a seat in which the support structure is to be mounted. Such a support structure is for example known from GB 2 342 287 A. The support structure disclosed in this prior art document comprises a wire framework having two lateral side wires suspendable in a seat frame and between which extend a plurality of transverse wires which provide load bearing support for upholstery of a seat. The transverse wires are attached to the lateral side wires by being wound around the latter in the form of a helix with an end portion of the respective transverse wire extending substantially perpendicular to the respective lateral side wire. Some of the transverse wires extend beyond the respective lateral side wire and terminate in free ends which can be formed as hook-like fingers for attachment to the seat frame, for example by providing eyes at the seat frame into which the hook-like fingers of the support structure may be hooked. Other known attachment means comprise springs for coupling the support structure with the seat frame.


Furthermore, it is known from EP 0 552 904 B1 to provide adjusting mechanisms for such support structures. The support structure disclosed in this prior art document is attached to a seat frame via springs, and Bowden cable mechanisms are provided with which the support structure can be pivoted at hinge points provided in lateral side wires thereof. A further mechanism without such hinges is known from U.S. Pat. No. 5,988,745 A.


In these support structures, the suspension of the support structure in the seat frame and the adjusting mechanism are realized separately, leading to an increased number of parts needed and therefore to additional costs.


It is therefore an object of the present invention to provide a coupling unit for adjustably mounting a support structure in a seat frame and a corresponding adjusting mechanism wherein it is possible to mount a support structure adjustably in a seat frame with a minimum number of parts needed and with a simple structure.


This object is achieved by a coupling unit according to claim 1. The dependent claims define preferred or advantageous embodiments of the coupling unit and an adjusting mechanism using said coupling unit.


According to the invention, a coupling unit for adjustably mounting a support structure in a seat frame is provided, comprising first connecting means for connecting the support structure with the coupling unit, and second connecting means for connecting the coupling unit with a pressure-transmitting element, wherein said second connecting means comprise a pressure area for receiving pressure from the pressure transmitting element.


With such a unit, a support structure may easily be connected with a pressure-transmitting element, which on the one hand may then be used to transmit pressure to the support structure to adjust the same and on the other hand to mount the support structure to a seat frame. Furthermore, by transmitting pressure to the pressure area, the support structure can be pushed in the direction of the pressure, while in conventional structures the support structure is usually pulled by a wire fixed in one point. Since in the present invention a pressure area is used, the force acting on a single point is reduced. Therefore, weaker materials which are cheaper may be used, e.g. plastic instead of steel.


The second connecting means may in particular be adapted for connecting the coupling unit with a pressure-transmitting element comprising a sleeve and a wire running within said sleeve, for example a Bowden cable. In this case, the sleeve serves for transmitting pressure by abutting against the pressure area, and the wire may serve to attach the support structure to the seat frame. To achieve this, the second connecting means may comprise a through hole extending from a first side of the coupling unit to a second side of the coupling unit, wherein the through hole may, at one side thereof, have a diameter corresponding to the outer diameter of the sleeve, and at the other side, a diameter corresponding to the outer diameter of the wire of the pressure transmitting element. In the through hole, a step or shoulder may be incorporated serving as the pressure area.


The coupling unit may be designed such that the direction in which the pressure is transmitted to the pressure area when the pressure-transmitting element is connected with the coupling unit via the second connecting means forms a non-zero angle with a plane defined by the support structure when connected with the coupling unit via the first connecting means.


Preferably, the first connecting means are designed for connecting the coupling unit with a support structure comprising two lateral side wires and a plurality of transverse wires extending therebetween. In this case, the first connecting means may in particular be designed for receiving one of said lateral side wires and one of said transverse wires, preferably by clips, so that the position of the coupling unit with respect to the support structure is fixed. As an alternative to the clips, a through hole may be provided for receiving a lateral side wire or a transverse wire.


A corresponding adjusting mechanism for a support structure comprises at least one of the aforementioned coupling units, a pressure transmitting element coupled with the coupling unit via the second connecting means and attachment means provided at the pressure-transmitting element for attaching the pressure transmitting element to a seat frame. In the preferred case that the pressure-transmitting element comprises a wire and a sleeve as described above, the attachment means may comprise a hook attached to the wire of the pressure-transmitting element.





In the following, preferred embodiments of the present invention are described in greater detail with reference to the accompanying drawings, wherein:



FIG. 1 is a perspective view of a first embodiment of a coupling unit according to the present invention,



FIG. 2 is a perspective view of a second embodiment of a coupling unit of the present invention,



FIG. 3 is a schematic sectional view taken along a line A-A of FIG. 1,



FIG. 4 is a sectional view of a third embodiment of a coupling unit according to the present invention,



FIG. 5 is a plan view of a support structure adjustably mounted in a seat frame using the coupling unit of the present invention, and



FIG. 6 is a schematic cross-sectional view of the support structure of FIG. 5.





In the following, embodiments of a coupling unit for adjustably mounting a support structure to a seat frame and an adjusting mechanism incorporating the coupling unit will be described. In the following specification, as an exemplary support structure a wire frame as described already in the introduction will be used, i.e. a wire frame comprising two lateral side wires and transverse wires connecting the lateral side wires. However, it is to be understood that the present invention may also be used in connection with other types of support structures, e.g. plate-like structures. Furthermore, as an exemplary pressure-transmitting element for applying pressure to the coupling unit, an element comprising a sleeve and a wire running within the sleeve like a Bowden cable is used.


In FIG. 1, a first embodiment of a coupling unit 1 is shown. The coupling unit 1 is preferably made of a plastic material like polyamide, in particular PA 6.6, by moulding or the like. The coupling unit 1 in the embodiment shown in FIG. 1 is used to couple a support structure having two lateral side wires and a plurality of transverse wires as explained above, of which a lateral side wire 6 and a transverse wire 7 are partially shown, with a pressure transmitting element having a sleeve 8 and a wire 9 running in the sleeve 8.


The coupling unit 1 is designed to connect with the support structure at a portion where the transverse wire 7 is fixed to the lateral side wire 6 by being would around the latter. To accommodate the lateral side wire 6 and the transverse wire 7, in the embodiment of FIG. 1 grooves or recesses are formed, wherein the lateral side wire 6 and the transverse wire 7 are clipped. In particular, the lateral side wire 6 is held between a main body of the coupling unit 1 and clipping side walls 2, whereas the transverse wire 7 is clipped between side walls 3, which are free standing to have the resiliency necessary so that the transverse wire 7 may be inserted and held securely between the side walls 3.


A socket 4 is provided at a side face of the coupling unit 1 and preferably integrally formed therewith. The socket 4 serves for receiving the sleeve 8 of the pressure transmitting element. An opening of the socket 4 for receiving the sleeve 8 forms one side of a through hole which extends through the coupling unit 1 to an opening 5 having a diameter slightly greater than an outer diameter of the wire 9, but smaller than an outer diameter of the sleeve 8, so that the wire 9 may pass through the opening 5 as shown in FIG. 1.


As can be seen, by means of the coupling unit 1 the pressure-transmitting element 8, 9 is securely coupled to the support structure having the lateral side wire 6 and the transverse wire 7.



FIG. 2 shows a second embodiment of the coupling unit which is a variant of the coupling unit 1 described with reference to FIG. 1. Consequently, only the differences between the coupling unit 1 shown in FIG. 1 and the coupling unit 1 shown in FIG. 2 will be explained.


In contrast to the coupling unit 1 shown in FIG. 1, in the coupling unit 1 shown in FIG. 2 no clipping mechanism, i.e. no side walls 3, for receiving the transverse wire 7 is provided. In contrast, the transverse wire 7 in FIG. 2 is accommodated in a through hole 10 extending through the coupling unit 1 of FIG. 2. Because of the through hole 10, the transverse wire 7 is fixed even more securely to the coupling unit 1 than in the embodiment of FIG. 1. With such a coupling unit the transverse wire 7 may be “shooted” through the coupling unit 1 during the production process, making manufacturing of a corresponding support structure very efficient.


As the transverse wire 7 is accommodated securely in the coupling unit 1 in the embodiment of FIG. 2, the side walls 2 holding the lateral side wire 6 in FIG. 1 are not absolutely necessary and may be left out or replaced by only a small clip 11.


Otherwise, the coupling unit 1 of FIG. 2 is similar to the coupling unit 1 of FIG. 1, in particular with respect to the accommodation of the pressure-transmitting element 8, 9.


In FIG. 3, a sectional view taken along a line A-A of FIG. 1 is illustrated showing in particular the through hole connecting the opening of the socket 4 with the opening 5. In particular, the through hole, starting from the opening of the socket 4, has a diameter corresponding to the outer diameter of the sleeve 8 of FIG. 1 until a step or a shoulder 12 is reached, where the through hole narrows and continues with a diameter corresponding to the outer diameter of the wire 9. When the pressure-transmitting element 8, 9 is accommodated in the through hole, an end portion or end face of the sleeve 8 where the wire 9 exits the sleeve 8 abuts against the shoulder 12 and therefore can transmit pressure onto the shoulder 12, which therefore acts as a pressure-receiving area. As will be explained later with reference to FIGS. 5 and 6, this can be used for adjusting a support structure.


Furthermore, as shown in FIG. 3, the side wall 2 has a nose 2A at an upper end thereof. The nose 2A has an angled portion at its upper side and a straight portion at its lower side. When the lateral side wire 6 is inserted into the coupling unit 1, it presses against the angled portion of the nose 2A and bends the nose 2A sidewards and can thus be inserted into the coupling unit 1. Because of the straight portion of the nose 2A at its lower side, the lateral side wire 6 then held securely in the coupling unit 1. However, the nose 2A is not a necessary feature, and the holding of the transverse wire 6 in the coupling unit 1 can be secured by other means. Furthermore, no special means for securing the lateral side wire 6 (and the transverse wire 7) in the coupling unit 1 may have to be taken if, in a structure like the one shown in FIG. 1, the wire 9 is constantly under tension so that the lateral side wire 6 and the transverse wire 7 are pressed into the corresponding grooves or recesses.


In FIG. 4, a sectional view of a third embodiment of a coupling unit 1 according to the present invention is shown which is a variant to the embodiments already described. In particular, FIG. 4 shows a cross-section in the same area as FIG. 3. In contrast to the embodiment of FIGS. 1-3, the lateral side wire 6 is not inserted from an upper side of the coupling unit 1 into the coupling unit, but from a lateral side thereof (the left side in FIG. 4). Therefore, a recess or groove is defined opening to that lateral side and being delimited on one side by a resilient side wall 13 having a nose 13A which has the same function as the side wall 2 having the nose 2A in FIG. 3.


It should be noted while connecting the coupling unit 1 to the support structure at an area where a transversal side wire is coupled with a lateral side wire gives a greater stability of the coupling in particular against rotation, in principle the coupling unit may be coupled to the lateral side wire 6 (or a transversal wire) only. In this case, as a matter of course only a recess or groove for the respective side wire has to be provided.


Next, with reference to FIGS. 5 and 6, an adjusting mechanism based on the coupling unit 1 described with reference to FIGS. 1-4 for adjustably mounting a support structure, generally designated with reference numeral 20, in a seat frame will be described.


The support structure 20, as already explained, comprises two lateral side wires 6 and a plurality of transverse wires 7 extending between the side wires 6, wherein for attaching the transverse wires 7 to the lateral side wires 6 the former are wound around the latter with their end portions. Some transverse wires 7 extend beyond the lateral side wires 6 to form free ends 16. End portions of the free ends 16 are bent to hook-like shapes. Furthermore, the support structure 20 comprises a central tube or cord 17 running basically parallel to the lateral side wires 6 and having through holes through which the transverse wires 7 pass. The central cord 17 serves to preserve a predefined spacing between the transverse wires 7. The transverse wires 7 as shown in FIG. 5 additionally have angled portions or convolutions which provide a transversal resiliency to the transverse wires 7. Such support structures 20 are known from the prior art documents cited in the introductory portion.


As shown in FIG. 5, the support structure 20 is mounted to a seat frame, of which only lateral portions 18 are shown. The lateral portions 18 of the seat frame have eyes 19. For attaching the support structure 20, the hook-like ends of the extended portions 16 are hooked into respective eyes 19.


Furthermore, near a lower end, each of the lateral side wires 6 is provided with a coupling unit 1. The coupling unit 1 may take any of the forms described above with reference to FIGS. 1 through 4. It should be noted that the coupling units 1 may be connected with the support structure during manufacture of the latter, which is in particular advantageous in connection with the embodiment of FIG. 2. It is also possible that the coupling units are directly molded onto the support structure 20.


Furthermore, in each of the coupling units 1, a pressure-transmitting element having a sleeve 8 and a wire 9 running in the sleeve is accommodated as also already described with reference to FIGS. 1 through 4. At an end portion of each of the wires 9, hooks 14 are attached which are hooked into further ones of the eyes 19. The pressure transmission elements may in particular be Bowden cables.


Therefore, by means of the coupling units 1 and the pressure-transmitting elements 8, 9, a further connection of the support structure 20 with the side portions 18 of the seat frame is established. It should be noted that the hook-like end portions of the extended portions 16 and also the hooks 14 need not be directly hooked into the eyes 19 but may also be connected with the side portions 18 for example via springs.


Ends of the pressure-transmitting elements 8, 9 not coupled to the coupling units end in an actuator unit 15. By means of the actuator unit 15, the length of the wires 9 running in the sleeves 8 may be lengthened or shortened, for example by winding the wires 9 onto a drum rotated by an electric motor. Such actuator means are well-known in the art and need not be described in detail.


When the wires 9 are shortened, e.g. wound on the drum, the ends of the sleeves 8 exert pressure on the shoulders 12 of the coupling units 1 (see FIGS. 3, 4), so that the respective portions of the lateral side wires 6 are pushed towards the eyes 19 in which the respective wires 9 are anchored by means of the hooks 14. As the eyes 19 are located closer to a surface side of the seat frame against which, in the complete seat, a back of an occupant is rested, this means that the lower portion of the support structure 20 is pulled toward the back of the occupant. This can be easier understood with reference to FIG. 6 showing a sectional view of the structure of FIG. 5. Here, it can be seen that the eyes 19 are located closer toward a back 21 (indicated schematically as a dashed line) of an occupant than the support structure 20. Therefore, when the wires 9 are shortened as described above, the sleeves 8 of the pressure-transmitting elements push the portion of the support structure 20 where the coupling units 1 are provided toward the back 21. The portion where the coupling units 1 are provided may for example correspond to a lumbar portion of the seat so as to provide an adjustable lumbar support for the occupant. However, the mechanism may also serve to provide adjusting support at other portions of the seat, for example a shoulder portion, or may be also applied to a seat portion upon which an occupant is seated.


It should be noted that since, as seen in FIG. 5, the wires 9 leave the coupling units 1 on an inner side of the lateral side wires 6, i.e. the side facing the respective other lateral side wire 6, the coupling units 1 tend to be rotated slightly around the lateral side wires 6 when the wires 9 are shortened, which brings the ends of the transverse wire 7 coupled with the coupling units 1 even closer to the back 21, providing a stronger adjustment.


As already described above, the support structure 20 shown in FIG. 5 having the lateral side wires 6 and the transverse wires 7 serves only as an example, and other support structures, like plate-like support structures, may be used as well. In this case, the portions of the coupling units 1 which serve to connect the coupling unit 1 with the support structure have to be adapted accordingly. Furthermore, while the coupling units 1 are preferably made of a plastic material, other materials like metals are possible as well.


In summary, the coupling units of the present invention provide an efficient means for adjustably coupling a support structure with a seat frame, making the production of adjustable seat structures easier and faster.

Claims
  • 1. A coupling unit for adjustably mounting a support structure in a seat frame, comprising first connecting means for connecting the coupling unit with the support structure, and second connecting means for connecting the coupling unit with a pressure-transmitting element, wherein said second connecting means comprise a pressure area for receiving pressure from said pressure-transmitting elementwherein the second connecting means are designed for connecting the coupling unit with a pressure-transmitting element comprising a sleeve and a wire located within the sleeve, andwherein the second connecting means comprise a through hole extending between two faces of the coupling unit, wherein a first diameter of a first opening of the through hole corresponds to an outer diameter of said sleeve and a second diameter of a second opening of the through hole corresponds to an outer diameter of said wire.
  • 2. The coupling unit according to claim 1, wherein the second connecting means comprise a socket for receiving the pressure-transmitting element.
  • 3. The coupling unit according to claim 1, wherein the through hole comprises a step forming said pressure area at a location where the diameter of the through hole changes from said first diameter to said second diameter.
  • 4. The coupling unit according to claim 1, wherein said first connecting means are designed for coupling the coupling unit with at least one wire of the support structure.
  • 5. The coupling unit according to claim 4, wherein said first connecting means comprise clipping means for clipping the at least one wire into the coupling unit.
  • 6. The coupling unit according to claim 4, wherein said first connecting means comprise a further through hole for receiving a wire of the at least one wire.
  • 7. The coupling unit according to claim 4, wherein the at least one wire comprises a lateral side wire and a transverse wire coupled to the lateral side wire such that the transverse wire runs basically perpendicular to the lateral side wire.
  • 8. The coupling unit according to claim 1, wherein the second connecting means are designed such that a pressure-transmitting element accommodated in said second connecting means exerts pressure on the coupling unit in a direction forming a non-zero angle with a plane defined by said support structure when connected with the coupling unit via the first connecting means.
  • 9. The coupling unit according to claim 1, wherein the coupling unit is formed in one piece.
  • 10. The coupling unit according to claim 1, wherein the coupling unit is made of plastic material.
  • 11. An adjusting mechanism for adjustably mounting a support structure in a seat frame, comprisingat least one coupling unit, said coupling unit comprising: first connecting means for connecting the coupling unit with the support structure, andsecond connecting means for connecting the coupling unit with a pressure-transmitting element, wherein said second connecting means comprise a pressure area for receiving pressure from said pressure-transmitting element, andat least one pressure-transmitting element connected to said at least one coupling unit, said pressure-transmitting element further comprising attachment means for attaching the pressure-transmitting element to said seat framewherein the second connecting means are designed for connecting the coupling unit with a pressure-transmitting element comprising a sleeve and a wire located within the sleeve, andwherein the second connecting means comprise a through hole extending between two faces of the coupling unit, wherein a first diameter of a first opening of the through hole corresponds to an outer diameter of said sleeve and a second diameter of a second opening of the through hole corresponds to an outer diameter of said wire.
  • 12. The adjusting mechanism according to claim 11, wherein said at least one pressure-transmitting element comprises a sleeve and a wire located in that sleeve, wherein said sleeve abuts against a pressure area of said at least one coupling unit and said attachment means are attached to said wire.
  • 13. The adjusting mechanism according to claim 12, wherein the adjusting mechanism further comprises actuator means for reversibly shortening the effective length of said wire.
  • 14. A seat structure, comprising a support structure,a seat frame, andan adjusting mechanism comprising: at least one coupling unit, said coupling unit comprising: first connecting means for connecting the coupling unit with the support structure, andsecond connecting means for connecting the coupling unit with a pressure-transmitting element, wherein said second connecting means comprise a pressure area for receiving pressure from said pressure-transmitting element, andat least one pressure-transmitting element connected to said at least one coupling unit, said pressure-transmitting element further comprising attachment means for attaching the pressure-transmitting element to said seat frame,said adjusting mechanism adjustably mounting said support structure to said seat frame wherein the second connecting means are designed for connecting the coupling unit with a pressure-transmitting element comprising a sleeve and a wire located within the sleeve, andwherein the second connecting means comprise a through hole extending between two faces of the coupling unit, wherein a first diameter of a first opening of the through hole corresponds to an outer diameter of said sleeve and a second diameter of a second opening of the through hole corresponds to an outer diameter of said wire.
  • 15. The seat structure according to claim 14wherein said support structure comprises two lateral side wires and transverse wires running between the lateral side wires.
Priority Claims (1)
Number Date Country Kind
05000498 Jan 2005 EP regional
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2005/013789 12/21/2005 WO 00 5/28/2008
Publishing Document Publishing Date Country Kind
WO2006/074794 7/20/2006 WO A
US Referenced Citations (152)
Number Name Date Kind
1182854 Poler May 1916 A
2756809 Endresen Jul 1956 A
2843195 Barvaeus Jul 1958 A
2922416 Fader Jan 1960 A
2942651 Binding Jun 1960 A
3378299 Sandor Apr 1968 A
3490084 Schuster Jan 1970 A
3492768 Schuster Feb 1970 A
3724144 Schuster Apr 1973 A
3762769 Poschl Oct 1973 A
3880463 Shephard et al. Apr 1975 A
4014422 Morishita Mar 1977 A
4136577 Borgersen Jan 1979 A
4153293 Sheldon May 1979 A
4156544 Swenson et al. May 1979 A
4182533 Arndt et al. Jan 1980 A
4295681 Gregory Oct 1981 A
4313637 Barley Feb 1982 A
4316631 Lenz et al. Feb 1982 A
4354709 Schuster Oct 1982 A
4390210 Wisniewski et al. Jun 1983 A
4449751 Murphy et al. May 1984 A
4452485 Schuster Jun 1984 A
4465317 Schwarz Aug 1984 A
4494709 Takada Jan 1985 A
4541670 Morgenstern et al. Sep 1985 A
4555140 Nemoto Nov 1985 A
4556251 Takagi Dec 1985 A
4561606 Sakakibara et al. Dec 1985 A
4564235 Hatsutta et al. Jan 1986 A
4565406 Suzuki Jan 1986 A
4576410 Hattori Mar 1986 A
4601514 Meiller Jul 1986 A
4602819 Morel Jul 1986 A
4627661 Ronnhult et al. Dec 1986 A
4630865 Ahs Dec 1986 A
4632454 Naert Dec 1986 A
4676550 Neve De Mevergnies Jun 1987 A
4679848 Spierings Jul 1987 A
4730871 Sheldon Mar 1988 A
4880271 Graves Nov 1989 A
4909568 Dal Monte Mar 1990 A
4915448 Morgenstern Apr 1990 A
4950032 Nagasaka Aug 1990 A
4957102 Tan et al. Sep 1990 A
4968093 Dal Monte Nov 1990 A
5005904 Clemens et al. Apr 1991 A
5022709 Marchino Jun 1991 A
5026116 Dal Monte Jun 1991 A
5050930 Schuster et al. Sep 1991 A
5076643 Colasanti et al. Dec 1991 A
5088790 Wainwright et al. Feb 1992 A
5112106 Asbjornsen et al. May 1992 A
5137329 Neale Aug 1992 A
5174526 Kanigowski Dec 1992 A
5186412 Park Feb 1993 A
5197780 Coughlin Mar 1993 A
5215350 Kato Jun 1993 A
5217278 Harrison et al. Jun 1993 A
5286087 Elton Feb 1994 A
5299851 Lin Apr 1994 A
5335965 Sessini Aug 1994 A
5385531 Jover Jan 1995 A
5397164 Schuster Mar 1995 A
5423593 Nagashima Jun 1995 A
5449219 Hay et al. Sep 1995 A
5452868 Kanigowski Sep 1995 A
5474358 Maeyaert Dec 1995 A
5498063 Schuster et al. Mar 1996 A
5505520 Frusti et al. Apr 1996 A
5507559 Lance Apr 1996 A
5518294 Ligon, Sr. et al. May 1996 A
5553917 Adat et al. Sep 1996 A
5562324 Massara et al. Oct 1996 A
5567010 Sparks Oct 1996 A
5567011 Sessini Oct 1996 A
5588703 Itou Dec 1996 A
5609394 Ligon, Sr. et al. Mar 1997 A
5626390 Schuster et al. May 1997 A
5638722 Klingler Jun 1997 A
5651583 Klingler et al. Jul 1997 A
5651584 Chenot et al. Jul 1997 A
5704687 Klingler Jan 1998 A
5716098 Lance Feb 1998 A
5718476 De Pascal et al. Feb 1998 A
5758925 Schrewe et al. Jun 1998 A
5762397 Venuto et al. Jun 1998 A
5769491 Schwarzbich Jun 1998 A
5772281 Massara Jun 1998 A
5775773 Schuster et al. Jul 1998 A
5788328 Lance Aug 1998 A
5791733 Van Hekken et al. Aug 1998 A
5816653 Benson Oct 1998 A
5823620 Le Caz Oct 1998 A
5857743 Ligon, Sr. et al. Jan 1999 A
5868466 Massara et al. Feb 1999 A
5884968 Massara Mar 1999 A
5897168 Bartelt et al. Apr 1999 A
5911477 Mundell et al. Jun 1999 A
5913569 Klingler Jun 1999 A
5934752 Klingler Aug 1999 A
5975632 Ginat Nov 1999 A
5984407 Ligon, Sr. et al. Nov 1999 A
5988745 Deceuninck Nov 1999 A
6003941 Schuster, Sr. et al. Dec 1999 A
6007151 Benson Dec 1999 A
6030041 Hsiao Feb 2000 A
6036265 Cosentino Mar 2000 A
6045185 Ligon, Sr. et al. Apr 2000 A
6050641 Benson Apr 2000 A
6079783 Schuster, Sr. et al. Jun 2000 A
6089664 Yoshida Jul 2000 A
6092871 Beaulieu Jul 2000 A
6129419 Neale Oct 2000 A
6139102 Von Möller Oct 2000 A
6152531 Deceuninck Nov 2000 A
6152532 Cosentino Nov 2000 A
6158300 Klingler Dec 2000 A
6227617 Von Möller May 2001 B1
6227618 Ligon, Sr. et al. May 2001 B1
6254186 Falzon Jul 2001 B1
6254187 Schuster, Sr. et al. Jul 2001 B1
6270158 Hong Aug 2001 B1
6296308 Cosentino et al. Oct 2001 B1
6334651 Duan et al. Jan 2002 B1
6338530 Gowing Jan 2002 B1
6364414 Specht Apr 2002 B1
6430801 Cosentino Aug 2002 B1
6499803 Nakane et al. Dec 2002 B2
6520580 Hong Feb 2003 B1
6536840 Schuster, Sr. et al. Mar 2003 B1
6601919 Deceuninck Aug 2003 B1
6616227 Blendea et al. Sep 2003 B2
6644740 Holst et al. Nov 2003 B2
6652029 McMillen Nov 2003 B2
6666511 Schuster et al. Dec 2003 B2
6676214 McMillen et al. Jan 2004 B2
6682144 Klingler Jan 2004 B2
6905170 McMillen et al. Jun 2005 B2
6994399 Van-Thournout et al. Feb 2006 B2
7137664 McMillen et al. Nov 2006 B2
7140680 McMillen et al. Nov 2006 B2
7252335 Samain et al. Aug 2007 B2
20030015901 Och et al. Jan 2003 A1
20030071501 Cruz Fernandes de Pinho Apr 2003 A1
20030085600 Mori May 2003 A1
20030111885 McMillen Jun 2003 A1
20040140705 McMillen et al. Jul 2004 A1
20040155501 McMillen et al. Aug 2004 A1
20050040686 Van-Thournout et al. Feb 2005 A1
20050200178 Samain et al. Sep 2005 A1
20090184552 Vanparys et al. Jul 2009 A1
Foreign Referenced Citations (38)
Number Date Country
401497 Sep 1996 AT
2040794 Jul 1971 DE
2064419 Jul 1972 DE
2947472 Aug 1980 DE
3616155 Nov 1987 DE
3624396 Jan 1988 DE
4220995 Jan 1994 DE
19750116 May 1999 DE
10005215 Sep 2001 DE
20107424 Nov 2001 DE
0006840 Feb 1982 EP
0169293 Oct 1988 EP
0296938 Dec 1988 EP
0322535 Jul 1989 EP
0540481 May 1993 EP
0563709 Oct 1993 EP
0485483 Jan 1994 EP
0434660 May 1995 EP
0540481 Dec 1995 EP
0662795 Dec 1996 EP
0702522 Mar 1997 EP
0696251 Jul 1997 EP
0746219 Nov 1998 EP
0797399 Nov 1998 EP
0698360 Mar 2000 EP
1046539 Oct 2000 EP
2596334 Oct 1987 FR
849798 Sep 1960 GB
1423617 Feb 1976 GB
2013487 Aug 1979 GB
2059497 Apr 1981 GB
2384176 Jul 2003 GB
2002102011 Sep 2002 JP
587924 Feb 1978 RU
WO0000064 Jan 2000 WO
WO 03022626 Mar 2003 WO
WO 2004043207 May 2004 WO
WO 2004043730 May 2004 WO
Related Publications (1)
Number Date Country
20080284232 A1 Nov 2008 US