The invention relates to electric lighting. More particularly, the invention relates to light fixtures for indirect lighting.
Well-developed fields exist in indirect lighting and architectural lighting fixtures. A particular area of indirect lighting is known as cove lighting. In a typical cove lighting situation, an upwardly open channel structure is built along a wall near the ceiling. The wall may be a side wall of the room, a sidewall of a recess in the ceiling, a side surface of a beam, or the like. Light bulbs are mounted within the channels so that the emitted light escapes generally upward to directly light the wall and ceiling above and, indirectly, an interior of the room and its contents. The channels are built with conventional building techniques involving framing, sheetrocking/plastering, and the like.
Alternatives involve elongate fixtures used for cove lighting. Such fixtures typically include an elongate bulb within an elongate reflector positioned so that light from the bulb and reflector does not directly pass to objects within a room but, rather, is first diffusely reflected from a ceiling, wall, or other architectural feature. Such fixtures may be assembled end-to-end in lieu of placing fixtures within a preexisting channel. Exemplary systems are shown in U.S. Pat. Nos. 4,881,156, 5,550,725, 7,249,870 and 7,658,518. Although its prior art status is unclear, a so-called “edgeless cove” lighting system from Whitegoods Lighting Ltd. has a tapering edge extrusion having a recess which receives wallboard forming the underside of the cove perimeter.
Accordingly, one aspect of the invention involves a light apparatus mounted to a surface of a building. The apparatus has at least one elongate mounting extrusion engaged to the surface. At least one elongate trim extrusion is mounted to the mounting extrusion and extends forward therefrom. The trim extrusion has a forward edge and an upwardly and rearwardly sloping surface extending from the edge. At least one light source is mounted to at least one of the mounting extrusion and trim extrusion.
Another aspect of the invention involves a light apparatus having at least one light source. First means is installable to a building wall for mounting a remainder of the apparatus to the wall. Trim means presents a rearwardly-diverging edge portion.
Another aspect of the invention involves a method for assembling a light apparatus to the surface of a building. At least one mounting extrusion is screwed to the surface. At least one trim extrusion is downwardly hinged to the at least one mounting extrusion. A plurality of light sources are assembled to at least one of the trim extrusions and mounting extrusions.
Another aspect of the invention involves a light apparatus comprising at least one light source. First means is installable to a vertical surface of a blocking member, the cove wall of a building for mounting a remainder of the apparatus to the wall and for receiving a skim coat across a junction with a wallboard member. Trim means is mountable to the first means.
Another aspect of the invention involves a method for assembling a light apparatus to a vertical surface of a blocking member of a cove of a wall of a building. At least one mounting extrusion is secured to the surface. At least one trim extrusion is mounted to the at least one mounting extrusion. A plurality of light sources are assembled to at least one of the trim extrusions and the mounting extrusions. At least a wallboard piece is secured above the mounting extrusions.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Like reference numbers and designations in the various drawings indicate like elements.
The exemplary fixture assembly provides the appearance of an integral part of the building. In the exemplary implementation, at least portions of the fixture assembly are installed prior to installation of adjacent wallboard, finish plastering, and the like. Specifically, the exemplary fixture assembly presents a continuation 36 of the ceiling 34 beyond the cove with the continuation extending across the opening of the cove 26. The fixture further presents an aesthetically sharp edge (corner when viewed in section) 40 at the cove opening. The exemplary fixture further provides a tapering region 42 rearwardly diverging from the edge 40. The exemplary tapering region 42 has an underside 44 and an upper surface 46. In the exemplary implementation, the underside 44 is generally horizontal whereas the upper surface 46 extends off horizontal at an angle θ. The exemplary surface 46 has a length LS (when measured in transverse section from the edge 40 to a rear end/edge 48). Exemplary LS is 50-200 mm, more particularly, 80-150 mm. An exemplary θ is 20-50°, more narrowly, 30-45°.
The exemplary fixture assembly 20 is shown in an exemplary mounting situation mounted (e.g., screwed) directly to a blocking member 50 forming a lower forward edge of a wall substructure of the cove wall. The exemplary blocking member 50 is a piece of dimensional lumber (or metallic substitute) transversely horizontally extending (e.g., in the longitudinal directions of the fixture). The exemplary blocking member may be mounted to additional framing members (not shown). The exemplary blocking member 50 has, in section, an upper surface (top) 52, a lower surface (underside) 54, a front surface 56, and a rear surface 58. In the exemplary implementation, wallboard 60 (e.g., gypsum board, plasterboard, or the like) of the wall 24 (providing a lateral wall/perimeter of the cove) extends partially along the front face 56 and wallboard 62 extends along the lower face 54 (providing the ceiling outboard of the cove). The exemplary wallboard 60, in vertical section, extends from an upper edge (not shown) to a lower edge 64 and has front and aft surfaces. Similarly, the wallboard 62 extends from a rear edge (not shown) to a front edge 66 and has upper and lower surfaces. In the longitudinal direction 504, the wallboard 60 and 62 may be represented by multiple edge-to-edge pieces ultimately secured via conventional techniques.
The assembly 20 may comprise several subsystems. A first exemplary subsystem is a wall-mounting subsystem 80. The exemplary subsystem 80 includes an end-to-end array of mounting members 82. Exemplary mounting members 82 are extrusions (e.g., of an aluminum alloy) having a convoluted profile so as to form the gross features shown and described. Adjacent twos of the members 82 are joined by connector plates 84 (e.g., aluminum, steel, or plastic) spanning their junctions. The members 82 may be secured to the wall 24 by fasteners 86 (
A second subsystem is an electrical subsystem 90 (
A third subsystem is a trim subsystem 140 mounted to the wall-mounting subsystem and provides a structure for forming the edge 40 and tapering region 42. As is discussed further below, the exemplary trim subsystem 140 includes a plurality of extrusions 142 (e.g., also aluminum alloy) mounted to the extrusions 82.
The surface portions 154 and 156 are along the underside of a generally stepped lower horizontal web structure of the extrusion. In the portion 150, a vertical web 170 extends upward from the lower horizontal web to an upper rail structure 172 comprising an upper wall 174 and a lower wall 176 spaced therefrom by a channel 178. In the exemplary configuration, the web 170 connects to the wall 176 and is forwardly shifted from the surface 56 to define an open channel 180 having slightly inwardly protruding upper and lower rims so as to provide a slot for capturing the plates 84. As is discussed further below, surfaces of the walls 174 and 176 adjacent the channel 178 may be extruded with serrations for providing a biting engagement with skim coat. In installation, the rear portion of the mounting extrusion 82 is butted up against the surface 56 and one or more screws 86 are screwed through the web 70 and into the blocking member 50 or other structure. The extrusion 82 may be pre-formed (as extruded) with grooves vertically defining the screwing locations (e.g., for self-drilling screws or for aligning drill bits) or may be pre-drilled post extrusion.
A variation is shown in the cross-section of
When all the trim members are put in place,
Depending from the inclined wall 206 near the forward edge 202 are a plurality of walls 270 whose lower ends 272 are slightly vertically recessed above a flat surface 274 extending rearwardly from the edge 202. This vertical recessing and the channels 276 between the walls and a gap 278 aft of the trailing wall all provide volume for accommodating a skim coat 280 (
For manufacturing and shipping purposes, the extrusions may be formed in one or more standard lengths. One exemplary length is standard US 8-foot length. If shorter pieces are required to complete a given leg of a system, these may be cut from the stock material. Alternatively, smaller standard sizes may also be provided such as 4-foot and 6-foot or their SI/metric equivalent for countries outside the US. In the exemplary system, the length and nature of the individual lighting trays may be influenced by the particular bulbs desired to be used. Trays may be assembled end-to-end and, therefore, do not have to correspond to length of the extrusions. The selection of trays and their arrangement may be made to provide even lighting along the length of any given leg or to provide a desired variation in light along that leg. Trays may overlap junctions between extrusions.
Exemplary depths between the fixture forward edge and the mounting surface of the blocking member are approximately 6-18 inches with particular examples in the range of 8-13 inches. For example, an exemplary 8.625 inch length when used with 0.625 inch wallboard results in an 8-inch protrusion. Thus, nominal protrusions of 8, 10, and 12 inches might be made available in a given series of fixtures. SI/metric equivalents could also be provided.
In either of the exemplary systems, interior 350 (
The exemplary system may have a number of utilitarian advantages. One advantage is economy of contractors. For example, different contractors may serve different purposes. There may be a structural contractor who installs the building framing and the blocking members, a sheetrocking/plastering contractor for installing the sheetrock, a lighting installer, and an electrician (if not also the lighting installer). The exemplary system allows the lighting installer to install before the sheetrocker has done any work. This is distinguished, for example, from a situation wherein the sheetrocker must apply some sheetrock before the fixtures are installed and some sheetrock after the fixtures are installed. With the blocking member (or other structure) in place, the lighting installer (if different) may install at least the key structural portions of the lighting system. Thereafter, the sheetrocker may install the sheetrock, including the applying of the joint compound, depending on the situation, painting may then occur. The lighting trays may be installed and wired thereafter allowing them to avoid damage or contamination. This may, for example, allow use of spray paint without need to protect the light sources.
A second embodiment 400 (
One or more embodiments of the present invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. For example, various elements may be combined or further separated. Additionally, a variety of structural shapes and cooperating features of the extrusion are possible. Various other manufacturing techniques and materials may be used. Multiple bulb and multiple reflector embodiments are also possible. Architectural/design considerations may influence any particular implementation, giving rise to the possibility of mounting on non-vertical surfaces and mounting in non-horizontally extending arrays. Accordingly, other embodiments are within the scope of the following claims.
Benefit is claimed of U.S. Patent Application Ser. No. 61/651,246, filed May 24, 2012, and entitled “Cove Lighting”, the disclosure of which is incorporated by reference herein in its entirety as if set forth at length.
Number | Name | Date | Kind |
---|---|---|---|
4725931 | Bourdon | Feb 1988 | A |
4881156 | Shemitz et al. | Nov 1989 | A |
5343375 | Gross et al. | Aug 1994 | A |
5550725 | Shemitz et al. | Aug 1996 | A |
5775797 | Henstra | Jul 1998 | A |
7029143 | Kiechle et al. | Apr 2006 | B2 |
7249870 | Shwisha | Jul 2007 | B1 |
7658518 | Shwisha | Feb 2010 | B2 |
8002426 | Pearson et al. | Aug 2011 | B2 |
8398273 | Eberhardt | Mar 2013 | B2 |
20050225982 | Hahn | Oct 2005 | A1 |
Entry |
---|
Edgeless Cove Light, 2009, Whitegoods Lighting Limited, London, GB. |
Edgeless Cove—Quick Spec Form, 2011,Whitegoods Lighting Limited, London, GB. |
Edgeless Installation Instructions, 2012, Whitegoods Lighting Limited, London, GB. |
KE Series—Architectural trimless channel lighting system, 2010, Cooper US, Inc., Houston, TX. |
Number | Date | Country | |
---|---|---|---|
20130314907 A1 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
61651246 | May 2012 | US |