This invention relates to closures for containers, and more specifically to dispensing closures having pressure activated valves and corresponding covers.
A flexible dispensing valve system may be part of a package that is suitable for storing, shipping, and dispensing both high and low viscosity materials. Such high viscosity materials include shampoos, conditioners, soaps, and other flowable products such as other liquids, pastes and the like. Low viscosity materials include water, other beverages, and the like. The dispensing system, upon being inverted and/or squeezed, opens a self-sealing dispensing valve in the closure at a predetermined threshold pressure to discharge the contents of the corresponding container. Upon removal of the external forces and upon the container internal pressure being reduced below a predetermined threshold pressure for dispensing, the valve closes.
Self-sealing dispensing valves have been disclosed in U.S. Pat. Nos. 4,728,006; 5,271,531; and 5,531,363. Self-sealing dispensing valves are also offered commercially by Liquid Molding Systems, Inc. of Midland, Mich., which has been issued U.S. Pat. Nos. 5,213,236; 5,377,877 and 5,409,144. Each of these six patents is incorporated herein in their entireties.
Dispensing closures are, in most instances, required to render the packages suitable for shipping such that product will not inadvertently or accidentally be dispensed between the time the container is filled with product to be dispensed to the ultimate purchasers and use by a consumer. U.S. Pat. No. 6,089,418, which is incorporated herein by reference in its entirety, discloses a flexible valve sealing system having a protective cover. It is a goal to provide an improved flexible valve system and corresponding cover.
A closure for dispensing a product from a container includes a cover for a flexible dispensing valve. The cover, which is removably coupled to a base of the closure, includes a central post that extends downwardly from a top portion of the cover. A distal portion of the post contacts the flaps of the dispensing valve to inhibit the flaps from opening. The dispensing valve flaps are part of a valve head that open in response to internal positive pressure within the container from their at-rest, closed position. Thus, the post of the cover preferably contacts the flaps at the point of intersection of the slits forming the flaps. Further, an outer circular projection extending downwardly from the top portion may also restrict movement of the valve head. The projection preferably is a ring.
The cover prevents inadvertent opening of the valve
As shown in
A connector sleeve 24 has one end connected with the marginal circumferentially extending flange 26, which is substantially triangular in cross section, and the opposite end connected with valve head 18 adjacent to this marginal edge. Connector sleeve 24 is resiliently flexible such that when pressure within bottle 12 is raised above a predetermined threshold value, connector sleeve is capable of deforming outwardly, as described more fully below. The valve head 18 has a circular plan shape, and a generally tapered thickness which is thicker at the radially outside portion of valve head 18 and thinner at the radially inside portion thereof. For further details of a self-sealing dispensing valve and the functioning of its parts usable with this invention, reference is made to U.S. Pat. Nos. 5,213,236, 5,377,877 and 5,409,144 which are incorporated herein by reference in their entireties.
Upon squeezing the sidewalls of container 12 such that bottle internal pressure is raised above a predetermined threshold value, connector sleeve 24 extends outwardly and valve head 18 shifts outwardly (that is, upward with respect to FIGS. 2 and 8). Flaps 22 open and unfold outwardly with a snapping action to permit product to be dispensed therethrough. The snap-type opening of valve 16 is believed to be achieved in part by the torque exerted on valve head 18 by the connector sleeve 24.
Upon negative pressure conditions on the interior side of the valve 16, such as that which results in response to release of bottle 12 after squeezing, the connector sleeve 24 and valve head 18 will return to their at-rest position with a torque snap action. During the return process, air is sucked through cross-slits 20 into the interior of bottle 12 until the negative pressure therein is substantially equalized. As the pressure differential across opposing sides of the valve 16 diminishes to near zero, flaps 22 reform to their at-rest, securely sealed configuration, and remain sealed even under the hydraulic head pressure applied thereto by the product upon inversion of bottle 12 (that is, opposite the orientation shown in FIGS. 2 and 8).
The cross shaped projection of the cover disclosed in the U.S. Pat. No. 6,089,418, under certain conditions, may sometimes provide an imperfect inhibition against deformation of flaps 22. For example, because the cover is installed, or replaced after an end user initially removes it, without regard for its angular position relative to the position of the flexible valve, the cross-shaped projections may be directly aligned with the slits, may be positioned equidistant from the slits (that is, halfway between each slit), or may be positioned such that an edge of the cross-shaped projections are disposed on or slightly spaced apart from the slits. The cover might not, depending on the magnitude of the internal pressure, temperature, resilience of the flaps, and like parameters, inhibit the valve from inadvertently opening while the cover is in each of the above positions, including both latter positions, (which may provide the smallest degree of inhibition from opening), and either of the two former positions.
The valved dispensing closure 14 may also include base 30, which includes a substantially cylindrical lower side wall 32 provided threads 34 for mating with corresponding threads (not shown) container 12. The bottom of the side wall 32 has a downwardly depending apron 36 having upwardly extending flanges 38 which are adapted to engage and lock under a radial rib (not shown) of the bottle neck when the closure 14 is initially applied to the neck of the bottle 12. The bottom of the side wall 32 is connected to the apron 36 through an interposed ruptureable line of weakening 40, thereby providing a tamper evident feature.
The base 30 preferably includes a reduced diameter upper side wall 42 connected to the lower side wall 32 by a substantially horizontal ledge 44. A circumferential sealing edge 46 may be formed on the underside of ledge 44 to engage the top of the neck of the bottle 12 for sealing therebetween. Sealing edge 46 preferably is sloped to form an angle of approximately five degrees from the horizontal so as to properly mate to a corresponding sealing surface on the lip of bottle 12. Thus, an inner rim of the sealing edge is lower than an outer portion of the sealing edge. Preferably, sealing edge 46 does not permanently deform when induction welded to the neck of the bottle, which improves over the “crab's claw” seal of other designs, which may occasionally deform, especially when induction welded to the bottle. Such deformation of the crab's claw design, which may be permanent, may promote leakage, especially upon re-use after initially removing base 30 from bottle 12.
The interior of the upper side wall 42 of base 30 includes a radially inwardly extending lip 48 and a substantially horizontal radially inwardly extending top 52. The base top 52 has an opening 82 for exposing the valve head 18 and connector sleeve 24 and for enabling the discharge of product from the valve 16. A circumferential extending recess 53b is formed on the underside of base top 52 substantially outside of opening 82.
As shown in
The retaining ring 50 includes a circumferentially extending recess 53a on its upper face and a circular projection 51 that extends downward from an inner portion of retaining ring 50. Projection 51 stiffens retaining ring and facilitates assembly by providing a datum surface that may be gripped or used to manipulate ring 50 into position within base 30.
Preferably, the recess 53a in the retaining ring and the recess 53b in the base are opposing to form a triangular cross sectional shape to correspond to the cross sectional shape of flange 26. The triangular shapes of flange 26 and the corresponding recesses 53a and 53b provide a clamping action while the valve 16 is actuated. The provision for clamping valve flange 26 internally within the base top 52 by the internally secured retaining ring 50 is an important security and anti-tamper provision of the present invention.
The bottle 12 is preferably resiliently deformable and may be conveniently blow molded from one of many well known resins such as poly-propylene, polyethylene, polyvinyl, polyethylene terephthalate (PET) or the like. Bottle 12 preferably exhibits a sufficient degree of flexibility to permit manual deformation by squeezing of the bottle side walls to extrude product through the valve dispensing closure 14. The bottle 12 preferably also exhibits a sufficiently strong bias or pre-disposition to return to its undeformed condition when external forces are removed so that a substantial, virtually instantaneous pressure drop will be generated within the bottle, thereby assisting the seal of the valved dispensing closure 14 in a manner to be described in detail.
Cover 54 extends around the upper side wall 42 and over the top 52 of base 30 and valve 16, thereby protecting the closure 14. Cover 54 includes a downwardly depending substantially cylindrical skirt 56 that is adapted to slide tightly over and embrace the exterior of the upper side wall 42. Cover 54 also includes a top 58 that is formed at the upper end of skirt 56. A lip 62 is formed at the peripheral edge of the top 58, which provides a gripping surface for a user to remove the cover from base 30.
Radial fins 57 are provided on the exterior of skirt 56 to eliminate interlock with the tamper evident band of other similar closure. In this regard, fins 57 are oriented longitudinally on the cylindrical exterior of skirt 56 and yield into lip 62. Fins 57 prevent cover 54 (especially lip 62) from interlocking or interfering with gaps formed in tamper evident bands of other closures when they are randomly loaded into a storage container and when introduced into closure assembly equipment. Further, fins 57 stiffen cover 54 around skirt 56. As will be understood by persons familiar with closure configuration and design, the present invention encompasses members that protrude from cover 54 having shapes other than longitudinally extending fins, including (for example) one or more circumferential flanges, spiral or helical fins, pin fins, and the like, as well as covers that lack such protrusions.
Base 30 may include features that cooperate with the cover 54 to provide a water tight seal. In this regard, base 30 includes a pair of circumferential ribs 59a and 59b disposed around the exterior of the lower portion of the upper sidewall 42. Also, a circumferential recess 49 is formed in base 30 on ledge 44 at the base of upper sidewall 42. The present is not limited to covers and/or bases 30 that include ribs 59a and 59b and/or recess 49. Further, the present invention encompasses covers that have shapes other than a cylindrical skirt and substantially flat top, including conical and curved sidewalls.
When the user desires to dispense and use product from the bottle 12, the user removes the protective cover 54 by urging upward against lip 62. The bottle 12 is inverted and the product contained within the bottle 12 may be dispensed by squeezing the bottle side walls to increase the internal pressure of the container until it exceeds a threshold value to effect shifting of the valve head 18 from an inwardly concave sealed position. Specifically, the increase in internal pressure urges outward against valve head 18, which causes connector sleeve 24 to roll outward. Until connector sleeve 24 rolls outward, the concave surface of valve head 18 remains concave and undergoes little deformation, and the slits 22 remain closed When sleeve 24 rolls to its fully extended position, valve head 18 deforms such that flaps 22 open at slits 20 in response to a further increase in internal pressure of the bottle 12. Preferably, flaps 22 snap open.
Upon release of the bottle sidewalls, the squeezing forces are released and the internal pressures are reduced. In response to the diminished internal bottle pressures, the valve head 18 returns toward its at-rest, inwardly curved, concave position. Preferably, the flaps 22 snap shut in response to the decrease in internal pressure, thereby shutting off flow of the product. During the return process (that is, the return of valve 16 to its at-rest, sealed position) there is a momentary inward opening of the valve head 18, which enables venting of the bottle interior such that negative pressure within bottle 12 may be eliminated or reduced. Thus, valve 16 quickly returns to its at-rest, sealed leak-proof position and the dispensing package can remain in its inverted position without fear or concern over leakage of product.
Referring to
After a user has removed cover 54 from base 30, the user may lightly replace cover 54 without fully snapping cover rib 63 over base rib 59a. Specifically, cover 54 may be placed around a portion of upper sidewall 42, which is tapered. The inner diameter of the lower portion of cover 54 may be sized to contact the lower, outer portion of sidewall 42, and the contact may lightly hold cover 54 on base 30. This provides a beneficial configuration in circumstances in which it is desired to hold cover 54 in place or protect the valve 16 from dust even though a water tight seal is not important, such as, for example, in light re-use after initially removing the cover 54.
According to an aspect of the present invention, cover 54 has an inner projection 68 and an outer projection 70, each of which extends downwardly from the underside of top 58. Preferably, inner projection 68 includes a thin post (that is, thin compared to the overall diameter of cover 54) that projects downwardly from top 58 at a longitudinal centerline thereof. Outer projection 70 preferably is substantially concentric with inner projection 68, and preferably forms a cylinder that has a circular transverse cross section. Thus, an outboard surface of each of projections 68 and 70 form a circular cross section at their lower end. Preferably, inner projection 68 protrudes below outer projection 70 to correspond to the curvature of valve head 18.
Preferably, the distal end of inner projection 68 (that is, the end opposite top 58) is longitudinally disposed such that it lightly contacts the center or intersection of slits 20 and that it lightly contacts the tip of each of the flaps 22. Also, the distal tip of projection 70 is radially and longitudinally disposed such that it lightly contacts the curved portion of valve head 18 and such that it is radially spaced apart from slits 20. Outer projection 70 may also lightly contact connector sleeve 24, or projection 70 may contact connector sleeve 24 and be spaced apart from the concave portion of valve head 18.
As best shown in
The present invention also encompasses projections 68 and 70 that are longitudinally spaced apart from valve head 18, and which contact valve head 18 upon partial outward extension. Thus, when referring to the projections 68 and/or 70 contacting valve head 18, the present invention encompasses any contact, including for example, light contact, contact that displaces flaps 22, and contact that occurs only upon outward movement of flaps 22 such that there is a gap formed between either or both projections 68 and 70 in the at-rest position. The projections 68 and 70 prevent inadvertent actuation of the valve head 18 by preventing flaps 22 from opening because their tips are prevented from opening by projection 68 and by preventing valve head 18 from shifting from its concave position because valve head 18 and/or connector sleeve 24 is held by projection 70.
The particular configuration of the projections provided herein illustrates an aspect of the present invention. The present invention is not, however, limited to the particular configurations described above. Rather, the present invention encompasses any configuration of projection that extends downwardly to restrict the opening of flaps 22, including, for example, for any configuration of projection 68, only a projection (such as projection 68) disposed at the longitudinal centerline of the closure (that is, without projection 70), and other configurations that will be apparent to persons familiar with closures and/or flexible dispensing valves. For example, the present invention encompasses projections that form a conical shape having a circular transverse cross section, projections that form an oval or other non-circular shape, and projections that are discontinuous as viewed in transverse cross section (such as, for example, several posts or arc-like sections that together make up either an inner projection or outer projection and perform the functions thereof as described herein). Further, the outer projection encompasses downwardly projecting pins, as distinguished from a circular projection, that contact valve head 18 and/or connector sleeve 24.
The present invention is not limited to the particular embodiment or configuration described herein, but, rather encompasses various modifications or variations, as will be understood by persons generally familiar with closure technology. For example, the present invention is not limited to any particular configuration of the valve, means of securing the cover to the valve, and the like. Thus, the scope of the invention is determined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1989714 | Statham | Feb 1935 | A |
2684789 | Marchant | Jul 1954 | A |
2713953 | Jewell | Jul 1955 | A |
3856170 | Kessler | Dec 1974 | A |
4728006 | Drobish et al. | Mar 1988 | A |
4749108 | Dornsbusch et al. | Jun 1988 | A |
5025942 | Lucas | Jun 1991 | A |
5115950 | Rohr | May 1992 | A |
5213236 | Brown et al. | May 1993 | A |
5271531 | Rohr et al. | Dec 1993 | A |
5377877 | Brown et al. | Jan 1995 | A |
5390805 | Bilani et al. | Feb 1995 | A |
5409144 | Brown | Apr 1995 | A |
5456374 | Beck | Oct 1995 | A |
5531363 | Gross et al. | Jul 1996 | A |
5632420 | Lohrman et al. | May 1997 | A |
5642824 | Hess, III et al. | Jul 1997 | A |
5743443 | Hins | Apr 1998 | A |
5897033 | Okawa et al. | Apr 1999 | A |
5927549 | Wood | Jul 1999 | A |
5927566 | Mueller | Jul 1999 | A |
5954237 | Lampe et al. | Sep 1999 | A |
5971232 | Rohr et al. | Oct 1999 | A |
6039224 | Dallas et al. | Mar 2000 | A |
6089411 | Baudin et al. | Jul 2000 | A |
6089418 | Gaiser et al. | Jul 2000 | A |
6112951 | Mueller | Sep 2000 | A |
6179166 | Dallas et al. | Jan 2001 | B1 |
Number | Date | Country |
---|---|---|
0 555 623 | Aug 1993 | EP |
8-282703 | Oct 1996 | JP |
Number | Date | Country | |
---|---|---|---|
20030173379 A1 | Sep 2003 | US |