This disclosure relates to the field of couplings for hoses, pipes, and the like, in particular, quick-disconnect cam-and-groove couplings enabling fluid transfer.
A coupler assembly is provided and includes an adapter body, a coupler body, a sealing ring, at least one cam arm, at least one safety-release tab, and at least one vent channel. The adapter body has a sidewall extending between opposite open ends and a circumferential groove in an outer periphery of the sidewall. The coupler body has a sidewall defining an adapter-receiving socket therein between opposite open ends. The sealing ring is housed within the coupler body and is captured between an end wall flange of the coupler body at a base of the adapter-receiving socket and a radially inward extending gasket retaining lip of the coupler body spaced from the end wall flange. The at least one cam arm is connected to the sidewall of the coupler body and is able to pivot relative to the coupler body from an unlocking position in which a camming surface of the cam arm is pivoted out of the adapter-receiving socket and a locking position in which the camming surface of the cam arm is pivoted into the adapter-receiving socket through an opening in the sidewall of the coupler body for engagement with the circumferential groove of the adapter body for locking the adapter body within the coupler body in a condition in which a fluid-tight seal is formed by the sealing ring between the adapter body and the coupler body. The at least one safety-release tab is connected to the sidewall of the coupler body such that the at least one safety-release tab is resiliently pivoted relative to the coupler body between a normal position that prevents release of the adapter body from the coupler body and a release position that permits release of the adapter body from the coupler body. The at least one vent channel is formed in the sidewall of the coupler body within the adapter-receiving socket and extends from the end wall flange to beyond the gasket retaining lip of the coupler body adjacent an outer periphery of the sealing ring.
A coupling assembly 1 in an uncoupled condition is shown in
Accordingly, the hollow and generally cylindrical adapter body 20 has a single outer circumferential groove 24 in an outer wall surface 22 thereof and is of a size that is receivable within the hollow coupler body 10. In a coupled condition, the sealing ring 30 is compressed between an end or free face of the adapter body 20 and an end wall flange of the coupler body 10 to form a fluid-tight seal within the coupling assembly 1. For instance, see
According to embodiments disclosed herein, the coupler body 10 also includes an opposed pair of resiliently biased safety-release tabs 50 that are offset and separate from the cam arms 41. While a pair of tabs 50 are illustrated, one or more than two tabs 50 can be provided on the coupler body 10.
When the adapter body 20 is initially inserted into the coupler body 10, the tabs 50 are forced to pivot about the cylindrical body of the pin 60 and deflect outwardly thereby freely permitting passage of the adapter body 20 (for instance, see
The tabs 50 are located at a position on the coupler body 10 that permits the adapter body 20 to slide within the coupler body 10 to a position such that the adapter body 20 no longer forms a seal with the coupler body 10 via the sealing ring 30 and to thereby provide a small gap forming a safety vent path to safely release any pressure within the coupling without the adapter body 20 being completely separated from the coupling body 10. For instance, see
The adapter body 20, which is shown in the form of a plug in the illustrated embodiment, but which can have an open end secured to a hose or like conduit discussed above, is hollow and has a relatively cylindrical outer wall surface 22. The circumferential groove 24 is formed in a generally medial portion of the outer wall surface 22 at a spaced distance from the leading or free end 21 of the adapter body 20 which is adapted to engage the sealing ring 30. A rear radius 23 is formed in the adapter body 22 and transitions the groove 24 into the outer wall surface 22 adjacent the leading end 21 of the adapter plug 20. The rear radius 23 forms an edge of the groove 24.
The coupler body 10 is also hollow and includes an inner peripheral wall that defines a socket in which the adapter body 20 may be inserted and an outer peripheral wall in which an opposed pair of cam arms 41 having rings 42 and an opposed pair of safety release tabs 50 are secured. For instance, each cam arm 41 is secured to the coupler body 10 between a pair of cam ears 12 through which a pin 60 is extended thereby permitting the cam arms 41 to be manually pivoted relative to the coupler body 10 between a locking position in which camming surfaces (not shown) of the cam arms 41 extend within the groove 24 to engage the adapter body 20 and an unlock position in which the camming surface do not extend with the groove 24 of the adapter body 20. Each tab 50 is mounted to the coupler body 10 between a pair of tab ears 13 with a pin 60 permitting the tabs to pivot thereabout.
The sealing ring 30 is positioned within the coupler body 10 between an end wall flange of the coupler body 10 and a gasket retaining lip 11 at the base of the adapter-receiving socket within the coupler body 10. Although the end wall of the coupler body 20 is shown as being closed, it would have an opening for connection to a hose or the like. When the cam arms 41 are in the locked position and the cams thereof extend within the groove 24 of the adapter body 20, the adapter body 20 is locked within the coupler body 10 and forms a fluid tight seal therewith via the sealing ring 30 being compressed therebetween. When the cam arms 41 are pivoted such that the cams are withdrawn from the groove 24 of the adapter body 20, this permits the adapter body 20 to slide out of engagement with the sealing ring 30 and releases the seal. If there is pressure in the system upon release of the adapter body 20 from the cams of the cam arms 41, the sealing ring 30 is forced toward and against the gasket retaining lip 11 thereby permitting venting of pressure about the outside of the sealing ring 30 via vent channels 70 formed in the inner wall of the coupler body 10. For instance, see
When initially forming a coupling, the coupling body 10 and adapter body 20 are in the position shown in
Upon further advancement of the adapter body 20 into the coupler body 10, the leading edge 21 of the adapter body 20 will engage the passive slide faces 52 of each of the opposed tabs 50. See
When the location of the rear radius 23 of the groove 24 of the adapter body 20 reaches the working faces 51 of the tabs 50, the tabs 50 are pivoted inward due to the force of the springs 61. See
Upon withdraw of the adapter body 20 out of the coupler body 10, the cam arms 41 may be pivoted outward to withdraw the cams from the groove 24 of the adapter body 20. In the event pressure remains within the system, which may otherwise cause the adapter body 20 to be undesirably blown out of the coupler body 10, the rear radius 23 of the groove 24 of the adapter body 20 will come into engagement with the working faces 51 of the tabs 50. For instance, see
After venting has completed, the tabs 50 can be manually pressed and pivoted by hand to withdraw the working faces 51 of the tabs 50 out of engagement with the adapter body 20. Thus, the adapter body 20 may then be slid past the tabs 50 and fully removed from the coupler body 10.
The cam arms 41 may be located on the coupler body 10 closer to the base of the adapter-receiving socket than the safety-release tabs 50, and the cam arms 41 and the safety-release tabs 50 may be equally spaced apart circumferentially about the sidewall of the coupler body 10. In addition, each of the vent channels 70 may be provided in the form of a longitudinally extending groove formed an inner peripheral surface of the coupler body 10.
By way of example, and not by way of limitation, the coupler body 10 and adapter body 20 may be provided in 1½, 2, 3, and 4-inch sizes or greater and may be made of aluminum, brass, stainless steel, steel and steel alloys, iron, plastic or composite materials.
The foregoing description and specific embodiments are merely illustrative of the principles thereof, and various modifications and additions may be made to the apparatus by those skilled in the art, without departing from the spirit and scope of this invention.
This application claims the benefit under 35 USC § 119(e) of U.S. Provisional Patent Application No. 62/889,424 filed Aug. 20, 2019.
Number | Name | Date | Kind |
---|---|---|---|
3124374 | Krapp | Mar 1964 | A |
3314698 | Owens | Apr 1967 | A |
4295670 | Goodall et al. | Oct 1981 | A |
4647075 | Margo | Mar 1987 | A |
4802694 | Vargo | Feb 1989 | A |
5042850 | Culler | Aug 1991 | A |
5338069 | McCarthy | Aug 1994 | A |
6047995 | Kotake | Apr 2000 | A |
7354077 | Jumonville | Apr 2008 | B1 |
8235425 | Eich | Aug 2012 | B2 |
9347593 | Wawchuk | May 2016 | B2 |
9562639 | Hartman et al. | Feb 2017 | B1 |
9695968 | Hartman et al. | Jul 2017 | B1 |
9732894 | Hartman et al. | Aug 2017 | B1 |
10274119 | Hartman et al. | Apr 2019 | B2 |
10295098 | Hartman et al. | May 2019 | B2 |
10295099 | Hartman et al. | May 2019 | B2 |
10400930 | Micken et al. | Sep 2019 | B2 |
20160245442 | Micken et al. | Aug 2016 | A1 |
20160298799 | Lee | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
3222937 | Dec 1983 | DE |
0104819 | Apr 1984 | EP |
1211186 | Jun 2002 | EP |
2211258 | Jun 1989 | GB |
2017115949 | Jun 2017 | JP |
WO-2009137320 | Nov 2009 | WO |
2011139152 | Nov 2011 | WO |
Entry |
---|
P. Schwindt et al., Tech Transfer—NASA's Kennedy Space Center Innovative Partnerships, New Technology Report, “Cam-and-Groove Hose Coupling Halves Safety Modification”, vol. 4, No. 1, p. 3, 2011 (month unknown). |
Number | Date | Country | |
---|---|---|---|
20210054958 A1 | Feb 2021 | US |
Number | Date | Country | |
---|---|---|---|
62688494 | Aug 2019 | US |